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The problem of learning the kernel function with linear combinations of multiple kernels has
attracted considerable attention recently in machine learning. Specially, by imposing an lp-norm
penalty on the kernel combination coefficient, multiple kernel learning (MKL) was proved useful
and effective for theoretical analysis and practical applications (Kloft et al., 2009, 2011). In this
paper, we present a theoretical analysis on the approximation error and learning ability of the lp-
norm MKL. Our analysis shows explicit learning rates for lp-norm MKL and demonstrates some
notable advantages compared with traditional kernel-based learning algorithms where the kernel
is fixed.

1. Introduction

1.1. Overview of Multiple Kernel Learning

Kernel methods such as Support Vector Machines (SVMs) have been extensively applied
to supervised learning tasks such as classification and regression. The performance of a
kernel machine largely depends on the data representation via the choice of kernel function.
Hence, one central issue in kernel methods is the problem of kernel selection; a great many
approaches to selecting the right kernel have been studied in the literature [1–4] and other
references therein.

We begin with reviewing the classical supervised learning setup. Let (X, d) be a
compact metric space and Y ⊆ R, given a labeled sample z = {(xi, yi)}mi=1 ⊆ Z := X × Y ,
sampled i.i.d. according to an unknown distribution ρ supported on Z, the goal is to
estimate a real-valued function fz depending on the sample, that generalizes well on new and
unseen data. A widely used approach to estimate a function from empirical data consists in
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minimizing a regularization functional in a Hilbert spaceH of real-valued functions:X → R.
Typically, a regularization scheme estimates f as a minimizer of the functional

Ez
(
f
)
+ λΩ

(
f
)
, (1.1)

where Ez(f) = (1/m)
∑m

i=1 V (f(xi), yi) is the empirical risk of hypothesis f , measured by a
nonnegative loss function V : R×Y → R

+. In addition,Ω : H → R is a regularizer and λ > 0
is a trade-off regularization parameter.

In this paper, we assume that H is a reproducing kernel Hilbert space (RKHS) HK

with kernel K, see [5]. Every kernel K corresponds to a feature mapping ΨK : X → HK

satisfying K(x, y) = 〈ΨK(x),ΨK(y)〉K, and each element of HK has the following form:

fw(x) = 〈w,ΨK(x)〉K, ∀w ∈ HK. (1.2)

By restricting the regularization to be the form Ω(f) = ‖f‖2K, there is a lot of studies
from different perspectives such as statistics, optimal recovery and machine learning [6–
9], and other references therein. Regularization in an RKHS has a number of attractive
features, including the availability of effective error bounds and stability analysis relative
to perturbations of the data (see Cucker and Smale [7]; Wu et al. [10]; Bousquet and Elisseeff
[6]). Moreover, the optimization problem (1.1) in an RKHS can be reduced to seek for solution
in a finite-dimensional space. Although it is simple to prove, this result shows that the
variational problem (1.1) can be computational easily.

Because of their simplicity and generality, kernels and associated RKHS play
an increasingly important role in Machine Learning, Pattern Recognition and Artificial
Intelligence.When the kernel is fixed, an immediate concern is the choice of the regularization
parameter λ. This is typically solved by means of cross validation or generalized cross
validation [11]. However, the performance of kernel methods critically relies on the choice
of the kernel function. A natural question is how to choose the optimal kernel in a collection
of candidate kernels.

Kernel learning can range from the width parameter selection of Gaussian kernels
[9, 12] to obtaining an optimal linear combination from a set of finite candidate kernels. The
latter is often referred to as multiple kernel learning in machine learning and nonparametric
group Lasso in statistics [13]. Lanckriet et al. [3] pioneered work on MKL and proposed a
semidefinite programming approach to automatically learn a linear combination of candidate
kernels for the cases of SVMS. To improve computation efficiency, the multikernel class
further is restricted to only convex combinations of kernels [2, 14, 15]. Most learning kernel
algorithms are based on considering linear kernel mixtures Kθ =

∑
θkKk, (θk ≥ 0) with a

prescribed kernels K1, . . . , KM. For notational simplicity, we will frequently use Ψk instead
of the standard feature ΨKk . Compared to (1.1), the primal model for learning with multiple
kernels is extended to

fw̃,θ(x) =
M∑

k=1

√
θk〈wk,Ψk(x)〉Kk

, ∀w̃ = (w1, . . . , wM), where wk ∈ HKk . (1.3)
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In this paper, we mainly focus on the lp-norm MKL, consisting in minimizing the
regularized empirical risk with respect to the optimal kernel mixture

∑M
k=1 θkKk, in addition

to lp-regularizer on θ to avoid overfitting. This leads to the following optimization problem:

inf
w̃,θ:θ≥0

1
m

m∑

i=1

V

(
M∑

k=1

√
θk〈wk,Ψk(xi)〉Kk

, yi

)

+ λ
M∑

k=1

‖wk‖2Kk
+ μ

M∑

k=1

|θk|p. (1.4)

This scheme was introduced in [2] and the existence of its minimum has been discussed in
[4].

The optimization problem subsumes state-of-the-art approaches to multiple kernel
learning, covering sparse and nonsparse MKL by arbitrary lp-norm regularization (1 ≤
p ≤ ∞) on the mixing coefficients as well as the incorporation of prior knowledge by
allowing for nonisotropic regularizer. Kloft et al. [2] developed two efficient interleaved
optimization strategies for the lp-norm multiple kernel learning, and this interleaved
optimization is much faster than the commonly used wrapper approaches, as demonstrated
on real-world problems from computational biology. An analysis of this model, based on
Rademacher complexities, was first developed by Cortes et al. [1]. Later improved rates
of convergence were derived based on the theory of local Rademacher complexities [15].
However, the estimate on local Rademacher complexities with 1 ≤ p < 2 strictly depends
on no-correlation assumption of the M different features, which is too strong condition in
theory and practice. In this paper, we employ the notion of empirical covering number to
present a theoretical analysis of its generalization error. Besides no-correlation condition is
not necessary, empirical covering number is one tight upper bound of local Rademacher
complexities [16], also independent of the underlying distribution. We will see that some
satisfying learning rates are established when the regularization parameter is appropriately
chosen. The interaction between the sample error and the approximation error plays an
important role in our analysis, and our new methodology mainly depends on the complexity
of hypothesis class measured by empirical covering number and the regularity of a target
function.

It should be pointed out that the Tikhonov Regularization in (1.4) has two
regularization parameter (λ, μ), which may be hard to deal with in practice. Fortunately, an
alternative approach has been studied by Rakotomamonjy et al. [14] and Kloft et al. [2]. More
precisely, this approach employs the regularizer ‖θ‖lp ≤ 1 as an additional constraint into the
optimization problem. By substituting wk for

√
θwk, they arrive at the following problem:

inf
w̃,θ:θ≥0

1
m

m∑

i=1

V

(
M∑

k=1

〈wk,Ψk(xi)〉Kk
, yi

)

+
λ

2

M∑

k=1

‖wk‖2Kk

θk

subject to ‖θ‖lp ≤ 1.

(1.5)

1.2. Algorithm and Main Consequence

The following Lemma (see [4]) indicates that the above multikernel class can equivalently
be represented as a block-norm regularized linear class in the product Hilbert space H =
HK1 × · · · × HKM .
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Lemma 1.1. If p > 0, q = 1 + (1/p), and {aj , j ∈ Nn} ⊆ R, then

min

⎧
⎪⎨

⎪⎩

⎛

⎝
∑

j∈Nn

a2
j

λj

⎞

⎠

1/2

: λl ≥ 0, l ∈ Nn,
∑

j∈Nn

λ
p

j ≤ 1

⎫
⎪⎬

⎪⎭
=

⎛

⎝
∑

j∈Nn

∣
∣aj

∣
∣2/q

⎞

⎠

q/2

, (1.6)

and the equality occurs for
∑

j∈Nn
|aj | > 0 at

λ̃j :=

∣
∣aj

∣
∣2/(p+1)

(∑
j∈Nn

∣
∣aj

∣
∣2p/(p+1)

)1/p
. (1.7)

Hence, Lemma 1.1 can be applied to define the feature mapping: Ψ : x ∈ X →
(Ψ1(x), ...,ΨM(x)) ∈ HK̃ associated with a kernel K̃; the class of functions defined above
coincides with

Hp,D,M =
{
fw : x −→ 〈w,Ψ(x)〉HK̃

| w = (w1, . . . , wM), ‖w‖2,q ≤ D
}
, (1.8)

when p ∈ [1,∞], q ∈ [1, 2] holds from q = 2p/(p + 1). The l2,q-norm is defined here as

‖w‖2,q = (
∑M

j=1 ‖wj‖qKj
)
1/q

. For simplicity, we write ‖fw‖2,q = ‖w‖2,q. Clearly learning the
complexity of (1.8) will be greater than one that is based on a single kernel only, further it
provides greater learning ability while the computational complexity increases accordingly.
The sample complexity of the above hypothesis space has been studied by Cortes et al. [1]
and Kloft and Blanchard [15]. Thus the primal MKL optimization problem (1.5) is equivalent
to the following regularization scheme, which is the primary object of investigation in this
paper

fz = 〈wz,Ψ(x)〉HK̃
, where wz = arg min

w∈HK̃

1
m

m∑

i=1

V
(
〈w,Ψ(xi)〉HK̃

, yi

)
+ λ‖w‖22,q. (1.9)

Here we use the symbol “min” instead of “inf,” since (1.4) is equivalent to (1.9) and
the solution of (1.4) exists and is unique. Remark that the above algorithm is a standard
regularized empirical risk minimization; this implies that lp-norm multiple kernel learning
scheme can be free of over-fitting, a phenomenon which occurs when the empirical error is
zero but the expected error in far from zero.

In the following, we assume that {Kj}j=1,...,M is uniformly bounded, that is,

κ = sup
j∈{1,...,M}

sup
x∈X

√
Kj(x, x) < ∞. (1.10)

Also suppose that each Kj is continuous. In other words, each Kj is a Mercer kernel with
bound κ; we refer to [17] for more properties and discussions on Mercer kernel.
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In this paper, we only focus on the least square loss: V (f(x), y) = (f(x) − y)2.
Accordingly, the target function is given by

fρ(x) = argmin
{

E
(
f(x) − y

)2} =
∫

Y

ydρ(· | x), ∀x ∈ X, (1.11)

where we denote by ρ(· | x) the conditional distribution of ρ. Through this paper we assume
that ρ(· | x) is supported on [−T, T], it follows that |fρ(x)| ≤ T for x ∈ X almost surely. Since
the learner fz may be much larger than fρ, it is natural to apply a projection operator on fz,
which was introduced into learning algorithms to improve learning rates.

Definition 1.2. The projection operator π is defined on the space of measurable functions f :
X → R as

π
(
f
)
(x) =

⎧
⎪⎪⎨

⎪⎪⎩

T, if f(x) > T,

f(x), if
∣∣f(x)

∣∣ ≤ T,

−T, if f(x) < −T,
(1.12)

where T > 0 is called the projection level.

The target of error analysis is to understand how π(fz) approximates the regression
function fρ. More precisely, we aim to estimate the excess generalization error

E(π(fz
)) − E(fρ

)
(1.13)

for the lp-norm MKL algorithm (1.4), where E(f) = E(f(x) − y)2 denotes the expect error
of f .

To show some ideas of our error analysis, we first state learning rates of (1.4) in a
special case when fρ ∈ HK̃ and K̃ is C∞ on X ⊂ R

n.

Theorem 1.3. Let fz be defined by (1.9). Assume K̃ is C∞ on X ⊂ R
n and fρ ∈ HK̃. For any

0 < δ < 1 and ε > 0, with confidence 1 − δ, there holds

E(π(fz
)) − E(fρ

)
=
∥∥π

(
fz
) − fρ

∥∥2
ρ
≤ C̃ log

(
2
δ

)(
1
m

)1−ε
, with λ =

(
1
m

)1−2ε
, (1.14)

where C̃ is some constant independent of m or δ.

Theorem 1.3 can be viewed as a corollary of our main result presented in Section 5.
It can be arbitrary close to O(m−1) by choosing ε to be small enough, which is the best
convergence rate in learning theory literature.

2. Key Error Analysis

Our main result is about learning rates of (1.4) stated under conditions on the approximation
ability of HK̃ with respect to fρ and capacity of HK̃.
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The approximation ability of the hypothesis space HK̃ with respect to fρ in the space
L2
ρX is reflected by regularization error.

Definition 2.1. The regularization error of the triple (HK̃, fρ, ρX) is defined as

Aq(λ) = min
f∈HK̃

{
E(f) − E(fρ

)
+ λ

∥
∥f

∥
∥2
2,q

}
, λ > 0. (2.1)

We will assume that for some 0 < β ≤ 1 and Cβ > 0,

Aq(λ) ≤ Cβλ
β. (2.2)

Remark 2.2. Our assumption implies that when fρ is replaced by HK̃, Aq(λ) tends to zero by
polynomial order decay as λ goes to zero. Note [7] that Aq(λ) = o(λ) would imply fρ = 0.
So β = 1 in (2.2) is the best we can expect. This case is equivalent to fρ ∈ HK̃ when HK̃

is dense in L2
ρX , see [18]. Assumption (2.2) with 0 < β < 1 can be characterized in terms of

interpolation spaces [7].

If ρX is the Lebesgue measure on X and the target function fρ ∈ Hs, a Sobolev
space with power s. When Gaussian kernel (Gσ(x, y) = exp(−σ‖x − y‖2)) is taken with
a fixed variance σ, a polynomial decay of Aq(λ) is impossible. However, Example 1 of
[19] successfully obtains a polynomial decay under the multikernel setting, allowing for
varying variances of Gaussian kernels. This shows that multikernel learning can improve the
approximation power and learning ability. More interestingly, we will take a special example
to show the impact of the multikernel class on the regularization error in Section 5 below. In
particular, a proper multikernel class can be applied to improve the regularization error if the
regularity of fρ is rather high.

Next we define the truncated sample error as

Sz
(
λ, f, T

)
=
{E(π(fz

)) − Ez

(
π
(
fz
))}

+
{Ez

(
f
) − E(f)}, (2.3)

and the sample error as

Sz
(
λ, f

)
=
{E(fz

) − Ez
(
fz
)}

+
{Ez

(
f
) − E(f)}. (2.4)

The function f in the above equation can be arbitrarily chosen; however, only proper
choices lead to good estimates of the regularization error. A good choice is f = fλ where

fλ = arg min
f∈HK̃

{
E(f) + λ

∥∥f
∥∥2
2,q

}
. (2.5)

A useful approach for regularization schemes with sample independent hypothesis
spaces such as RKHS is an error decomposition, which decomposes the total error E(π(fz))−
E(fρ) into the sum of the truncated sample error and the regularization error stated as follows.



Abstract and Applied Analysis 7

Proposition 2.3. Let fλ be defined by (2.5); there holds

E(π(fz
)) − E(fρ

) ≤ Sz
(
λ, fλ, T

)
+Aq(λ). (2.6)

Proof. We can decompose E(π(fz)) − E(fρ) into

{E(π(fz
)) − Ez

(
π
(
fz
))}

+
{
Ez
(
π
(
fz
))

+ λ
∥
∥fz

∥
∥2
2,q −

(
Ez
(
fλ
)
+ λ

∥
∥fλ

∥
∥2
2,q

)}

+
{Ez

(
fλ
) − E(fλ

)}
+
{
E(fλ

) − E(fρ
)
+ λ

∥
∥fλ

∥
∥2
2,q

}
− λ

∥
∥fz

∥
∥2
2,q.

(2.7)

To bound the second term, by Definition of fz, Ez(π(fz)) + λ‖fz‖22,q can be bounded by

Ez
(
fz
)
+ λ

∥∥fz
∥∥2
2,q ≤ Ez

(
fλ
)
+ λ

∥∥fλ
∥∥2
2,q, (2.8)

since |π(f)(x) − y| ≤ |f(x) − y| holds for any function f on Z. The conclusion follows by
combining these two inequalities.

3. Estimation on Sample Error

We are in a position to estimate the sample error Sz(λ, fλ, T). The sample error Sz(λ, fλ, T)
can be written as

{(E(π(fz
)) − E(fρ

)) − (Ez
(
π
(
fz
)) − Ez

(
fρ
))}

+
{(Ez

(
fλ
) − Ez

(
fρ
)) − (E(fλ

) − E(fρ
))}

:= S1 + S2.
(3.1)

S2 can be easily bounded by applying the following one-side Bernstein-type probabil-
ity inequality.

Lemma 3.1. Let ξ be a random variable on a probability space Z with variance σ2 satisfying |ξ −
E(ξ)| ≤ Mξ for some constant Mξ. Then for any 0 < δ < 1, we have

1
m

m∑

i=1

ξ(zi) − E(ξ) ≤ 2Mξ log(1/δ)
3m

+

√
2σ2 log(1/δ)

m
. (3.2)

Proposition 3.2. Define the random variable ξ2(z) = (fλ(x)−y)2−(fρ(x)−y)2. For every 0 < δ < 1,
with confidence at least 1 − δ/2, there holds

S2 =
1
m

m∑

i=1

ξ2(zi) − E(ξ2) ≤ Aq(λ)

(

1 +
3κ2M2/q∗ log(2/δ)

mλ

)

+
6T2 + log(2/δ)

m
. (3.3)
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Proof. From the definition of Aq(λ), we see that

λ
∥
∥fλ

∥
∥2
2,q ≤ E(fλ

) − E(fρ
)
+ λ

∥
∥fλ

∥
∥2
2,q = Aq(λ). (3.4)

Note that fλ(x) = 〈wλ,Ψ(x)〉 for some wλ = (w(1)
λ
, . . . , w

(M)
λ

) ∈ HK̃, by the Cauchy-Schwarz
inequality (C. − S.), we have for any x ∈ X:

〈wλ,Ψ(x)〉 =
M∑

j=1

〈
w

(j)
λ
,Ψj(x)

〉 C.−S.≤
M∑

j=1

∥
∥
∥w

(j)
λ

∥
∥
∥
Kj

∥
∥Ψj(x)

∥
∥
Kj

Hölder≤ ‖wλ‖2,q

⎛

⎝
M∑

j=1

∥
∥Ψj(x)

∥
∥q∗

Kj

⎞

⎠

1/q∗

,

(3.5)

where (1/q) + (1/q∗) = 1. Using Assumption (1.10), it follows that

∥∥fλ
∥∥
∞ ≤ κM1/q∗‖wλ‖2,q ≤ κM1/q∗

√
Aq(λ)

λ
. (3.6)

Observe that

ξ2(z) =
(
fλ(x) − fρ(x)

)(
fλ(x) + fρ(x) − 2y

)
. (3.7)

Since that |fρ(x)| ≤ T almost surely, we have

|ξ2| ≤
(∥∥fλ

∥∥
∞ + T

)(∥∥fλ
∥∥
∞ + 3T

) ≤ c :=

⎛

⎝κM1/q∗

√
Aq(λ)

λ
+ 3T

⎞

⎠

2

. (3.8)

Hence |ξ2 − E(ξ2)| ≤ Mξ2 := 2c. Moreover, E(ξ2)
2 equals

E

((
fλ(x) − fρ(x)

)2(
fλ(x) + fρ(x) − 2y

)2) ≤ (∥∥fλ
∥∥
∞ + 3T

)2∥∥fλ − fρ
∥∥2
ρ
, (3.9)

which implies that σ2(ξ2) ≤ E(ξ22) ≤ cAq(λ). The desired result follows from Lemma 3.1.

Next we estimate the first term S1. It is more difficult to deal with because it involves
a set of random variables fz varying with z, requiring to consider the functional complexity.
For this purpose, we introduce the notion of empirical covering numbers, which often lead
to sharp error estimates [16].
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Definition 3.3. Let (U, d) be a pseudometric space and S ⊂ U. For every ε > 0, the covering
number N(S, ε, d) of S with respect to ε and d is defined as the minimal number of balls of
radius ε whose union covers S, that is,

N(S, ε, d) = min

⎧
⎨

⎩
l ∈ N : S ⊂

l⋃

j=1

B
(
sj , ε

)
for some

{
sj
}l
j=1 ⊂ U

⎫
⎬

⎭
, (3.10)

where B(sj , ε) = {s ∈ U : d(s, sj) ≤ ε} is a ball in U.

The l2-empirical covering number of a function set is defined by means of the
normalized l2-metric d2 on the Euclidian space R

k given by

d2(a,b) =

(
1
k

k∑

i=1

|ai − bi|2
)1/2

for a = (ai)ki=1, b = (bi)
k
i=1 ∈ R

k. (3.11)

Definition 3.4. Let F be a set of function onX, x = (xi)
k
i=1 ⊂ Xk and F|x = {(f(xi))

k
i=1 : f ∈ F} ⊂

R
k. Set N2,x(F, ε) = N(F|x, ε, d2). The l2-empirical covering number of F is defined by

N2(F, ε) = sup
k∈N

sup
x∈Xk

N2,x(F, ε), ε > 0. (3.12)

Denote by BR the ball of radius Rwith R > 0, BR = {f ∈ HK̃ : ‖f‖K̃ ≤ R}. We need the
following capacity assumption on HK̃.

Assumption 3.5. There exists an exponent υ, with 0 < υ < 2 and a constant Cυ,K̃ > 0 such that

logN2(B1, ε) ≤ Cυ,K̃ε
−υ, ∀ε > 0, (3.13)

where B1 is the unit ball ofHK̃ defined as above.

For any function fw = 〈w,Ψ(x)〉HK̃
, by the hölder inequality, we have

∥∥fw
∥∥
K̃ =

⎛

⎝
M∑

j=1

∥∥wj

∥∥2
Kj

⎞

⎠

1/2

≤ M1/q∗∥∥fw
∥∥
2,q, (3.14)

and it follows from (3.13)

logN2

(
B
q

1 , ε
)
≤ Cυ,KM

υ/q∗ε−υ, (3.15)

where Bq

1 is called the generalized unit ball ofHK̃ associated with q, defined by

B
q

1 =
{
f ∈ HK̃,

∥∥f
∥∥
2,q ≤ 1

}
. (3.16)
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Note that for any function set F ⊆ C(X), the empirical covering number N2,x(F, ε)
is bounded by N(F, ε), the (uniform) covering number of F under the metric ‖ · ‖∞, since
d2(f, g) ≤ ‖f − g‖∞. It was shown in [20] that the quantity log(N(B1, ε)) ≤ C0(1/ε)

s holds
for some C0 > 0 if K is C2n/s on a subset of R

n, hence log(N2(B1, ε)) ≤ C0(1/ε)
s also holds.

In particular, s is arbitrarily small for a C∞ kernel ( such as Gaussian kernel). Now we give a
concrete example in R

n to reveal relationship between the regularity of function class and its
corresponding empirical covering number.

Example 3.6. Let X be a bounded domain in R
n and Hs the Sobolev space of index s. When

s > n, the classical Embedding Theorem tells us thatHs(X) is an RKHS and its unit ball B1 is
embedded in a finite ball of the function space Cs−(n/2)−ζ(X) with inclusion bounded where
0 < ζ < s−n. From the classical bounds for covering numbers of the unit ball of Cs−(n/2)−ζ(X),
we see that

log(N2(B1, ε)) ≤ Csε
−n/(s−n/2−ζ), ∀ε > 0. (3.17)

Hence Assumption (3.13) below holds with υ = n/(s − n/2 − ζ) < 2.

Our concentration estimate for the sample error dealing with S1 is based on the
following concentration inequality, which can be found in [12].

Lemma 3.7. Let F be a class of measurable functions on Z. Assume that there are constants B, c > 0
and η ∈ [0, 1] such that ‖f‖∞ ≤ B and Ef2 ≤ c(Ef)η for every f ∈ F. If for some a > 0 and
υ ∈ (0, 2),

logN2(F, ε) ≤ aε−υ, ∀ε > 0, (3.18)

then there exists a constant cυ such that for any t > 0, with confidence at least 1 − e−t, there holds

Ef − 1
m

m∑

i=1

f(zi) ≤ 1
2
γ1−η

(
Ef

)η + cυγ + 2
(
ct

m

)1/(2−η)
+
18Bt
m

, ∀f ∈ F, (3.19)

where

γ := max

{

c(2−υ)/(4−2η+υη)
(

a

m

)2/(4−2η+υη)
, B(2−υ)/(2+υ)

(
a

m

)2/(2+υ)
}

. (3.20)

Denote the set of function Fq

R with R > 0, where

Fq

R =
{(

π
(
f
)
(x) − y

)2 − (
fρ(x) − y

)2 : f ∈ B
q

R

}
. (3.21)
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Proposition 3.8. If Bq

1 satisfies the capacity condition (3.13) with some 0 < υ < 2, then for any
δ ∈ (0, 1), with confidence 1 − δ/2, there holds

S1 ≤ 1
2
∥
∥π

(
fz
) − fρ

∥
∥2
ρ
+
80T2 log(2/δ)

m
+ Cυ,T

(
1
λ

)υ/(2+υ)( 1
m

)2/(2+υ)
(3.22)

with constant Cυ,T = 4cυ(Cυ,K̃T
2)υ/(2+υ)M2υ/(2+υ)q∗ .

Proof. Consider the set Fq

R. Each function g ∈ Fq

R can be expressed as g(z) = (y − π(f)(x))2 −
(y−fρ(x))2 with some f ∈ B

q

R. Then Eg = E(π(f))−E(fρ) = ‖π(f)−fρ‖2ρ and (1/m)
∑m

i=1 g(zi)
= Ez(π(f)) − Ez(fρ). Note that

g(z) =
(
π
(
f
)
(x) − fρ(x)

)(
π
(
f
)
(x) + fρ(x) − 2y

)
. (3.23)

Since |π(f)(x)| ≤ T and |fρ(x)| ≤ T for any x ∈ X, we see that for any z ∈ Z,

∣∣g(z)
∣∣ ≤ 8T2,

Eg2 =
∫

Z

(
π
(
f
)
(x) − fρ(x)

)2(
π
(
f
)
(x) + fρ(x) − 2y

)2 ≤ 4T2
Eg.

(3.24)

On the other hand, for any g1, g2 ∈ Fq

R at point z = (x, y), we have

∣∣g1(z) − g2(z)
∣∣ ≤ 4T

∣∣f1(x) − f2(x)
∣∣, (3.25)

since the projector operator π is a contractive map. It follows that

N2,z

(
Fq

R, ε
)
≤ N2,x

(
B
q

R,
ε

4T

)
≤ N2,x

(
B
q

1 ,
ε

4TR

)
. (3.26)

It follows from the capacity condition (3.15)

logN2

(
Fq

R, ε
)
≤ Cυ,K̃

(
4TRM1/q∗

)υ
ε−υ. (3.27)

Applying Lemma 3.7 with B = c = 4T2, η = 1, and a = Cυ,K̃(4TRM
1/q∗)υ, we see that

for any δ ∈ (0, 1), with confidence 1 − δ/2, there holds

Eg − 1
m

m∑

i=1

g(zi) ≤ 1
2

Eg +
80T2 log(2/δ)

m
+ Cυ,TR

2υ/(2+υ)
(

1
m

)2/(2+υ)

, ∀f ∈ Fq

R. (3.28)

Besides, following the definition of fz (1.9), we have

λ
∥∥fz

∥∥2
2,q = λ‖wz‖22,q

w=0≤ 1
m

m∑

i=1

y2
i ≤ T2, (3.29)
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that is, ‖fz‖2,q ≤ T/
√
λ. Hence we can replace R with T/

√
λ. Thus we derive our desired

result.

4. Total Learning Rates

We are now in a position to obtain the learning rates of projected algorithm (1.9). Main results
of this paper will be presented in Theorem 4.1.

Following the error decomposition scheme in Proposition 2.3 and combining Proposi-
tions 3.2 and 3.8, we derive the following bounds on the total error.

Theorem 4.1. Suppose that Bq

1 satisfies the capacity condition (3.13) with some 0 < υ < 2, and
Aq(λ) ≤ Cβλ

β. For any δ ∈ (0, 1), with confidence 1 − δ, there holds

∥∥π(fz) − fρ
∥∥2
ρ
≤ C′ log

(
2
δ

)(
1
m

)min{2β/(2β+(1+β)υ),β}
, by taking λ =

(
1
m

)min{2/(2β+(1+β)υ),1}
,

(4.1)

where C′ = 3κ2M2/q∗ + 86T2 + 1 + Cυ,T2υ/(2+υ) + Cβ and Cυ,T is defined as in Proposition 3.8.

Proof. Following Propositions 3.2 and 3.8, with confidence at least 1 − δ, (1/2)‖π(fz) − fρ‖2ρ
can be bounded by

3κ2M2/q∗Aq(λ)
mλ

log
(
2
δ

)
+

(
86T2 + 1

)
log(2/δ)

m
+ Cυ,T

(
2
λ

)υ/(2+υ)( 1
m

)υ/(2+υ)

+ 2Aq(λ).

(4.2)

Firstly, we set

Aq(λ)
mλ

= Aq(λ), (4.3)

which implies that λ = (1/m). On the other hand, from the assumption Aq(λ) ≤ Cβλ
β, we set

(
2
λ

)υ/(2+υ)( 1
m

)2/(2+υ)

= λβ, that is , λ = m−(2/(2β+(1+β)υ)). (4.4)

Hence our assertion follows by taking λ = (1/m)min{2/(2β+(1+β)υ),1}.

Proof of Theorem 1.3. When K̃ ∈ C∞, it follows that condition (3.13) holds for arbitrary small
υ > 0. Moreover, fρ ∈ HK̃ implies that β = 1, the conclusion follows easily from Theorem 4.1.
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Our learning rates below in Corollary 4.2 will be achieved under the regularity
assumption on the regression function that fρ lies in the range of Lr

K̃
for some r > 0. Given

any kernel K, LK is the integral operator on L2
ρX defined by

LK

(
f
)
(x) =

∫

X

K
(
x, y

)
f
(
y
)
dρX

(
y
)
, x ∈ X, f ∈ L2

ρX . (4.5)

The operator LK is linear, compact, positive and can be also regarded as a self-adjoint operator
on HK. Hence the fractional power operator Lr

K : L2
ρX → L2

ρX is well defined and is given by

Lr
K

(
f
)
=
∑

k

λrk
〈
f, ϕk

〉
L2
ρX

ϕk, f ∈ L2
ρX(X), (4.6)

where {λk}k are eigenvalues of the operator LK arranged in a decreasing order and {ϕk}k are
the corresponding eigenfunctions, which form an orthonormal basis of L2

ρX . In fact, the image
of Lr

K is contained in HK if r ≥ 1/2. So L−r
K fρ ∈ L2

ρX indicates that fρ lies in the range of Lr
K,

measuring the regularity of the regression function.

Corollary 4.2. Suppose that Bq

1 satisfies the capacity condition (3.13) with some 0 < υ < 2, and
L−r
K̃
fρ ∈ L2

ρX (0 < r ≤ 1). For any 0 < δ < 1, with confidence 1 − δ, there holds

∥∥π(fz) − fρ
∥∥2
ρ
≤ C̃ log

(
2
δ

)(
1
m

)min{2β/(2β+(1+β)υ),β}
, with β = min{2r, 1}, (4.7)

where C̃ is some constant independent of m or δ.

Proof. Recall a result from [18], if L−r
K̃
fρ ∈ L2

ρX (0 < r ≤ 1/2), there holds

A2(λ) =
∥∥fλ − fρ

∥∥2
ρ
+ λ

∥∥fλ
∥∥2
K̃
≤ λ2r

∥∥∥L−r
K̃
fρ
∥∥∥
L2
ρX

. (4.8)

If r ≥ 1/2, this shows that fρ ∈ HK̃ as mentioned above, then we have fλ = fρ and

A2(λ) ≤ λ
∥∥fρ

∥∥2
K̃
. (4.9)

Hence for any r ∈ [0, 1], we have

A2(λ) ≤ λβ, with β = min{2r, 1}. (4.10)

On the other hand, observe Lemma 5.1 below, and we have

Aq(λ) ≤ C∗λβ, with β = min{2r, 1}, (4.11)

where C∗ is some constant and q ∈ [1, 2]. The conclusion follows immediately from Theorem
4.1.
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Let us compare our learning rates with the existing results.
In [10], a uniform covering number technique was used to derive the expected value

of learning schemes (1.1) where Ω(fw) = ‖w‖2K. If all the kernels {Ki} are the same with
some specialized K and L−r

K fρ ∈ L2
ρX for some 0 < r ≤ 1/2. For any 0 < ζ < 1/(1 + υ) and any

0 < δ < 1, with confidence 1 − δ, then

∥
∥fz − fρ

∥
∥2
ρ
≤ log

(
2
δ

)
O
(
m−2rζ

)
. (4.12)

Clearly the learning rates derived from Corollary 4.2 are better than that in [10] since 2rζ <
2r/(1 + υ) ≤ 4r/(4r + (1 + 2r)υ).

In [21], an operator monotonic technique was used to improve the kernel independent
error bounds in comparison with the result in [17]. If L−r

K fρ ∈ L2
ρX for some 0 < r ≤ 1. For any

0 < δ < 1, with confidence 1 − δ, there holds

∥∥fz − fρ
∥∥2
ρ
≤ log

(
2
δ

)
O
(
m−3r/(2r+2)

)
. (4.13)

When r ≥ 1/2 and υ ≤ (2−r)/3r, the learning rate given by Corollary 4.2 is better than
the above result.

As for empirical risk minimization (ERM), classical results on analysis of ERM
schemes give error bounds between the empirical target function and the regression function.
In particular, learning rates of type m−ε with ε arbitrarily close to 1 can be achieved by
ERM schemes (see [15]). However, the ERM setting is different from the one on Tikhonov
regularization. How to choose the regularization parameter λ = λ(m), depending on the
sample size m, is the essential difficulty for the regularization scheme, even when fρ lies in
HK. On the other hand, it is obvious that our result is more general than that of [15] since the
case for fρ /∈ HK (r < 1/2) is also covered.

5. Discussion on Regularization Error

By our assumptions on M different kernels {Kj}Mj=1, we see that HK̃ is an RKHS generated

by the Mercer kernel K̃. There are several standard approximation results on regularization
errorA2(λ) in learning theory (see [17]). Next we establish a tight connection betweenA2(λ)
and Aq(λ) with 1 ≤ q ≤ 2.

Lemma 5.1. Let HK̃ be a separable RKHS over X associated with a bounded measurable kernel, ρ
be a distribution on X × [−T, T], and 1 ≤ q ≤ 2. If there exist constants C > 0 and β > 0 such that
A2(λ) ≤ Cλβ, then for all λ > 0 we have

Aq(λ) ≤ C
(
M(2−q)/2 + 1

)
λβ. (5.1)

Proof. If there exists a function f̃λ satisfying

λ
∥∥∥f̃λ

∥∥∥
2

2,2
+
∥∥∥f̃λ − fρ

∥∥∥
2

ρ
≤ Cλβ, (5.2)
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we see that λ‖f̃λ‖22,2 ≤ Cλβ. We write f̃λ(x) = 〈w̃,Ψ(x)〉with some w̃ = (w̃(1), ..., w̃(M)), by the
Hölder inequality, we have

∥
∥
∥f̃λ

∥
∥
∥
q

2,q
=

M∑

j=1

∥
∥
∥w̃(j)

∥
∥
∥
q

Kj

Hölder≤ M(2−q)/2
∥
∥
∥f̃λ

∥
∥
∥
q

2,2
. (5.3)

Then we obtain

Aq(λ) ≤ λ
∥
∥
∥f̃λ

∥
∥
∥
2

2,q
+
∥
∥
∥f̃λ − fρ

∥
∥
∥
2

ρ
≤ CM(2−q)/2λβ + Cλβ = C

(
M(2−q)/2 + 1

)
λβ. (5.4)

In other words, ifA2(λ) has a polynomial behavior in λ, then this behavior completely
determines the behavior of all Aq(λ). Thus it suffices to assume that the standard 2-
approximation error function satisfies (2.2).

From statistical effective dimension point of view, we will discuss the impact of the
multikernel classHK̃ on the approximation error ‖fλ −fρ‖L2

ρX
. To estimate this error, note that

the regularizing function ofA2(λ) exists, is unique, and given by [7]

fλ =
(
λI + LK̃

)−1
LK̃fρ. (5.5)

For simplicity, let M = 2 and take a Mercer kernel Ko as the original one, by the classical
Mercer theorem, Ko can be expressed as Ko(x, y) =

∑∞
k=1 λkϕk(x)ϕk(y). Another kernel we

take is KN
o =

∑∞
k=1 λ

N
k
ϕk(x)ϕk(y) (2 ≤ N ∈ N

+). In this case, K̃ = Ko + KN
o =

∑∞
k=1(λk +

λNk )ϕk(x)ϕk(y). By the fact that fλ − fρ = λ(λI + LK̃)
−1fρ and assumption L−r

Ko
fρ ∈ L2

ρX , we
have

∥∥fλ − fρ
∥∥
L2
ρX

= λ
∥∥∥
(
λI + LK̃

)−1
Lr
Ko
L−r
Ko
fρ
∥∥∥
L2
ρX

= λ

∥∥∥∥∥

∞∑

k=1

αk

λr
k

λk + λNk + λ
ϕk

∥∥∥∥∥
L2
ρX

≤ λmin{r/N,1}
∥∥∥L−r

Ko
fρ
∥∥∥
L2
ρX

for ‖α‖l2 =
∥∥∥L−r

Ko
fρ
∥∥∥
L2
ρX

.

(5.6)

Let us compare the multikernel class regularization with Tikhonov regularization in
HKo when the Mercer kernel Ko is employed. Denote the saturation index as the maximal r
so that the approximation error achieves fastest decay rate under the condition L−r

Ko
fρ ∈ L2

ρX .
Then (5.6) shows the saturation index for multikernel class regularization is N while it is 1
for Tikhonov regularization inHKo , as shown in [17].

In this case, our analysis implies that we should use an alternative kernel with
faster eigenvalue decay when the spectral coefficients of the target function decay faster:
for example, using KN

o instead of Ko. This has a dimension reduction effect. Essentially,
we effectively project the data into the principal components of data. The intuition is also
quite clear: if the dimension of the target function is small (spectral coefficient r decays
fast), then we should project data to those dimensions by reducing the remaining noisy
dimensions (corresponding to fast kernel eigenvalue decayN). In fact, the similar idea under
the framework of semisupervised learning has been shown in spectral kernel design methods
[22, 23].
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In general, for the sample error, there exist rates of convergence which hold
independently of the underlying distribution ρ. This is important, as it tells us that we can
give convergence guarantees no matter what a kernel is used, even we do not know the
underlying distribution. In fact, this is very common in statistical analysis of various machine
learning algorithms (see [24]). This decay is usually fast enough for practical use where
amounts of samples are available. For the approximation error, however, it is impossible
to give rates of convergence which hold for all probability distributions ρ. Hence what
determines the learning accuracy is the approximation error. In kernel regression setup, this
is determined by the choice of the kernel and enhances the importance of learning kernels [4]
and constructing refined kernels [25].

6. Further Study

In the last section, we exclusively discuss sparsity in the case of the square loss regularization
functional in (1.1) with the regularizer Ω(f) = ‖f‖2K in RKHS. We can derive the
explicit expression for this functional from [4], in turn which provides improvement and
simplification of our algorithm (1.4).

Lemma 6.1. For any kernel K and positive constant λ, we have that

Sλ(K) := min

{
1
m

m∑

i=1

(
f(xi) − yi

)2 + λ
∥∥f

∥∥2
K

}

= λ
〈
y, (λI +K(x))−1y

〉
, (6.1)

where the vector y = (yi, . . . , ym)
T and K(x) denotes the m × m Gram matrix (K(xi, xj) : i, j =

1, . . . , m) and 〈·〉 denotes the standard inner product in Euclidean space.

According to Lemma 6.1, the least square algorithm of (1.4) can be rewritten as a one-
layer minimization problem

θz := argmin
θ≥0

{

〈y, (λI +Kθ(x))
−1y〉 + μ

λ

M∑

k=1

|θk|p
}

. (6.2)

We assume that fρ ∈ Hθ0 for some θ0 ∈ R
M. Define Jθ := supp(θ) = {k : θk /= 0}. We

say that fρ is sparse relative to θ0 if the cardinally of Jθ0 is far smaller than M.
For p ∈ [1, pM] (but pM is close to 1), it would be interesting to show that the solution

θz of (6.2) is approximately sparse following the path of θ0. In some sense,
∑

k/∈Jθ0 (θz)k is very
small with a very high probability. A refined analysis of lp-regularized methods was done by
Koltchinskii [26] in the case of combination ofM basis functions, mainly taking into account
the soft sparsity pattern of the Bayes function and establishing several oracle inequalities in
statistical sense. Extending the ideas into the kernels learning setting would be of a great
significance, because it can provide theoretical support showing that the lp-norm MKL can
automatically select good kernels, which coincide with the underlying right kernels.
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