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We introduce an explicit iterative scheme for computing a common fixed point of a sequence of
nearly nonexpansive mappings defined on a closed convex subset of a real Hilbert space which
is also a solution of a variational inequality problem. We prove a strong convergence theorem for
a sequence generated by the considered iterative scheme under suitable conditions. Our strong
convergence theorem extends and improves several corresponding results in the context of nearly
nonexpansive mappings.

1. Introduction

Let C be a nonempty subset of a real Hilbert spaceH with inner product 〈·, ·〉 and norm ‖ · ‖,
respectively. A mapping T : C → H is called the following:

(1) monotone if
〈
Tx − Ty, x − y

〉
≥ 0 ∀x, y ∈ C, (1.1)

(2) η-strongly monotone if there exists a positive real number η such that

〈
Tx − Ty, x − y

〉
≥ η

∥∥x − y
∥∥2 ∀x, y ∈ C, (1.2)

(3) k-Lipschitzian if there exists a constant k > 0 such that

∥∥Tx − Ty
∥∥ ≤ k

∥∥x − y
∥∥ ∀x, y ∈ C, (1.3)
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(4) nonexpansive if

∥
∥Tx − Ty

∥
∥ ≤

∥
∥x − y

∥
∥ ∀x, y ∈ C, (1.4)

(5) nearly nonexpansive [1, 2]with respect to a fixed sequence {an} in [0,∞)with an → 0
if

∥
∥Tnx − Tny

∥
∥ ≤

∥
∥x − y

∥
∥ + an ∀x, y ∈ C and n ∈ N. (1.5)

In [3], Moudafi proposed viscosity approximation methods of selecting a particular
fixed point of a given nonexpansive mapping in Hilbert spaces (see [4] for further devel-
opments in both Hilbert and Banach spaces). Let f be a contraction on H. Starting with an
arbitrary initial x1 ∈ H, define a sequence {xn} recursively by

xn+1 = αnf(xn) + (1 − αn)Txn ∀n ∈ N, (1.6)

where {αn} is a sequence in (0, 1). It is proved in [4] that under appropriate conditions im-
posed on {αn}, the sequence {xn} generated by (1.6) strongly converges to the unique solu-
tion x∗ ∈ C of the variational inequality

〈(
I − f

)
x∗, x − x∗〉 ≥ 0 ∀x ∈ C, (1.7)

where C = F(T), the set of fixed points of T .
In 2006, Marino and Xu [5] introduced the viscosity iterative method for nonexpansive

mappings. Starting with an arbitrary initial x1 ∈ H, define a sequence {xn} recursively by

xn+1 = αnγf(xn) + (I − αnA)Txn ∀n ∈ N. (1.8)

They proved that the sequence {xn} generated by (1.8) converges strongly to the unique
solution of the variational inequality

〈(
A − γf

)
x∗, x − x∗〉 ≥ 0 ∀x ∈ C, (1.9)

which is the optimality condition for the minimization problem

min
x∈C

1
2
〈Ax, x〉 − h(x), (1.10)

where h is a potential function for γf (i.e., h′(x) = γf(x) for all x ∈ H), and A is a strongly
positive bounded linear operator on H; that is, there is a constant γ > 0 such that

〈Ax, x〉 ≥ γ‖x‖2 ∀x ∈ H. (1.11)
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The applications of the iterative method (1.8) have been studied by some researchers (see
[6, 7]).

Also, Wang [8, 9] and Wang and Hu [10] introduced the iterative method for nonex-
pansive mappings.

Recently, Tian [11] proposed an implicit and an explicit schemes on combining the
iterative methods of Marino and Xu [5] and Yamada [12]. He also proved the strong conver-
gence of these two schemes to a fixed point of a nonexpansive mapping T defined on a real
Hilbert space under suitable conditions.

More recently, Ceng et al. [13] introduced an implicit and an explicit schemes using the
properties of projection for finding the fixed points of a nonexpansivemapping defined on the
closed convex subset of a real Hilbert space. They also proved the strong convergence of the
sequences generated by the proposed schemes to a fixed point of a nonexpansive mapping
which is also a solution of a variational inequality defined on the set of fixed points.

Aoyama et al. [14] proved strong convergence of an iterative scheme for a sequence of
nonexpansive mappings as follows.

Theorem 1.1. Let X be a uniformly convex Banach space whose norm is uniformly Gâteaux differ-
entiable and C be a nonempty closed convex subset of X. Let {Tn} be a sequence of nonexpansive
mappings from C into itself such that

⋂∞
n=1 F(Tn)/= ∅. Let T be a mapping from C into itself defined

by Tx = limn→∞Tnx for all x ∈ C and F(T) =
⋂∞

n=1 F(Tn). Let {xn} be a sequence in C generated by
the following iterative process:

x1 = x ∈ C,

xn+1 = αnx + (1 − αn)Tnxn ∀n ∈ N,
(1.12)

where {αn} is a sequence in [0, 1] satisfying the following conditions:

(a) limn→∞αn = 0 and
∑∞

n=1 αn = ∞;

(b) either
∑∞

n=1 |αn+1 − αn| < ∞ or αn ∈ (0, 1] and limn→∞αn+1/αn = 1;

(c)
∑∞

n=1 sup{‖Tnz − Tn+1z‖ : z ∈ B} < ∞ for any bounded subset B of C.

Then, the sequence {xn} converges strongly toQx, whereQ is the sunny nonexpansive retrac-
tion from X onto F(T).

Let C be a nonempty subset of a real Hilbert space H. Let T := {Tn} be a sequence
of mappings from C into itself. We denote by F(T) the set of common fixed points of the
sequence T, that is, F(T) =

⋂∞
n=1 F(Tn). Fix a sequence {an} in [0,∞) with an → 0, and let

{Tn} be a sequence of mappings from C into H. Then, the sequence {Tn} is called a sequence
of nearly nonexpansive mappings [15] with respect to a sequence {an} if

∥∥Tnx − Tny
∥∥ ≤

∥∥x − y
∥∥ + an ∀x, y ∈ C, n ∈ N. (1.13)

It is obvious that the sequence of nearly nonexpansive mappings is a wider class of
sequence of nonexpansive mappings.

In this paper, inspired by Aoyama et al. [14], Ceng et al. [13], and Sahu et al. [15], we
introduce an explicit iterative scheme and prove a strong convergence theorem for computing
an element of F(T), the set of common fixed points of a sequence T = {Tn} of nearly
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nonexpansive mappings which is also a solution of a variational inequality over F(T). Our
result generalizes and improves the results of Ceng et al. [13], Tian [11], and many other
related works.

2. Preliminaries

Throughout this paper, we denote by I the identity operator ofH. Also, we denote by → and
⇀ the strong convergence and weak convergence, respectively. The symbol N stands for the
set of all natural numbers.

Let C be a nonempty closed convex subset of a real Hilbert space H. Then, for any
x ∈ H, there exists a unique nearest point in C, denoted by PC(x), such that

‖x − PC(x)‖ ≤
∥
∥x − y

∥
∥ ∀y ∈ C. (2.1)

The mapping PC is called the metric projection from H onto C (see [1]).
Let C be a nonempty subset of a real Hilbert space H and T1, T2 : C → H be two

mappings. We denote B(C), the collection of all bounded subsets ofC. The deviation between
T1 and T2 on B ∈ B(C), denoted by DB(T1, T2), is defined by

DB(T1, T2) = sup{‖T1x − T2x‖ : x ∈ B}. (2.2)

The following lemmas will be needed to prove our main result.

Lemma 2.1 (see [16]). The metric projection mapping PC is characterized by the following properties:

(a) PC(x) ∈ C for all x ∈ H;

(b) 〈x − PC(x), PC(x) − y〉 ≥ 0 for all x ∈ H and y ∈ C;

(c) ‖x − y‖2 ≥ ‖x − PC(x)‖2 + ‖y − PC(x)‖2 for all x ∈ H and y ∈ C;

(d) 〈PC(x) − PC(y), x − y〉 ≥ ‖PC(x) − PC(y)‖2 for all x, y ∈ H.

Lemma 2.2 (see [13]). Let V : C → H be an L-Lipschitzian mapping and F : C → H be a k-
Lipschitzian and η-strongly monotone operator. Then, for 0 ≤ γL < μη,

〈
x − y,

(
μF − γV

)
x −

(
μF − γV

)
y
〉
≥
(
μη − γL

)∥∥x − y
∥∥2 ∀x, y ∈ C. (2.3)

That is, μF − γV is strongly monotone with coefficient μη − γL.

Lemma 2.3 (see [12]). Let C be a nonempty subset of a real Hilbert spaceH. Suppose that λ ∈ (0, 1)
and μ > 0. Let F : C → H be a k-Lipschitzian and η-strongly monotone operator on C. Define the
mapping G : C → H by

Gx = x − λμFx ∀x ∈ C. (2.4)

Then G is a contraction that provided μ < 2η/k2. More precisely, for μ ∈ (0, 2η/k2),
∥∥Gx −Gy

∥∥ ≤ (1 − λτ)
∥∥x − y

∥∥ ∀x, y ∈ C, (2.5)

where τ = 1 −
√
1 − μ(2η − μk2) ∈ (0, 1].
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Lemma 2.4 (see [1]). Let C be a nonempty closed convex subset of a real Hilbert space H. Let
T : C → C be a nonexpansive mapping. Then I −T is demiclosed at zero; that is, if {xn} is a sequence
in C weakly converging to some x ∈ C and the sequence {(I − T)xn} converges strongly to 0, then
x ∈ F(T).

Lemma 2.5 (see [17]). Assume that {tn} is a sequence of nonnegative real numbers such that

tn+1 ≤ (1 − αn)tn + αnβn ∀n ∈ N, (2.6)

where {αn} and {βn} are sequences of nonnegative real numbers which satisfy the following conditions:

(a) {αn}∞n=1 ⊂ (0, 1) and
∑∞

n=1 αn = ∞;

(b) lim supn→∞βn ≤ 0, or

(b’)
∑∞

n=1 αnβn is convergent.

Then limn→∞tn = 0.

Lemma 2.6 (see [18]). Let C be a nonempty closed convex subset of a real Hilbert space H and
λi > 0. (i = 1, 2, 3, . . . ,N) such that

∑N
i=1 λi = 1. Let T1, T2, T3, . . . , TN : C → C be nonexpansive

mappings such that
⋂N

i=1 F(Ti)/= ∅, and let T =
∑N

i=1 λiTi. Then T is nonexpansive from C into itself
and F(T) =

⋂N
i=1 F(Ti).

3. Main Result

Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H. Let F : C → H
be a k-Lipschitzian and η-strongly monotone operator and V : C → H be an L-Lipschitzian
mapping. Let T = {Tn} be a sequence of nearly nonexpansive mappings from C into itself with
respect to a sequence {an} such that F(T)/= ∅ and T be a mapping from C into itself defined by
Tx = limn→∞Tnx for all x ∈ C. Suppose that F(T) = F(T), 0 < μ < 2η/k2 and 0 ≤ γL < τ , where

τ = 1 −
√
1 − μ(2η − μk2). For an arbitrary x1 ∈ C, consider the sequence {xn} in C generated by

the following iterative process:

x1 ∈ C,

xn+1 = PC

[
αnγVxn +

(
I − αnμF

)
Tnxn

]
∀n ∈ N,

(3.1)

where {αn} is a sequence in (0, 1) satisfying the conditions:

(a) limn→∞αn = 0 and
∑∞

n=1 αn = ∞;

(b) either
∑∞

n=1 |αn+1 − αn| < ∞ or limn→∞αn+1/αn = 1;

(c) either
∑∞

n=1 DB(Tn, Tn+1) < ∞ or limn→∞DB(Tn, Tn+1)/αn+1 = 0 for each B ∈ B(C);
(d) limn→∞an/αn = 0.

Then, the sequence {xn} converges strongly to x̃ ∈ F(T), where x̃ is the unique solution of variational
inequality

〈(
μF − γV

)
x̃, x̃ − y

〉
≤ 0 ∀y ∈ F(T). (3.2)
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Proof. Let T be a mapping from C into itself defined by Tx = limn→∞Tnx for all x ∈ C. It
is clear that T is a nonexpansive mapping. So, we have F(T)/= ∅. Now, we proceed with the
following steps.

Step 1. ({xn} is bounded). Let z ∈ F(T). From (3.1), we have

‖xn+1 − z‖ =
∥
∥PC

[
αnγVxn +

(
I − αnμF

)
Tnxn

]
− PC(z)

∥
∥

≤
∥
∥αnγVxn +

(
I − αnμF

)
Tnxn − z

∥
∥

≤
∥
∥αn

(
γVxn − μFz

)
+
(
I − αnμF

)
Tnxn −

(
I − αnμF

)
Tnz

∥
∥

≤ αnγL‖xn − z‖ + αn

∥
∥(γV − μF

)
z
∥
∥ + (1 − αnτ)(‖xn − z‖ + an)

≤
(
1 − αn

(
τ − γL

))
‖xn − z‖ + αn

∥
∥(γV − μF

)
z
∥
∥ + (1 − αnτ)an

≤
(
1 − αn

(
τ − γL

))
‖xn − z‖ + αn

∥
∥(γV − μF

)
z
∥
∥ + an.

(3.3)

Note that limn→∞an/αn = 0, so there exists a constant K > 0 such that

αn

∥∥(γV − μF
)
z
∥∥ + an

αn
≤ K ∀n ∈ N. (3.4)

Thus, we have

‖xn+1 − z‖ ≤
(
1 − αn

(
τ − γL

))
‖xn − z‖ + αnK

≤ max
{
‖xn − z‖, K

τ − γL

}
∀n ∈ N.

(3.5)

Hence, {xn} is bounded. So {Tnxn} and {Vxn} are bounded.
Step 2. (‖xn+1 − xn‖ → 0 as n → ∞). From (3.1), we have

‖xn+1 − xn‖ =
∥∥PC

[
αnγVxn +

(
I − αnμF

)
Tnxn

]
−PC

[
αn−1γVxn−1 +

(
I − αn−1μF

)
Tn−1xn−1

]∥∥

≤
∥∥[αnγVxn +

(
I − αnμF

)
Tnxn

]
−
[
αn−1γVxn−1 +

(
I − αn−1μF

)
Tn−1xn−1

]∥∥

≤
∥∥αnγ(Vxn − Vxn−1) + γ(αn − αn−1)Vxn−1

+
(
I − αnμF

)
Tnxn −

(
I − αnμF

)
Tnxn−1

+ Tnxn−1 − Tn−1xn−1+αn−1μFTn−1xn−1 − αnμFTnxn−1
∥∥

≤αnγL‖xn − xn−1‖ +
∥∥γ(αn − αn−1)Vxn−1

∥∥

+ (1 − αnτ)‖Tnxn − Tnxn−1‖ + ‖Tnxn−1 − Tn−1xn−1‖

+ μ‖αn−1FTn−1xn−1 − αnFTnxn−1‖
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≤
(
1 − αn

(
τ − γL

))
‖xn − xn−1‖ +DB(Tn, Tn−1) + (1 − αnτ)an

+
∥
∥γ(αn − αn−1)Vxn−1

∥
∥

+ μ‖αn−1(FTn−1xn−1 − FTnxn−1) − (αn − αn−1)(FTnxn−1)‖

≤
(
1 − αn

(
τ − γL

))
‖xn − xn−1‖ +DB(Tn, Tn−1)

(
1 + μαn−1k

)

+M|αn − αn−1| + an,

(3.6)

for some constant M > 0. Thus, using Lemma 2.5, we get ‖xn+1 − xn‖ → 0 as n → ∞.
Step 3.We have (‖xn − Txn‖ → 0 as n → ∞). Note that

‖xn − Tnxn‖ ≤ ‖xn − xn+1‖ + ‖xn+1 − Tnxn‖

= ‖xn − xn+1‖ +
∥∥PC

[
αnγVxn +

(
I − αnμF

)
Tnxn

]
− PC(Tnxn)

∥∥

≤ ‖xn − xn+1‖ +
∥∥αnγVxn +

(
I − αnμF

)
Tnxn − Tnxn

∥∥

= ‖xn − xn+1‖ + αn

∥∥γVxn − μFTnxn

∥∥ −→ 0 as n −→ ∞.

(3.7)

Since

‖xn − Txn‖ ≤ ‖xn − Tnxn‖ + ‖Tnxn − Txn‖

≤ ‖xn − Tnxn‖ +DB(Tn, T),
(3.8)

it follows that limn→∞‖xn − Txn‖ = 0.
Step 4. We have (lim supn→∞〈xn − x̃, (γV − μF)x̃〉 ≤ 0). Let us choose a subsequence

{xnk} of {xn} such that

lim sup
n→∞

〈
xn − x̃,

(
γV − μF

)
x̃
〉
= lim

k→∞

〈
xnk − x̃,

(
γV − μF

)
x̃
〉
. (3.9)

Without loss of generality, we may assume that xnk ⇀ z ∈ C. By using Lemma 2.4, we get
that z ∈ F(T). Note that F(T) = F(T), it follows that z ∈ F(T). Hence from (3.2), we get the
following:

lim sup
n→∞

〈
xn − x̃,

(
γV − μF

)
x̃
〉
=
〈
z − x̃,

(
γV − μF

)
x̃
〉
≤ 0. (3.10)

Step 5. We have (xn → x̃ as n → ∞). Set yn = αnγVxn + (I − αnμF)Tnxn and γn =
αn(τ − γL). Noticing that xn+1 = PC(yn). From (3.1), we have

‖xn+1 − x̃‖2 =
〈
yn − x̃, xn+1 − x̃

〉
+
〈
PC

(
yn

)
− yn, PC

(
yn

)
− x̃

〉

≤
〈
yn − x̃, xn+1 − x̃

〉
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=αn

〈
γVxn − μFx̃, xn+1 − x̃

〉

+
〈(
I − αnμF

)
Tnxn −

(
I − αnμF

)
Tnx̃, xn+1 − x̃

〉

=αnγ〈Vxn − V x̃, xn+1 − x̃〉 + αn

〈
γV x̃ − μFx̃, xn+1 − x̃

〉

+
〈(
I − αnμF

)
Tnxn −

(
I − αnμF

)
Tnx̃, xn+1 − x̃

〉

≤αnγL‖xn − x̃‖‖xn+1 − x̃‖ + αn

〈(
γV − μF

)
x̃, xn+1 − x̃

〉

+ (1 − αnτ)(‖xn − x̃‖ + an)‖xn+1 − x̃‖

=
(
1 − αn

(
τ − γL

))
‖xn − x̃‖‖xn+1 − x̃‖

+ αn

〈(
γV − μF

)
x̃, xn+1 − x̃

〉
+ (1 − αnτ)an‖xn+1 − x̃‖

≤
(
1 − αn

(
τ − γL

))1
2

(
‖xn − x̃‖2 + ‖xn+1 − x̃‖2

)

+ αn

〈(
γV − μF

)
x̃, xn+1 − x̃

〉
+ an‖xn+1 − x̃‖.

(3.11)

Hence, we have

‖xn+1 − x̃‖2 ≤
1 − αn

(
τ − γL

)

1 + αn

(
τ − γL

)‖xn − x̃‖2 + 2αn

1 + γn

〈(
γV − μF

)
x̃, xn+1 − x̃

〉

+
2an

1 + γn
‖xn+1 − x̃‖

≤
(
1 − αn

(
τ − γL

))
‖xn − x̃‖2 + 2αn

1 + γn

〈(
γV − μF

)
x̃, xn+1 − x̃

〉

+
2an

1 + γn
‖xn+1 − x̃‖

=
(
1 − γn

)
‖xn − x̃‖2 + γnδn +

2an

1 + γn
‖xn+1 − x̃‖,

(3.12)

where

δn =
2

(
1 + γn

)(
τ − γL

)
〈(
γV − μF

)
x̃, xn+1 − x̃

〉
. (3.13)

Noticing that limn→∞an/αn = 0, it follows from Lemma 2.5 that limn→∞xn = x̃. This
completes the proof.

Now, we derive the main result of Ceng et al. ([13], Theorem 3.2) as the following
corollary.

Corollary 3.2. LetC be a nonempty closed convex subset of a real Hilbert spaceH. Let F : C → H be
a k-Lipschitzian and η-strongly monotone operator and V : C → H be an L-Lipschitzian mapping.
Let T : C → C be a nonexpansive mapping such that F(T)/= ∅. Suppose that 0 < μ < 2η/k2 and
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0 ≤ γL < τ , where τ = 1 −
√
1 − μ(2η − μk2). For an arbitrary x1 ∈ C, consider the sequence {xn}

generated by the following iterative process:

x1 ∈ C,

xn+1 = PC

[
αnγVxn +

(
I − αnμF

)
Txn

]
∀n ∈ N,

(3.14)

where {αn} is a sequence in (0, 1) satisfying the conditions (a) and (b) of Theorem 3.1.
Then, the sequence {xn} converges strongly to x̃ ∈ F(T), where x̃ is the unique solution of the

following variational inequality:

〈(
μF − γV

)
x̃, x̃ − y

〉
≤ 0 ∀y ∈ F(T). (3.15)

Again, we derive the result of Tian ([11], Theorem 3.2) as the following corollary.

Corollary 3.3. Let H be a real Hilbert space. Let f be an α-contraction on H and F : H → H be
a k-Lipschitzian and η-strongly monotone operator. Let T : H → H be a nonexpansive mapping
such that F(T)/= ∅. Suppose that 0 < μ < 2η/k2 and 0 < γα < τ , where τ = μ(η − μk2/2). For an
arbitrary x1 ∈ H, consider the sequence {xn} generated by the following iterative process:

x1 ∈ H,

xn+1 = αnγf(xn) +
(
I − αnμF

)
Txn ∀n ∈ N,

(3.16)

where {αn} is a sequence in (0, 1) satisfying the conditions (a) and (b) of Theorem 3.1.
Then, the sequence {xn} converges strongly to x̃ ∈ F(T), where x̃ is the unique solution of the

following variational inequality:

〈(
μF − γf

)
x̃, x̃ − y

〉
≤ 0 ∀y ∈ F(T). (3.17)

The following result obtains immediately from Theorem 3.1.

Corollary 3.4. LetC be a nonempty closed convex subset of a real Hilbert spaceH. Let F : C → H be
a k-Lipschitzian and η-strongly monotone operator and V : C → H be an L-Lipschitzian mapping.
Let {Tn} be a sequence of nonexpansive mappings from C into itself such that

⋂∞
n=1 F(Tn)/= ∅ and T be

a mapping from C into itself defined by Tx = limn→∞Tnx for all x ∈ C. Suppose that 0 < μ < 2η/k2

and 0 ≤ γL < τ , where τ = 1 −
√
1 − μ(2η − μk2). For an arbitrary x1 ∈ C, consider the sequence

{xn} in C generated by the following iterative process:

x1 ∈ C,

xn+1 = PC

[
αnγVxn +

(
I − αnμF

)
Tnxn

]
∀n ∈ N,

(3.18)

where {αn} is a sequence in (0, 1) satisfying the conditions (a)–(c) of Theorem 3.1.
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Then, the sequence {xn} converges strongly to x̃ ∈
⋂∞

n=1 F(Tn), where x̃ is the unique solution
of the following variational inequality:

〈(
μF − γV

)
x̃, x̃ − y

〉
≤ 0 ∀y ∈

∞⋂

n=1

F(Tn). (3.19)

4. Application

Recall that the so-called problem of image recovery is essentially to find a common element
of finitely many nonexpansive retracts C1, C2, . . . , Cr of Cwith

⋂r
i=1 Ci /= ∅. It is easy to see that

every nonexpansive retraction Pi of C onto Ci is a nonexpansive mapping of C into itself.
There is no doubt that the problem of image recovery is equivalent to finding a common
fixed point of finitely many nonexpansive mappings P1, P2, . . . , Pr of C into itself. Applying
ourmain result, we obtain the following result which improves a number of results connected
to the problem of image recovery.

Theorem 4.1. Let C be a nonempty closed convex subset of a real Hilbert space H. Let F : C →
H be a k-Lipschitzian and η-strongly monotone operator and V : C → H be an L-Lipschitzian
mapping. Let λi > 0(i = 1, 2, 3, . . . ,N) such that

∑N
i=1 λi = 1 and T1, T2, T3, . . . , TN : C → C be

nonexpansive mappings such that
⋂N

i=1 F(Ti)/= ∅. Suppose that 0 < μ < 2η/k2 and 0 ≤ γL < τ ,

where τ = 1−
√
1 − μ(2η − μk2). For an arbitrary x1 ∈ C, consider the sequence {xn} in C generated

by the following iterative process:

x1 ∈ C,

xn+1 = PC

[

αnγVxn +
(
I − αnμF

) N∑

i=1

λiTixn

]

∀n ∈ N,
(4.1)

where {αn} is a sequence in (0, 1) satisfying the conditions (a) and (b) of Theorem 3.1.
Then, the sequence {xn} converges strongly to x̃ ∈

⋂N
i=1 F(Ti), where x̃ is the unique solution

of the following variational inequality:

〈(
μF − γV

)
x̃, x̃ − y

〉
≤ 0 ∀y ∈

N⋂

i=1

F(Ti). (4.2)

Proof. Define T =
∑N

i=1 λiTi. Then T is nonexpansive mapping from C into itself. Thus, using
Lemma 2.6, we get F(T) =

⋂N
i=1 F(Ti). Therefore, the proof follows from Corollary 3.2.

5. Numerical Example

For showing the effectiveness and convergence of the sequence generated by the considered
iterative scheme, we discuss the following example.

Example 5.1. Let H = R and C = [0, 1]. Let T be a self-mapping defined by Tx = 1 − x for all
x ∈ C. Let F, V : C → H be two mappings defined by Fx = 4x and Vx = 2x for all x ∈ C,
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where F is a k-Lipschitzian and η-strongly monotone, and V is an L-Lipschitzian mapping.
We take 0 < μ < 2η/k2 and 0 ≤ γL < τ , and we have μ = 1/4,τ = 1 and γ = 1/4. Define {αn}
in (0, 1) by αn = 1/n + 1. Without loss of generality, we may assume that an = 1/n3/2 for all
n ∈ N. For each n ∈ N, define Tn : C → C by

Tnx =

{
1 − x, if x ∈ [0, 1),
an, if x = 1.

(5.1)

In [15], it is proved that T = {Tn} is a sequence of nearly nonexpansive mappings
from C into itself such that F(T) = {1/2} and Tx = limn→∞Tnx for all x ∈ C, where T is
nonexpansive mapping.

It can be observed that all the assumptions of Theorem 3.1 are satisfied and the
sequence {xn} generated by (3.1) converges to a unique solution 1/2 of variational inequality
(3.2) over F(T). The graphical presentation of the convergence of the sequence {xn}
generated by the iterative scheme (3.1) is given in Figure 1.
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