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Of concern is a class of nonlinear neutral fractional integrodifferential inclusions with infinite
delay in Banach spaces. A theorem about the existence of mild solutions to the fractional
integrodifferential inclusions is obtained based on Martelli’s fixed point theorem. An example is
given to illustrate the existence result.

1. Introduction

As have been seen, the field of the application of fractional calculus is very broad. For
instance, we can see it in the study of the memorial materials, earthquake analysis,
robots, electric fractal network, fractional sine oscillator, electrolysis chemical, fractional
capacitance theory, electrode electrolyte interface description, fractal theory, especially in
the dynamic process description of porous structure, fractional controller design, vibration
control of viscoelastic system and pliable structure objects, fractional biological neurons, and
probability theory. The mathematical modeling and simulation of systems and processes,
based on the description of their properties in terms of fractional derivatives, naturally leads
to differential equations of fractional-order. The main feature of fractional order differential
equation is containing the noninteger order derivative. It can effectively describe the memory
and transmissibility of many natural phenomena. These differential equations have been
studied by many researchers (cf., e.g., [1–11] and references therein).

As an generalization of differential equations, differential inclusions have also been
investigated (cf., e.g., [1, 7, 12, 13] and references therein). Moreover, equations with delay are
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often more useful to describe concrete systems than those without delay. So the study of these
equations has been attracted so much attention (cf., e.g., [1, 4, 8, 12, 14–21] and references
therein).

In this paper, we pay our attention to the investigation of the existence of mild
solutions to the following fractional integrodifferential inclusions of neutral type with infinite
delay in a Banach space X:

Dq(x(t) − g(t, xt)
) ∈ A

(
x(t) − g(t, xt)

)
+
∫ t

0
K(t, s)F(s, x(s), xs)ds, t ∈ [0, T],

x0 = φ ∈ P,

(1.1)

where 0 < q < 1, the fractional derivative is understood in the Caputo sense ([2], see
Definition 2.3 in Section 2), P is an admissible phase space, xt : (−∞, 0] → X defined by

xt(θ) = x(t + θ), for θ ∈ (−∞, 0], (1.2)

T > 0, g : [0, T] ×P → X,A generates a compact and uniformly bounded semigroup S(·) on
X which implies that there exists M ≥ 1 such that

‖S(t)‖ ≤ M, ∀t ≥ 0, (1.3)

K : [0, T] × [0, T] → R, φ belongs to P with

φ(0) = 0, (1.4)

and F is a multivalued map to be specified later.

2. Preliminaries

Throughout this paper, X is a Banach space with norm ‖ · ‖, L(X) is the Banach space of all
linear continuous operators on X, J := [0, T], and C(J,X) (C([0,∞), X)) is the space of all
X-valued continuous functions on J([0,∞)).

Moreover, we abbreviate ‖u‖L1(J, R+) as ‖u‖L1 , for any u ∈ L1(J, R+).
We use the notation B(X) to denote the family of all nonempty subsets of X.

Let Bbd(X),Bcl(X),Bcp(X),Bcv(X), and Bcp,cv(X) denote, respectively, the family of all
nonempty bounded, closed, compact, convex, and compact-convex subsets of X.

See the following definition about admissible phase space according to [8, 14–21].

Definition 2.1. A linear space P consisting of functions from R− into X with norm ‖ · ‖P is
called an admissible phase space if P has the following properties.
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(H1) For any t0 ∈ R and a > 0, if x : (−∞, t0 + ah] → X is continuous on [t0, t0 + a] and
xt0 ∈ P, then xt ∈ P, xt is continuous in t ∈ [t0, t0 + a], and

‖x(t)‖ ≤ C‖xt‖P, (2.1)

for a positive constant C.

(H2) There exists a continuous function C1(t) > 0 and a locally bounded function C2(t) ≥
0 in t ≥ 0 such that

‖xt‖P ≤ C1(t − t0)max
s∈[t0,t]

‖x(s)‖ + C2(t − t0)‖xt0‖P (2.2)

for t ∈ [t0, t0 + a] and x as in (H1).

(H3) The space (P, ‖ · ‖P) is complete.

Remark 2.2. (H1) is equivalent to that for any t0 ∈ R and a > 0, if x : (−∞, t0 + a] → X is
continuous on [t0, t0 + a] and xt0 ∈ P, then xt ∈ P, xt is continuous in t ∈ [t0, t0 + a], and

∥∥φ(0)
∥∥ ≤ C

∥∥φ
∥∥
P, ∀φ ∈ P (2.3)

for a positive constant C.

Now we recall some very basic concepts in the fractional calculus theory. For more
details see, for example, [2, 9, 11].

We set for β ≥ 0,

g
{
β
}
(t) =

⎧
⎪⎨

⎪⎩

1
Γ
(
β
) tβ−1, t > 0,

0, t ≤ 0,
(2.4)

and g0(t) = 0, where Γ(·) is the Gamma function.

Definition 2.3. Let f ∈ L1(0,∞;X) and α ≥ 0. Then the expression

Iαf(t) :=
(
g{α} ∗ f)(t) = 1

Γ(α)

∫ t

0
(t − s)α−1f(s)ds, t > 0, α > 0 (2.5)

with I0f(t) = f(t) is called Riemann-Liouville integral of order α of f .
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Definition 2.4. Let f(t) ∈ Cm−1([0,∞);X), g{m−α}∗f ∈ Wm,1(I, X) (m ∈ N, 0 ≤ m−1 < α < m).
The Caputo fractional derivative of order α of f is defined by

Dαf(t) = DmIm−α
(

f(t) −
m−1∑

i=0

f (i)(0)gi+1(t)

)

, (2.6)

where Dm := dm/dtm.

The following concepts are also very basic, which will be used later.
A multivalued map G : X → B(X) is convex (closed) valued if G(x) is convex

(closed) for all x ∈ X. G is bounded on bounded sets if

G(B) =
⋃

x∈B
G(x) (2.7)

is bounded in X for all B ∈ Bbd(X), that is,

sup
x∈B

{
sup

{∥∥y
∥∥ : y ∈ G(x)

}}
< ∞. (2.8)

A multivalued map G : J → Bcl(X) is said to be measurable if for each x ∈ X the
function Y : J → R defined by

Y (t) = d(x,G(t)) = inf{‖x − z‖ : z ∈ G(t)} (2.9)

is measurable.
If for each x ∈ X, the set G(x) is a nonempty, closed subset of X, and for each open set

B of X containing G(x), there exists an open neighborhood V of x such that G(V ) ⊆ B, then
G is called upper semicontinuous (u.s.c.) on X.

If for every B ∈ Bbd(X), G(B) is relatively compact, then G is said to be completely
continuous.

If the multivalued map G is completely continuous with nonempty compact values,
then G is u.s.c. if and only if G has a closed graph, that is,

xn −→ x∗, yn −→ y∗, yn ∈ G(xn) imply y∗ ∈ G(x∗). (2.10)

We say that G has a fixed point if there is some x ∈ X such that x ∈ G(x).
For more details on multivalued maps we refer to the book by Deimling [22].
The following is the multivalued version of the fixed-point theorem due to Martelli

[23].

Lemma 2.5. Let X be a Banach space and let N : X → Bcp,cv(X) be an upper semicontinuous is
bounded; thenN has a fixed point and completely continuous multivalued map. If the set

Ω :=
{
y ∈ X : λy ∈ Ny for some λ > 1

}
(2.11)

is bounded, thenN has a fixed point.
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Following Liang and Xiao [14, 15], let P[0,T] be the set defined by

P[0,T] =
{
x : (−∞, T] −→ X : x|J ∈ C(J,X), x0 ∈ P}. (2.12)

Let ‖ · ‖T be the norm of P[0,T] defined by

∥
∥y

∥
∥
T =

∥
∥y0

∥
∥
P +max

{∥∥y(s)
∥
∥ : 0 ≤ s ≤ T

}
, y ∈ P[0,T]. (2.13)

Based on the work in [7, 11], we set

Q(t) =
∫∞

0
ξq(σ)S(tqσ)dσ,

R(t) = q

∫∞

0
σtq−1ξq(σ)S(tqσ)dσ,

(2.14)

and ξq is a probability density function defined on (0,∞) (see [7]) such that

ξq(σ) =
1
q
σ−1−1/q	q

(
σ−1/q

)
≥ 0, (2.15)

where

	q(σ) =
1
π

∞∑

n=1

(−1)n−1σ−qn−1 Γ
(
nq + 1

)

n!
sin

(
nπq

)
, σ ∈ (0,∞). (2.16)

Remark 2.6. It is not difficult to verify that for v ∈ [0, 1],

∫∞

0
σvξq(σ)dσ =

∫∞

0
σ−qv	q(σ)dσ =

Γ(1 + v)
Γ
(
1 + qv

) . (2.17)

Then, we can see

‖R(t)‖ ≤ qM

Γ
(
1 + q

) tq−1, t > 0. (2.18)

We define the mild solution to problem (1.1) as follows.

Definition 2.7. A function x ∈ P[0,T] satisfying the equation

x(t) =

⎧
⎪⎨

⎪⎩

φ(t), t ∈ (−∞, 0],

−Q(t)g
(
0, φ

)
+ g(t, xt) +

∫ t

0

∫s

0
R(t − s)K(s, τ)f(τ)dτ ds, t ∈ J,

(2.19)
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is called a mild solution of problem (1.1), where

f ∈ SF, x =
{
f ∈ L1(J,X) : f(t) ∈ F(t, x(t), xt) for a.e. t ∈ J

}
. (2.20)

Remark 2.8. (1) Since we only consider the following case:

φ(0) = 0, (2.21)

we define the mild solution to problem (1.1) in the way as mentioned before.
(2) For general φ(0), one can define the mild solution to problem (1.1) similarly and

obtain the same conclusion by the similar arguments given in this paper. So we only pay
attention to the essential case:

φ(0) = 0. (2.22)

3. Results and Proofs

We will require the following assumptions.

(A1) F : J × X × P → Bcp, cv(X); (t, v,w) → F(t, v,w) is measurable with respect to t
for each (v, w) ∈ X × P; for every t ∈ J , the map F(t, ·, ·) : X × P → Bcp, cv(X) is
u.s.c., and the set

SF, v =
{
f ∈ L1(J, X) : f(t) ∈ F(t, v(t), vt) for a.e. t ∈ J

}
(3.1)

is nonempty.

(A2) There exist two functions μi ∈ L1(J,R+) (i = 1, 2) such that

‖F(t, v, w)‖ := sup
{∥∥f

∥∥ : f ∈ F(t, v, w)
}

≤ μ1(t)‖v‖ + μ2(t)‖w‖P, (t, v, w) ∈ J ×X × P.
(3.2)

(A3) There exist positive constants a and b such that

∥∥g
(
t, ϕ̃

)∥∥ ≤ a
∥∥ϕ̃

∥∥
P + b, for t ∈ J, ϕ̃ ∈ P. (3.3)

(A4) For each t ∈ J , K(t, ·) is measurable on [0, t] and

K(t) = ess sup{|K(t, s)|, 0 ≤ s ≤ t} (3.4)

is bounded on J . The map t → K(t, ∗) is continuous from J to L∞(J,R).
The following lemma will be used in the proof of our main result.
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Lemma 3.1 (see [24]). Let I be a compact real interval and let E be a Banach space. Let F
be a multivalued map satisfying hypothesis (A1) and let Υ be a linear continuous mapping from
L1(I, E) → C(I, E). Then,

Υ ◦ SF : C(I, E) −→ Bcp,cv(C(I, E)), x �−→ (Υ ◦ SF)(x) = Υ(SF,x) (3.5)

is a closed graph operator in C(I, E) × C(I, E).

To prove the main result, we consider the multivalued map N : P[0,T] → B(P[0,T])
defined by

N(x)(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ρ ∈ P[0,T] : ρ(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

φ(t), t ∈ (−∞, 0],
−Q(t)g

(
0, φ

)
+ g(t, xt)

+
∫ t

0

∫s

0
R(t − s)K(s, τ)f(τ)dτ ds, t ∈ J,

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

, (3.6)

where f ∈ SF, x.
It is clear that the fixed points of N are mild solutions to problem (1.1).
For φ ∈ P, we define the function

y(t) =

{
φ(t), t ∈ (−∞, 0],
0, t ∈ J,

(3.7)

then y ∈ P[0,T].
Set x(t) = u(t) + y(t), t ∈ (−∞, T].
It is obvious that x satisfies (2.19) if and only if u satisfies u0 = 0 and for t ∈ J ,

u(t) = −Q(t)g
(
0, φ

)
+ g

(
t, ut + yt

)
+
∫ t

0

∫ s

0
R(t − s)K(s, τ)f(τ)dτ ds, (3.8)

where

f ∈ SF,u =
{
f ∈ L1(J,X) : f(t) ∈ F

(
t, u(t) + y(t), ut + yt

)
for a.e. t ∈ J

}
. (3.9)

Let

P[0,T]
0 =

{
u ∈ P[0,T] : u0 = 0

}
. (3.10)

For any u ∈ P[0,T]
0 ,

‖u‖T = ‖u0‖P +max{‖u(s)‖ : 0 ≤ s ≤ T} = max{‖u(s)‖ : 0 ≤ s ≤ T}. (3.11)

Thus (P[0,T]
0 , ‖ · ‖T ) is a Banach space.
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Set

Br =
{
u ∈ P[0,T]

0 : ‖u‖T ≤ r
}
, for r ≥ 0. (3.12)

For u ∈ Br , from Definition 2.1, we have

∥
∥ut + yt

∥
∥
P ≤ ‖ut‖P +

∥
∥yt

∥
∥
P

≤ C1(t)max
0≤τ≤t

‖u(τ)‖ + C2(t)‖u0‖P + C1(t)max
0≤τ≤t

∥
∥y(τ)

∥
∥ + C2(t)

∥
∥y0

∥
∥
P

≤ C∗
1r + C∗

2

∥
∥φ

∥
∥
P := r ′,

(3.13)

where

C∗
i = sup

t∈J
Ci(t) (i = 1, 2). (3.14)

Define the operator

Ñ : P[0,T]
0 −→ B

(
P[0,T]

0

)
(3.15)

by

Ñ(u)(t) =

{

h ∈ P[0,T]
0 : h(t) = −Q(t)g

(
0, φ

)
+ g

(
t, ut + yt

)

+
∫ t

0

∫s

0
R(t − s)K(s, τ)f(τ)dτds, t ∈ J

}

,

(3.16)

where f ∈ SF, u.
We can see that if Ñ has a fixed point in P[0,T]

0 , thenN has a fixed point in P[0,T] which
is a mild solution of problem (1.1).

Assume the following.

(A5) The function g : J × P → X is completely continuous, and for every bounded set
B ∈ P[0,T]

0 , the set {t → g(t, ut) : u ∈ B} is equicontinuous in X.

Then we can deduce that Ñ has a fixed point under the assumptions (A1)–(A5). For this
purpose, we will show that the multivalued operator Ñ is completely continuous, u.s.c.
with convex values. The proof of this conclusion will be given by proving the following six
propositions.

Proposition 3.2. Ñu is convex for each u ∈ P[0,T]
0 .
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Proof. For h1(t), h2(t) ∈ Ñu, there exist f1, f2 ∈ SF, u such that for each t ∈ J we have

hi(t) = −Q(t)g
(
0, φ

)
+ g

(
t, ut + yt

)
+
∫ t

0

∫s

0
R(t − s)K(s, τ)fi(τ)dτ ds, i = 1, 2. (3.17)

Let β ∈ [0, 1]. Then for each t ∈ J , we get

βh1(t) +
(
1 − β

)
h2(t)

= −Q(t)g
(
0, φ

)
+ g

(
t, ut + yt

)
+
∫ t

0

∫ s

0
R(t − s)K(s, τ)

(
βf1(τ) +

(
1 − β

)
f2(τ)

)
dτ ds.

(3.18)

Since F has convex values, SF, u is convex, we see that

βh1(t) +
(
1 − β

)
h2(t) ∈ Ñu. (3.19)

Proposition 3.3. Ñ maps bounded sets into bounded sets in P[0,T]
0 .

Proof. Let u ∈ Br . If h ∈ Ñu, then there exists f ∈ SF, u such that

h(t) = −Q(t)g
(
0, φ

)
+ g

(
t, ut + yt

)
+
∫ t

0

∫ s

0
R(t − s)K(s, τ)f(τ)dτds, for t ∈ J. (3.20)

In view of (A3) and (3.13),

∥∥g
(
t, ut + yt

)∥∥ ≤ ar ′ + b. (3.21)

Hence from (A2), (A3), and (3.13), it follows that

∥∥∥h(t)
∥∥∥ ≤ ∥∥−Q(t)g

(
0, φ

)∥∥ +
∥∥g

(
t, ut + yt

)∥∥

+
qMK∗

Γ
(
1 + q

)
∫ t

0
(t − s)q−1

∫s

0

[
μ1(τ)

∥∥u(τ) + y(τ)
∥∥ + μ2(τ)

∥∥uτ + yτ

∥∥
P
]
dτ ds

≤ M
(
a
∥∥φ

∥∥
P + b

)
+ ar ′ + b +

qMK∗

Γ
(
1 + q

)
(
r
∥∥μ1

∥∥
L1 + r ′

∥∥μ2
∥∥
L1

)
∫ t

0
(t − s)q−1ds

≤ M
(
a
∥∥φ

∥∥
P + b

)
+ ar ′ + b +

MTqK∗

Γ
(
1 + q

)
(
r
∥∥μ1

∥∥
L1 + r ′

∥∥μ2
∥∥
L1

)

=: ω,

(3.22)

where

K∗ = sup
t∈J

K(t). (3.23)



10 Journal of Applied Mathematics

Therefore, for each h ∈ Ñ(Br), we have

∥
∥
∥h

∥
∥
∥
T
≤ ω. (3.24)

Proposition 3.4. Ñ maps bounded sets into equicontinuous sets in P[0,T]
0 .

Proof. Let h ∈ Ñu for u ∈ Br , and let 0 < t2 < t1 ≤ T . Then we have

‖h(t1) − h(t2)‖
≤ ‖Q(t1) −Q(t2)‖ ·

∥
∥g

(
0, φ

)∥∥ +
∥
∥g

(
t1, ut1 + yt1

) − g
(
t2, ut2 + yt2

)∥∥

+

∥∥∥∥∥

∫ t1

0

∫ s

0
R(t1 − s)K(s, τ)f(τ)dτds −

∫ t2

0

∫ s

0
R(t2 − s)K(s, τ)f(τ) dτds

∥∥∥∥∥

= I1 + I2 + I3.

(3.25)

It follows from the continuity of S(t) in the uniform operator topology for t > 0 that

I1 tends to 0, as t2 −→ t1. (3.26)

The equicontinuity of g ensures that

I2 tends to 0, as t2 −→ t1. (3.27)

For I3, we obtain

I3 ≤ K∗
∫ t2

0

∫s

0
‖R(t1 − s) − R(t2 − s)‖∥∥f(τ)∥∥dτ ds +K∗

∫ t1

t2

∫s

0
‖R(t1 − s)‖∥∥f(τ)∥∥dτ ds

≤ K∗r∗
(∫ t2

0
‖R(t1 − s) − R(t2 − s)‖ds + qM

Γ
(
1 + q

)
∫ t1

t2

(t1 − s)q−1ds

)

≤ qr∗K∗
∫ t2

0

∫∞

0
σ
∥∥∥
[
(t1 − s)q−1 − (t2 − s)q−1

]
ξq(σ)S

(
(t1 − s)qσ

)∥∥∥dσ ds

+ qr∗K∗
∫ t2

0

∫∞

0
σ(t2 − s)q−1ξq(σ)

∥∥S
(
(t1 − s)qσ

) − S
(
(t2 − s)qσ

)∥∥dσ ds

+
qMr∗K∗

Γ
(
1 + q

)
∫ t1

t2

(t1 − s)q−1ds
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≤ qMr∗K∗

Γ
(
1 + q

)
∫ t2

0

∣
∣
∣(t1 − s)q−1 − (t2 − s)q−1

∣
∣
∣ds

+ qr∗K∗
∫ t2

0

∫∞

0
σ(t2 − s)q−1ξq(σ)

∥
∥S

(
(t1 − s)qσ

) − S
(
(t2 − s)qσ

)∥∥dσ ds

+
Mr∗K∗

Γ
(
1 + q

) (t1 − t2)q,

(3.28)

where

r∗ := r
∥
∥μ1

∥
∥
L1 + r ′

∥
∥μ2

∥
∥
L1 . (3.29)

Clearly, the first term and third term on the right-hand side of (3.28) tend to 0 as t2 → t1. The
second term on the right-hand side of (3.28) tends to 0 as t2 → t1 as a consequence of the
continuity of S(t) in the uniform operator topology for t > 0.

Thus the set {Ñu : u ∈ Br} is equicontinuous.

Proposition 3.5. (ÑBr)(t) is relatively compact for each t ∈ J , where

(
ÑBr

)
(t) =

{
h(t) : h ∈ Ñ(Br)

}
. (3.30)

Proof. Fix t ∈ (0, T]. For arbitrary 0 < ε < t and arbitrary δ > 0, write

hε,δ(t) = −Q(t)g
(
0, φ

)
+ g

(
t, ut + yt

)

+ q

∫ t−ε

0
(t − s)q−1

∫∞

δ

σξq(σ)S
(
(t − s)qσ

)
∫ s

0
K(s, τ)f(τ)dτ dσ ds

= −Q(t)g
(
0, φ

)
+ g

(
t, ut + yt

)

+ qS(εqδ)
∫ t−ε

0
(t − s)q−1

∫∞

δ

σξq(σ)S
(
(t − s)q σ − εqδ

)
∫s

0
K(s, τ)f(τ)dτ dσ ds,

(3.31)

where f ∈ SF, u. Since S(t) is compact for each t ∈ (0, T] and (A5), the set

Uε,δ =
{
hε,δ(t) : h ∈ Ñ(Br)

}
(3.32)

is relatively compact. Moreover,
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‖h(t) − hε,δ(t)‖ ≤ q

∫ t−ε

0
(t − s)q−1

∫δ

0
σξq(σ)S

(
(t − s)q σ

)
∫s

0
K(s, τ)f(τ)dτ dσ ds

+q
∫ t

t−ε
(t − s)q−1

∫∞

0
σξq(σ)S

(
(t − s)q σ

)
∫s

0
K(s, τ)f(τ)dτ dσ ds

≤ MK∗r∗Tq

∫δ

0
σξq(σ)dσ +

Mr∗K∗εq

Γ
(
1 + q

) ,

(3.33)

which implies that (ÑBr)(t) is relatively compact.

Now, it follows from Propositions 3.3–3.5 and the Ascoli-Arzela theorem that

Ñ : P[0,T]
0 −→ B

(
P[0,T]

0

)
(3.34)

is completely continuous.

Proposition 3.6. Ñ has a closed graph.

Proof. Suppose that

un −→ u∗, hn ∈ Ñun with hn −→ h∗. (3.35)

We claim that

h∗ ∈ Ñu∗. (3.36)

In fact, the assumption hn ∈ Ñun implies that there exists fn ∈ SF, un such that

hn(t) = −Q(t)g
(
0, φ

)
+ g

(
t, unt + yt

)
+
∫ t

0

∫ s

0
R(t − s)K(s, τ)fn(τ)dτ ds, t ∈ J. (3.37)

We will show that there exists f∗ ∈ SF, u∗ such that

h∗(t) = −Q(t)g
(
0, φ

)
+ g

(
t, u∗t + yt

)
+
∫ t

0

∫s

0
R(t − s)K(s, τ)f∗(τ)dτ ds, t ∈ J. (3.38)

Obviously, as n → ∞, we have

∥∥(hn(t) +Q(t)g
(
0, φ

) − g
(
t, unt + yt

)) − (h∗(t) +Q(t)g
(
0, φ

) − g
(
t, u∗t + yt

))∥∥ −→ 0.
(3.39)
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Consider the following linear continuous operator:

Υ : L1(J, X) −→ C(J, X),

f �−→ Υ
(
f
)
(t) =

∫ t

0

∫s

0
R(t − s)K(s, τ)f(τ)dτ ds.

(3.40)

By virtue of Lemma 3.1, we know that Υ ◦ SF is a closed graph operator. Moreover, we get

hn(t) +Q(t)g
(
0, φ

) − g
(
t, unt + yt

) ∈ Υ(SF, un). (3.41)

Since un → u∗ and hn → h∗, it follows from Lemma 3.1 that

h∗(t) +Q(t)g
(
0, φ

) − g
(
t, u∗t + yt

)
=
∫ t

0

∫s

0
R(t − s)K(s, τ)f∗(τ)dτ ds, (3.42)

for some f∗ ∈ SF, u∗ .

Now, we can conclude that Ñ is a completely continuous multivalued map, u.s.c. with
convex values. Next, we give the existence result of problem (1.1).

Theorem 3.7. Assume that (A1)–(A5) are satisfied; then there exists a mild solution of (1.1) on
(−∞, T] provided that aC∗

1 < 1.

Proof. Define

Ω :=
{
u ∈ P[0,T]

0 : λu ∈ Ñu, for some λ > 1
}
. (3.43)

Then, according to the previous propositions and discussions, we see that we only need to
prove that the set Ω is bounded.

Take u ∈ Ω. Then there exists f ∈ SF, u such that

u(t) = λ−1
(

−Q(t)g
(
0, φ

)
+ g

(
t, ut + yt

)
+
∫ t

0

∫s

0
R(t − s)K(s, τ)f(τ)dτ ds

)

. (3.44)

It follows from Definition 2.1 and (A2) that

‖u(t)‖ < M
(
a
∥∥φ

∥∥
P + b

)
+ a

(
C∗

1max
0≤τ≤t

‖u(τ)‖ + C∗
2

∥∥φ
∥∥
P

)
+ b

+
qM

Γ
(
1 + q

)
∫ t

0
(t − s)q−1

∫s

0
|K(s, τ)|∥∥f(τ)∥∥dτ ds

≤ M1 + aC∗
1max
0≤τ≤t

‖u(τ)‖

+
qMK∗

Γ
(
1 + q

)
∫ t

0
(t − s)q−1

∫s

0

[
μ1(τ)

∥∥u(τ) + y(τ)
∥∥ + μ2(τ)

∥∥uτ + yτ

∥∥
P
]
dτ ds

≤ M1 + aC∗
1max
0≤τ≤t

‖u(τ)‖
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+
qMK∗

Γ
(
1 + q

)

(∫ t

0
(t − s)q−1

∫s

0
μ1(τ)‖u(τ)‖ dτ ds

+
∫ t

0
(t − s)q−1

∫ s

0
μ2(τ)‖uτ‖Pdτ ds

+C∗
2

∫ t

0
(t − s)q−1

∫s

0
μ2(τ)

∥
∥φ

∥
∥
Pdτ ds

)

≤ θ1 + aC∗
1max
0≤τ≤t

‖u(τ)‖ + qMK∗∥∥μ1
∥
∥
L1

Γ
(
1 + q

)
∫ t

0
(t − s)q−1 max

0≤τ≤s
‖u(τ)‖ds

+
qMK∗∥∥μ2

∥
∥
L1C

∗
1

Γ
(
1 + q

)
∫ t

0
(t − s)q−1 max

0≤τ≤s
‖u(τ)‖ds

= θ1 + aC∗
1max
0≤τ≤t

‖u(τ)‖ + θ2

∫ t

0
(t − s)q−1 max

0≤τ≤s
‖u(τ)‖ds,

(3.45)

where

M1 := M
(
a
∥∥φ

∥∥
P + b

)
+ aC∗

2

∥∥φ
∥∥
P + b,

θ1 := M1 +
MK∗

Γ
(
1 + q

)
∥∥μ2

∥∥
L1C

∗
2T

q
∥∥φ

∥∥
P,

θ2 :=
qMK∗(∥∥μ1

∥∥
L1 + C∗

1

∥∥μ2
∥∥
L1

)

Γ
(
1 + q

) .

(3.46)

Denote

κ(t) := max
0≤s≤t

‖u(s)‖, (3.47)

and let t̃ ∈ [0, t] such that κ(t) = ‖u(t̃)‖. Then, by (3.45), we get

κ(t) ≤ θ1 + aC∗
1κ(t) + θ2

∫ t

0
(t − s)q−1 κ(s)ds. (3.48)

Furthermore,

κ(t) ≤ θ1
1 − aC∗

1
+

θ2
1 − aC∗

1

∫ t

0
(t − s)q−1 κ(s)ds. (3.49)

It is known from [25, Lemma 7.1.1] that, for any continuous functions v,w : J → [0,+∞), if
w(·) is nondecreasing and there are constants a > 0 and 0 < α < 1 such that

v(t) ≤ w(t) + a

∫ t

0
(t − s)−αv(s)ds, (3.50)
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then there exists a constant k = k(α) such that

v(t) ≤ w(t) + ka

∫ t

0
(t − s)−αw(s)ds, for each t ∈ J. (3.51)

By virtue of this general fact and (3.49), we see that there exists a constant k̃ = k̃(q) such that

κ(t) ≤ θ1
1 − aC∗

1
+

k̃θ2
1 − aC∗

1

∫ t

0
(t − s)q−1

θ1
1 − aC∗

1
ds

≤ θ1
1 − aC∗

1

[

1 +
k̃θ2T

q

q
(
1 − aC∗

1

)

]

=: ζ.

(3.52)

Therefore ‖u‖T ≤ ζ. This means that the set Ω is bounded.
Thus, it follows from Lemma 2.5 that Ñ has a fixed point in P[0,T]

0 . ThenN has a fixed
point which gives rise to a mild solution to problem (1.1).

Example 3.8. Set X = L2([0, π], R) and define A by

D(A) = H2(0, π) ∩H1
0(0, π),

Au = u′′.
(3.53)

ThenA generates a compact, analytic semigroup S(·) of uniformly bounded linear operators,
and ‖S(t)‖ ≤ 1 (see [26] for more related information).

Consider the following Cauchy problem for a fractional integrodifferential conclusion:

∂q

∂tq

(
v(t, ξ) − ∫ t−∞ γ(s − t)v(s, ξ)ds

)
∈ ∂2

∂ξ2

(
v(t, ξ) − ∫ t−∞ γ(s − t)v(s, ξ)ds

)

+
∫ t
0(t − s)

∫s
−∞ η(s, τ − s, ξ)H(s, v(τ, ξ))dτ ds, t ∈ [0, 1],

v(t, 0) − ∫ t−∞ γ(s − t)v(s, 0)ds = 0,

v(t, π) − ∫ t−∞ γ(s − t)v(s, π)ds = 0,

v(θ, ξ) = v0(θ, ξ), −∞ < θ ≤ 0,

(3.54)

where 0 < q < 1, ξ ∈ [0, π], v0 : (−∞, 0] × [0, π] → R is a continuous function and H :
[0, 1] × R → B(R) is a u.s.c. multivalued map with compact convex values.

Let 	 < 0, define the space

P =
{
ϕ ∈ C((−∞, 0], X) : lim

θ→−∞
e	θϕ(θ) exists in X

}
(3.55)
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endowed with the norm

∥
∥ϕ

∥
∥
P = sup

−∞<θ≤0

{
e	θ

∥
∥ϕ(θ)

∥
∥
L2

}
. (3.56)

Clearly, we can see that P is an admissible phase space which satisfies (H1)–(H3) with

C1(t) = max
{
1, e−	t}, C2(t) = e−	t. (3.57)

For t ∈ [0, 1], ξ ∈ [0, π], and ϕ ∈ P, let

x(t)(ξ) = v(t, ξ),

φ(θ)(ξ) = v0(θ, ξ), θ ∈ (−∞, 0],

g
(
t, ϕ

)
(ξ) =

∫0

−∞
γ(θ)ϕ(θ)(ξ)dθ,

K(t, s) = t − s,

F
(
t, x(t), ϕ

)
(ξ) =

∫0

−∞
η(t, θ, ξ)H

(
t, ϕ(θ)(ξ)

)
dθ.

(3.58)

Then problem (3.54) can be written in the abstract form (1.1).

Furthermore, we assume the following.

(1) The function γ : (−∞, 0] → R is continuous and

M2 :=

(

− 1
2	

∫0

−∞
γ2(θ)dθ

)1/2

< ∞. (3.59)

(2) There exists a continuous function v1(t) such that

∣∣H
(
t, ϕ

)∣∣ ≤ v1(t)
∥∥ϕ(θ)

∥∥
L2 . (3.60)

(3) The function η(t, θ, ξ) ≥ 0 is continuous in [0, 1] × (−∞, 0] × [0, π] and

∫0

−∞
η(t, θ, ξ) e−	θdθ = p(t, ξ) < ∞. (3.61)
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Then, we can obtain

∥
∥F(t, x(t), ϕ)

∥
∥
L2 =

⎛

⎝
∫π

0

∣
∣
∣
∣
∣

∫0

−∞
η(t, θ, ξ)H

(
t, ϕ(θ)(ξ)

)
dθ

∣
∣
∣
∣
∣

2

dξ

⎞

⎠

1/2

≤
⎛

⎝
∫π

0

(∫0

−∞
η(t, θ, ξ)v2(t)

∥
∥ϕ(θ)

∥
∥
L2dθ

)2

dξ

⎞

⎠

1/2

=

⎛

⎝
∫π

0

(∫0

−∞
η(t, θ, ξ)v2(t) e−	θe	θ

∥
∥ϕ(θ)

∥
∥
L2dθ

)2

dξ

⎞

⎠

1/2

≤
⎛

⎝
∫π

0

(∫0

−∞
η(t, θ, ξ)e−	θdθ

)2

dξ

⎞

⎠

1/2

· v2(t) ·
∥
∥ϕ

∥
∥
P

≤
(∫π

0
p2(t, ξ)dξ

)1/2

· v2(t) ·
∥∥ϕ

∥∥
P

= p(t)v2(t)
∥∥ϕ

∥∥
P,

(3.62)

where p(t) = ‖p(t, ·)‖L2 .
Moreover,

∥∥g(t, ϕ)
∥∥
L2 =

⎛

⎝
∫π

0

(∫0

−∞
γ(θ)ϕ(θ)(ξ)dθ

)2

dξ

⎞

⎠

1/2

≤
(∫π

0

(∫0

−∞
γ2(θ)dθ

)

·
(∫0

−∞
ϕ2(θ)(ξ)dθ

)

dξ

)1/2

=

(∫0

−∞
γ2(θ)dθ

)1/2(∫π

0

∫0

−∞
ϕ2(θ)(ξ)dθ dξ

)1/2

=

(∫0

−∞
γ2(θ)dθ

)1/2(∫0

−∞

∥∥ϕ(θ)
∥∥2
L2dθ

)1/2

=

(∫0

−∞
γ2(θ)dθ

)1/2(∫0

−∞
e−2	θe2	θ

∥∥ϕ(θ)
∥∥2
L2dθ

)1/2

≤
(∫0

−∞
γ2(θ)dθ

)1/2
⎛

⎝
∫0

−∞
e−2	θ

[

sup
−∞<θ≤0

e	θ
∥∥ϕ(θ)

∥∥
L2

]2
dθ

⎞

⎠

1/2

=

(∫0

−∞
γ2(θ)dθ

)1/2(∫0

−∞
e−2	θdθ

)1/2
∥∥ϕ

∥∥
P

= M2
∥∥ϕ

∥∥
P.

(3.63)

Therefore, by virtue of Theorem 3.7, problem (3.54) has a mild solution when e−	M2 < 1.
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