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We study weak sharp minima for optimization problems with cone constraints. Some necessary
conditions for weak sharp minima of higher order are established by means of upper Studniarski
or Dini directional derivatives. In particular, when the objective and constrained functions are strict
derivative, a necessary condition is obtained by a normal cone.

1. Introduction

The notion of a weak sharp minimum in general mathematical program problems was first
introduced by Ferris in [1]. It is an extension of a sharp (or strongly unique)minimum in [2].
Weak sharp minima play an important role in the sensitivity analysis [3, 4] and convergence
analysis of a wide range of optimization algorithms [5–7]. Recently, the study of weak sharp
solution set covers real-valued optimization problems [5, 8–10] and multiobjective optimi-
zation problems [11–13]. Moreover, it has been extended to convex-composite optimization
with inequality constraints [14] and semi-infinite programs [15].

The weak sharp minima defined in [5] specified first-order growth of the objective
function away from the set of optimal solutions. Recently, Studniarski [16] considered a spe-
cial class of nonsmooth functions which are pointwise maxima of finite collections of strict-
ly differentiable functions and presented a characterization of weak sharp local minima of
order one. In addition, Studniarski [17] established the Kuhn-Tucker conditions for a non-
linear programming problem with constraints of both inequality and equality types, where
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the objective and inequality constrained functions are locally Lipschitzian and the equality
constraints are differentiable.

Weak sharp minima of higher order are also of interest in sensitivity analysis in para-
metric optimization. In particular, the presence of weak sharp minima in parametric opti-
mization leads to Hëlder continuity properties of the associated solution mappings in [18].
Bonnans and Ioffe [19] studied sufficient conditions and characterizations for weak sharp
minima of order two in the case that the objective function is a pointwise maximum of twice
continuously differentiable convex functions. In [20], Ward presented some necessary condi-
tions for weak sharp minima of higher order for optimization problems with a set constraint.
In [21], Studniarski and Ward obtained some sufficient conditions and characterizations for
weak sharp local minimizer of higher order in terms of the limiting proximal normal cone
and a generalization of the contingent cone.

However, to the best of our knowledge, there has no research concerning weak sharp
minima for optimization with cone constraints although conic programming is a very hot re-
search topic in optimization. In this paper, we first discuss necessary conditions for weak
sharp minima of higher order in terms of the upper Studniarski and Dini directional deri-
vatives and various tangent cones. In particular, by means of a normal cone, we provide a
necessary condition for weak sharp minima of order one when the objective and constrained
functions are strict derivative.

This paper is organized as follows. In Section 2, we recall the basic definitions. In
Section 3, we establish several necessary conditions for a weak sharp minimizer of higher
order.

2. Notions and Preliminaries

Consider the following optimization problem with cone constraints

min f(x) s.t. x ∈ Q, g(x) ∈ −K, (2.1)

whereX is finite space and Y is a normed space. f is an extended real-valued function defined
onX. S andK are nontrivial closed convex cones in Y , in which S defines an order. g : X → Y
is a vector-valued mapping. Q is a closed convex subset of X. Let G = {x ∈ X : g(x) ∈ −K}.
Denote byM the feasible set, that is,M = Q ∩G.

Definition 2.1 (see [21]). Let ‖ · ‖ be the Euclidean norm on X. Suppose that f is a constant on
the set S ⊂ X, and let x ∈ S ∩M andm ≥ 1. For x ∈ X, let

dist
(
x, S

)m
:= inf

{∥∥y − x∥∥m : y ∈ S
}
. (2.2)

(a) We say that x is a weak sharp minimizer of order m with module α > 0 for (2.1), if
there exists α > 0 such that

f(x) − f(x) ≥ αdist
(
x, S

)m
, ∀x ∈M. (2.3)
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Let g : X → Y be a vector-valued mapping. The Hadamard and Dini derivatives of g
at x in a direction v ∈ X are, respectively, defined by

dHg(x, v) = lim
t→ 0+, u→v

g(x + tu) − g(x)
t

,

dDg(x, v) = lim
t→ 0+

g(x + tv) − g(x)
t

.

(2.4)

Let f : X → R ∪ {+∞} be finite at x and m ≥ 1 an integer number. The upper
Studniarski and Dini derivatives of orderm at x in a direction v ∈ X are, respectively, defined
by

d
m

S f(x, v) = lim sup
t→ 0+, u→v

f(x + tu) − f(x)
tm

,

d
m

Df(x, v) = lim sup
t→ 0+

f(x + tv) − f(x)
tm

.

(2.5)

If A ⊂ X, then, the indicator function of A is iA(x) = 0 if x ∈ A and iA(x) = +∞ if
x /∈ A. The support function for A is defined by ψ∗

A(x) := sup{〈x∗, x〉 : x∗ ∈ A}.
Let A be a closed and convex subset of X, we define the projection of a point x ∈ X

onto the set A, denoted by P(A,x) as follows:

P(A,x) =
{
y ∈ A :

∥∥x − y∥∥X = min
u∈A

‖x − u‖X
}
. (2.6)

Let K be a cone in a norm space Z. Denote by K∗ the dual cone of K

K∗ = {z∗ : 〈z∗, z〉 ≥ 0, ∀z ∈ K}, (2.7)

where Z∗ is the topological dual of Z. Note that K∗ is a w∗-closed convex cone. Let us
introduce the following set:

K0 = {z ∈ K : 〈z∗, z〉 > 0, ∀z∗ ∈ K∗ \ {0}}. (2.8)

Definition 2.2. Let A be a subset of normed vector space Z and x ∈ clA, then

(a) (see [22]) the contingent cone to the set A is T(A,x) = {v ∈ Rn : ∃tn → 0+, vn →
v, with x + tnvn ∈ A},

(b) (see [23]) the Clarke tangent cone to the set A is K(A,x) = {v ∈ Rn : ∀A � xn →
x, ∀tn → 0+, ∃vn → v, with xn + tnvn ∈ A},

(c) (see [24]) T̃(A,x) = {v ∈ X : ∃tn → 0+ such that x + tnv ∈ A, ∀n large enough},
(d) (see [20]) IK(A,x) = {v ∈ X : ∃tn → 0+ such that ∀vn → v, x + tnvn ∈

A, ∀n large enough}.

It is easy to see that IK(A,x) ⊂ T̃(A,x) ⊂ T(A,x).
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A setA is said to be regular at x ∈ A if T(A,x) = K(A,x). Obviously, every convex set
is regular. Moreover, ifA is a convex set, we call both the contingent cone and Clarke tangent
cone to the set A as tangent cone to the set A.

For a nonempty set A ⊂ X, we define the polar of A to be the set A◦ = {x∗ ∈ X∗ :
〈x∗, x〉 ≤ 1 ∀x ∈ A}. The classic normal cone to A at x is defined dually by the relation
N(A,x) = T(A,x)◦.

Definition 2.3 (see [17]). Let E and S be subset of Rn, and let x ∈ clE. The normal cone to E at
x relative to S is defined by

NS(E, x) :=
{
y ∈ Rn : ∃yn −→ y, xn −→ x, tn ∈ (0,+∞), wn ∈ Rn

with xn ∈ S, wn ∈ P(E, xn) and yn =
(xn −wn)

tn
, (∀n)

}
.

(2.9)

Definition 2.4. Let f mapX to another Banach space Y . We say that f admits a strict derivative
at x, an element L(X,Y ) denoted ∇f(x), provided that for each the following holds

lim
x′ →x,y→v,t→ 0+

f
(
x′ + ty

) − f(x′)
t

=
〈∇f(x), v〉. (2.10)

3. Necessary Conditions

In the section, we provide necessary optimality conditions for the problem (2.1), which are
formulated in terms of the upper Studniarski and Dini derivatives of the objective function,
respectively. Simultaneously, we also apply the indicator function of a set to state the ne-
cessary conditions.

Theorem 3.1. Suppose that S is a closed set. Let x ∈ S be a weak sharp minimizer of order m with
module α > 0 for the problem (2.1). Suppose that g is Hadamard derivative at x in all directions
v ∈ X. Then,

d
m

S f(x, v) ≥ αdist
(
v, T

(
S, x

))m
, ∀v ∈ T(Q,x) ∩ {

u : dHg(x, u) ∈ − intK
}
. (3.1)

In particular, if S is regular at x, then

d
m

S f(x, v) ≥ αdist
(
v,K

(
S, x

))
, ∀v ∈ T(Q,x) ∩ {

u : dHg(x, u) ∈ − intK
}
. (3.2)

Proof. Let v ∈ T(Q,x) ∩ {u : dHg(x, u) ∈ − intK}. By the definition of contingent cone,
there exist tn → 0+ and vn → v such that x + tnvn ∈ Q. In addition, v /= 0, by assumption
dHg(x, v) ∈ − intK.

Since g is Hadamard derivative at x in the direction v ∈ X, we have that, for tn → 0+,

lim
n→∞

g(x + tnvn) − g(x)
tn

= dHg(x, v). (3.3)
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Moreover, dHg(x, v) ∈ − intK, then there exists a natural numberN1 such that for n ≥N1,

g(x + tnvn) − g(x)
tn

∈ −K, (3.4)

which implies that

g(x + tnvn) ∈ g(x) −K ⊂ −K. (3.5)

Hence,

x + tnvn ∈M = Q ∩G. (3.6)

According to the definition of weak sharp minimizer of orderm, we get

f(x + tnvn) − f(x) ≥ αdist
(
x + tnvn, S

)m
. (3.7)

Consequently, it follows from (3.7) that

f(x + tnvn) − f(x)
tmn

≥ α
dist

(
x + tnvn, S

)m

tmn
. (3.8)

Taking lim sups of both sides in (3.8) as n → ∞, we have

d
m

S f(x, v) ≥ lim sup
n→∞

f(x + tnvn) − f(x)
tmn

≥ α lim sup
n→∞

dist
(
x + tnvn, S

)m

tmn

≥ α lim inf
n→∞

dist
(
x + tnvn, S

)m

tmn
.

(3.9)

To establish (3.1), we suffice to show that

lim inf
n→∞

dist
(
x + tnvn, S

)m

tmn
≥ dist

(
v, T

(
S, x

))m
. (3.10)

Set

L := lim inf
n→∞

dist
(
x + tnvn, S

)m

tmn
. (3.11)
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If L = +∞, then (3.10) holds true. Hence, we may assume that L < +∞. Then, for any ε > 0,
there exists a numberN, such that, for all k > N,

tnk ∈ B(0, ε), vnk ∈ B(v, ε), wnk ∈ S,
‖x + tnkvnk −wnk‖m

tmnk
≤ L + ε.

(3.12)

Set

znk :=
(x + tnkvnk −wnk)

tnk
. (3.13)

Since the sequence {znk} is bounded, we may assume, taking a subsequence if necessary, that
it converges to some z ∈ X with ‖z‖m ≤ L. For each k > N, we have

x + tnk(vnk − znk) = wnk ∈ S,

v − z ∈ T
(
S, x

)
.

(3.14)

Hence

dist
(
v, T

(
S, x

))m ≤ ‖v − (v − z)‖m ≤ L, (3.15)

and (3.10) holds.
Observe that the regularity at x ∈ S implies that T(S, x) = K(S, x). Hence, the ine-

quality (3.2) holds.

Theorem 3.2. Suppose that S is a closed set. Let x ∈ S be a weak sharp minimizer of order m with
module α > 0 for the problem (2.1). Suppose that g is Hadamard derivative at x in all directions
v ∈ X. Then,

d
m

S

(
f + iQ

)
(x, v) ≥ αdist

(
v, T

(
S, x

))m
, ∀v ∈ {

u : dHg(x, u) ∈ − intK
}
. (3.16)

In particular, if S is regular at x, then

d
m

S

(
f + iQ

)
(x, v) ≥ αdist

(
v,K

(
S, x

))
, ∀v ∈ {

u : dHg(x, u) ∈ − intK
}
. (3.17)

Proof. Suppose that x is a weak sharp minimizer of order m with module α > 0 for the
problem (2.1), then

f(x) − f(x) ≥ αdist
(
x, S

)m
, ∀x ∈M. (3.18)
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Since g is the Hadamard derivative at x in the direction v ∈ X, there exist tn → 0+ and
vn → v such that

lim
n→∞

g(x + tnvn) − g(x)
tn

= dHg(x, v). (3.19)

Moreover, dg(x, v) ∈ − intK, then there exists a natural numberN2 such that, for n ≥N2,

g(x + tnvn) − g(x)
tn

∈ −K, (3.20)

which implies that

g(x + tnvn) ∈ g(x) −K ⊂ −K. (3.21)

Therefore,

x + tnvn ∈ G. (3.22)

If x + tnvn ∈ Q, then, by (3.18),

f(x + tnvn) + iQ(x + tnvn) − f(x) − iQ(x) ≥ αdist
(
x + tnvn, S

)m
. (3.23)

On the other hand, if x + tnvn /∈ Q, then iQ(x + tnvn) = +∞ and (3.23) still holds true.
Hence, from (3.23), it follows that

f(x + tnvn) − f(x) + iQ(x + tnvn) − iQ(x)
tmn

≥ α
dist

(
x + tnvn, S

)m

tmn
. (3.24)

Taking the lim sups on both sides in (3.24) as n → +∞, we get

d
m(
f + iQ

)
(x, v) ≥ α lim inf

n→∞

dist
(
x + tnvn, S

)m

tmn
. (3.25)

The rest of the proof is similar to Theorem 3.1 and hence omitted.

In what follows, we state other necessary conditions for the weak sharp minimizer of
order m for the problem (2.1) in terms of the cone K0 and T̃(Q,x). Note that the necessary
conditions do not require the cone K to have nonempty interior.
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Theorem 3.3. Suppose that S is a closed set. Let x ∈ S be a weak sharp minimizer of order m with
module α > 0 for the problem (2.1). Suppose that g is Dini derivative at x in all directions v ∈ X.
Then,

d
m

Df(x, v) ≥ αdist
(
v, T

(
S, x

))m
, ∀v ∈ T̃(Q,x) ∩ {

u : dDg(x, u) ∈ −K0
}
. (3.26)

In particular, if S is regular at x, then

d
m

Df(x, v) ≥ αdist
(
v,K

(
S, x

))m
, ∀v ∈ T̃(Q,x) ∩ {

u : dDg(x, u) ∈ −K0
}
. (3.27)

Proof. Let v ∈ T̃(Q,x) ∩ {u : dDg(x, u) ∈ −K0}, then there exists a sequence tn → 0+ such that
x + tnv ∈ Q for sufficiently large n. In addition,

lim
n→∞

g(x + tnv) − g(x)
tn

= dDg(x, v), (3.28)

which leads to the following relation

g(x + tnv) = g(x) + tn · dDg(x, v) + o(tn), (3.29)

where o(tn)/tn → 0 as n → ∞. Since dDg(x, v) ∈ −K0, for any z∗ ∈ K∗\{0}, 〈z∗, dDg(x, v)〉 <
0, which yields that

〈
z∗, g(x + tnv)

〉
=
〈
z∗, g(x)

〉
+ tn

[〈
z∗, dDg(x, v)

〉
+
o(tn)
tn

]
≤ 0 (3.30)

for large enough n. Observing that K is a closed convex cone, it follows that K is weakly
closed and

g(x + tnv) ∈ −K∗∗ = −K. (3.31)

Consequently, x + tnv ∈ M for sufficiently large n. The rest of the proof is analogue to
Theorem 3.1 and thus omitted.

By using the method of Theorems 3.2 and 3.3, we easily establish the following results.

Theorem 3.4. Suppose that S is a closed set. Let x ∈ S be a weak sharp minimizer of order m with
module α > 0 for the problem (2.1). Suppose that g is Dini derivative at x in all directions v ∈ X.
Then,

d
m

D

(
f + iQ

)
(x, v) ≥ αdist

(
v, T

(
S, x

))m
, ∀v ∈ {

u : dDg(x, u) ∈ −K0
}
. (3.32)
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In particular, if S is regular at x, then

d
m

D

(
f + iQ

)
(x, v) ≥ αdist

(
v,K

(
S, x

))m
, ∀v ∈ {

u : dDg(x, u) ∈ −K0
}
. (3.33)

Since IK(A,x) ⊂ T̃(A,x), the following result is direct consequence of Theorem 3.3.

Corollary 3.5. Suppose that S is a closed set. Let x ∈ bdS be a weak sharp minimizer of orderm with
module α > 0 for the problem (2.1). Suppose that g is Dini derivative at x in all directions v ∈ X.
Then,

d
m

Df(x, v) ≥ αdist
(
v, T

(
S, x

))
, ∀v ∈ IK(Q,x) ∩ {

u : dDg(x, u) ∈ −K0
}
. (3.34)

Suppose that X and Y are finite spaces. In what follow, we apply the normal cone
to present a necessary optimality condition for problem (2.1), where the objective and
constrained functions are strict derivative.

Theorem 3.6. Suppose that S is a closed set. Let x ∈ bdS be a weak sharp minimizer of order one
with module α > 0 for the problem (2.1). Suppose that f and g are strict derivatives at x. Then, for
any v ∈NQ(S, x) ∩ {u : 〈∇g(x), u〉 ∈ − intK} with ‖v‖ = 1,

〈∇f(x), v〉 > 0. (3.35)

Proof. Assume that 〈∇f(x), v〉 ≤ 0 for some v ∈ NQ(S, x) ∩ {u : 〈∇g(x), u〉 ∈ − intK}. Then,
by the definition of normal cone, there exist vn → v, xn → x, tn ∈ (0,+∞), wn ∈ X with
xn ∈ Q, wn ∈ P(S, xn) and

vn =
xn −wn

tn
. (3.36)

Since ‖v‖ = 1 and vn → v, we have vn /= 0 for n sufficiently large, and consequently, ‖xn −
wn‖ = d(xn, S).

Observe that the condition (3.36) implies that for n → ∞,

tn =
‖xn −wn‖

‖vn‖ ≤ ‖xn − x‖
‖vn‖ −→ 0. (3.37)

Moreover, for n → ∞, ‖wn − x‖ ≤ ‖wn − xn‖ + ‖xn − x‖ ≤ 2‖xn − x‖ → 0. We can assume that
limn→∞(f(wn + tnvn) − f(wn))/tn ≤ 0 since 〈∇f(x), v〉 ≤ 0. Hence, for any ε > 0, there exist
N1 such that, for all n > N1,

f(wn + tnvn) − f(wn)
tn

< ε. (3.38)
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Since g is strict derivative at x,

lim
n→∞

g(wn + tnvn) − g(wn)
tn

=
〈∇g(x), v〉. (3.39)

It follows that from 〈∇g(x), v〉 ∈ − intK, there exists a natural number N2 such that, for
n ≥N2,

g(wn + tnvn) − g(wn)
tn

∈ −K, (3.40)

which implies that

g(wn + tnvn) ∈ g(wn) −K ⊂ −K. (3.41)

Hence,

wn + tnvn ∈M = Q ∩G. (3.42)

On the other hand, by assumption, for n ≥ max{N1,N2}, xn = wn + tnvn,

f(wn + tnvn) − f(x) = f(wn + tnvn) − f(wn) ≥ αd
(
xn, S

)
= α‖xn −wn‖. (3.43)

Together with relation (3.38), for n ≥ max{N1,N2}, we have

ε >
f(wn + tnvn) − f(wn)

tn
≥ α‖vn‖. (3.44)

Taking the limit when n → ∞ and for the arbitrary ε > 0, we deduce that limn→∞‖vn‖ = 0,
which is a contradiction to the fact that v /= 0.
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Applications, Birkhäuser Boston Inc., Boston, Mass, USA, 1990.

[23] F. H. Clarke, Optimization and Nonsmooth Analysis, Canadian Mathematical Society Series of Mono-
graphs and Advanced Texts, John Wiley & Sons, New York, NY, USA, 1983.

[24] Do Van Luu, “Higher-order necessary and sufficient conditions for strict local Pareto minima in terms
of Studniarski’s derivatives,” Optimization, vol. 57, no. 4, pp. 593–605, 2008.


