Research Article

Existence of Solutions for the $p(x)$-Laplacian Problem with the Critical Sobolev-Hardy Exponent

Yu Mei, Fu Yongqiang, and Li Wang

1 Department of Applied Mathematics, Northwestern Polytechnical University, Xi’an 710129, China
2 Department of Mathematics, Harbin Institute of Technology, Harbin 150001, China

Correspondence should be addressed to Yu Mei, yumei301796@gmail.com

Received 18 February 2012; Accepted 11 July 2012

Academic Editor: Norimichi Hirano

Copyright © 2012 Yu Mei et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper deals with the $p(x)$-Laplacian equation involving the critical Sobolev-Hardy exponent. Firstly, a principle of concentration compactness in $W_{0}^{1,p(x)}(\Omega)$ space is established, then by applying it we obtain the existence of solutions for the following $p(x)$-Laplacian problem:

$$-\text{div}(|\nabla u|^{p(x)-2}\nabla u) + |u|^{p_*(x)-2}u = (h(x)|u|^{p(x)}2u/|x|^{q(x)}) + f(x, u), \quad x \in \Omega, \quad u = 0, \quad x \in \partial \Omega,$$

where $\Omega \subset \mathbb{R}^N$ is a bounded domain, $0 \in \Omega$, $1 < p^- \leq p(x) \leq p^+ < N$, and $f(x, u)$ satisfies $p(x)$-growth conditions.

1. Introduction

In this paper we are concerned with the following $p(x)$-Laplacian problem:

$$-\text{div} \left(|\nabla u|^{p(x)-2}\nabla u \right) + |u|^{p(x)-2}u = \frac{h(x)|u|^{p_*(x)-2}u}{|x|^{q(x)}} + f(x, u), \quad x \in \Omega, \quad u = 0, \quad x \in \partial \Omega,$$

where $0 \in \Omega \subset \mathbb{R}^N$ is a bounded domain, $p(x)$ is Lipschitz continuous, radially symmetric on Ω, and $1 < p^- \leq p(x) \leq p^+ < N$. $s(x)$ is Lipschitz continuous, radially symmetric on Ω and $0 \leq s(x) \ll p(x)$. $p_*(x) = ((N-s(x))/(N-p(x)))p(x)$ is the critical Sobolev-Hardy exponent, and $p_0^*(x) = Np(x)/(N-p(x)) = p^*(x)$ is the critical Sobolev exponent. Throughout this paper we assume the following:

(F-1) $f(x, t)$ satisfies the Carathéodory condition.

(F-2) $|f(x, t)| \leq c_1 + c_2|t|^{p(x)-1}$, $q : \Omega \rightarrow \mathbb{R}$ is measurable and satisfies $p(x) \ll q(x) \ll p_0^*(x)$ or $1 < q^- \leq q(x) \ll p(x)$, for any $x \in \Omega$.

Abstract and Applied Analysis

Let \(p(x) \in \mathbb{P}(\Omega) \) and denote by \(\|u\|_p = \inf \left\{ \lambda > 0 : \int_\Omega \frac{|u|^p}{\lambda^p} \, dx \leq 1 \right\} \).

The variable exponent Lebesgue space \(L^{p(x)}(\Omega) \) is the class of functions \(u \) such that \(\int_\Omega |u(x)|^{p(x)} \, dx < \infty \). \(L^{p(x)}(\Omega) \) is a Banach space endowed with the norm (2.1).

For a given \(p(x) \in \mathbb{P}(\Omega) \), we define the conjugate function \(p'(x) \) as:

\[
p'(x) = \frac{p(x)}{p(x) - 1}.
\]

Theorem 2.1. Let \(p(x) \in \mathbb{P}(\Omega) \). Then the inequality

\[
\int_\Omega |f(x) \cdot g(x)| \, dx \leq 2\|f\|_p \|g\|_{p'}
\]

holds for every \(f \in L^{p(x)}(\Omega) \) and \(g \in L^{p'(x)}(\Omega) \).
Theorem 2.2. Suppose that \(p(x) \) satisfies\(^1\)
\[
1 < p^- \leq p^+ < \infty. \tag{2.4}
\]

Let \(\Omega < \infty \), \(p_1(x), p_2(x) \in \mathcal{P}(\Omega) \), then the necessary and sufficient condition for \(L_{p(x)(\Omega)} \subset L_{p(x)(\Omega)} \) is that for almost all \(x \in \Omega \) we have \(p_1(x) \leq p_2(x) \), and in this case, the imbedding is continuous.

Theorem 2.3. Suppose that \(p(x) \) satisfies (2.4). Let \(\rho(u) = \int_{\Omega} |u(x)|^{p(x)} \, dx \). If \(u, u_k \in L_{p(x)}(\Omega) \), then

1. \(\|u\|_p < 1(=1; >1) \) if and only if \(\rho(u) < 1(=1; >1) \).
2. If \(\|u\|_p > 1 \), then \(\|u\|_p^{p^-} \leq \rho(u) \leq \|u\|_p^{p^+} \).
3. If \(\|u\|_p < 1 \), then \(\|u\|_p^{p^-} \leq \rho(u) \leq \|u\|_p^{p^+} \).
4. \(\lim_{k \to \infty} \|u_k\|_p = 0 \) if and only if \(\lim_{k \to \infty} \rho(u_k) = 0 \).
5. \(\|u_k\|_p \to \infty \) if and only if \(\rho(u_k) \to \infty \).

We assume that \(k \) is a given positive integer.

Given a multi-index \(\alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbb{N}_n \), we set \(|\alpha| = \alpha_1 + \cdots + \alpha_n \) and \(D_\alpha = D_1^{\alpha_1} \cdots D_n^{\alpha_n} \), where \(D_i = \partial / \partial x_i \) is the generalized derivative operator.

The generalized Sobolev space \(W_{p(x)}^{k}(\Omega) \) is the class of functions \(f \) on \(\Omega \) such that \(D_\alpha f \in L_{p(x)} \) for every multi-index \(\alpha \) with \(|\alpha| \leq k \). \(W_{p(x)}^{k}(\Omega) \) is endowed with the norm
\[
\|f\|_{k,p} = \sum_{|\alpha| \leq k} \|D_\alpha f\|_p. \tag{2.5}
\]

By \(W_{0}^{k,p(x)}(\Omega) \) we denote the subspace of \(W_{p(x)}^{k}(\Omega) \) which is the closure of \(C_{0}^{\infty}(\Omega) \) with respect to the norm (2.5).

In this paper we use the following equivalent norm of \(W_{1,p(x)}^{1}(\Omega) \):
\[
\|u\|_{1,p} = \inf \left\{ \lambda > 0 : \int_{\Omega} \frac{\|\nabla u\|_p}{\lambda} \leq \frac{1}{\lambda} \|u\|_p^{p(x)} \, dx \leq 1 \right\}. \tag{2.6}
\]

Then we have the inequality \((1/2)(\|\nabla u\|_p + \|u\|_p) \leq \|u\|_{1,p} \leq 2(\|\nabla u\|_p + \|u\|_p) \).

Theorem 2.4. The spaces \(W_{p(x)}^{k}(\Omega) \) and \(W_{0}^{k,p(x)}(\Omega) \) are separable reflexive Banach spaces if \(p(x) \) satisfies (2.4).

Theorem 2.5. Suppose that \(p(x) \) satisfies (2.4). Let \(\varphi(u) = \int_{\Omega} |\nabla u(x)|^{p(x)} + |u(x)|^{p(x)} \, dx \). If \(u, u_k \in W_{1,p(x)}^{1}(\Omega) \), then

1. \(\|u\|_{1,p} < 1(=1; >1) \) if and only if \(\varphi(u) < 1(=1; >1) \).
2. If \(\|u\|_{1,p} > 1 \), then \(\|u\|_{1,p}^{p^-} \leq \varphi(u) \leq \|u\|_{1,p}^{p^+} \).
3. If \(\|u\|_{1,p} < 1 \), then \(\|u\|_{1,p}^{p^-} \leq \varphi(u) \leq \|u\|_{1,p}^{p^+} \).
Theorem 2.10. Assume that $\lim_{k \to \infty} ||u_k||_{1,p} = 0$ if and only if $\lim_{k \to \infty} \varphi(u_k) = 0$.

(5) $||u_k||_{1,p} \to \infty$ if and only if $\varphi(u_k) \to \infty$.

Theorem 2.6. Let Ω be a bounded in \mathbb{R}^N, $p \in C(\overline{\Omega})$ and satisfies (2.4). Then for any measurable function $q(x)$ with $1 \leq q(x) \leq p^*(x)$, there is a compact embedding $W^{1,p(x)}(\Omega) \hookrightarrow L^{q(x)}(\Omega)$.

Theorem 2.7. If $p : \overline{\Omega} \to \mathbb{R}$ is Lipschitz continuous and satisfies (2.4), then for any measurable function $q(x)$ with $p(x) \leq q(x) \leq p^*(x)$, there is a continuous embedding $W^{1,p(x)}(\Omega) \hookrightarrow L^{q(x)}(\Omega)$.

Next let us consider the weighted variable exponent Lebesgue space. Let $a(x) \in P(\Omega)$ and $a(x) > 0$ for $x \in \Omega$. Define

$$L^{p(x)}_{a(x)}(\Omega) = \left\{ u \in P(\Omega) : \int_{\Omega} a(x)|u(x)|^{p(x)} dx < \infty \right\}$$

(2.7)

with the norm

$$|u|_{L^{p(x)}_{a(x)}(\Omega)} = ||u||_{p,a} = \inf\left\{ \lambda > 0 : \int_{\Omega} a(x)\left|\frac{u(x)}{\lambda}\right|^{p(x)} dx \leq 1 \right\}$$

(2.8)

then $L^{p(x)}_{a(x)}(\Omega)$ is a Banach space.

Theorem 2.8. Suppose that $p(x)$ satisfies (2.4). Let $\rho(u) = \int_{\Omega} a(x)|u(x)|^{p(x)} dx$. If $u, u_k \in L^{p(x)}_{a(x)}(\Omega)$, then

1. For $u \neq 0$, $||u||_{p,a} = \lambda$ if and only if $\rho(u/\lambda) = 1$.
2. $||u||_{p,a} < 1 (= 1; > 1)$ if and only if $\rho(u) < 1 (= 1; > 1)$.
3. If $||u||_{p,a} > 1$, then $||u||_{p,a}^p \leq \rho(u) \leq ||u||_{p,a}^p$.
4. If $||u||_{p,a} < 1$, then $||u||_{p,a}^p \leq \rho(u) \leq ||u||_{p,a}^p$.
5. $\lim_{k \to \infty} ||u_k||_{p,a} = 0$ if and only if $\lim_{k \to \infty} \rho(u_k) = 0$.
6. $||u_k||_{p,a} \to \infty$ if and only if $\rho(u_k) \to \infty$.

Theorem 2.9. Let $\Omega \subset \mathbb{R}^n$ be a measurable subset. Suppose that $g : \Omega \times \mathbb{R} \to \mathbb{R}$ is a Caratheodory function and satisfies

$$|g(x,u)| \leq a(x) + \beta |u|^{(p_1(x))/(p_2(x))}$$

for any $x \in \Omega$, $t \in \mathbb{R}$,

(2.9)

where $p_i(x) \geq 1$, $i = 1, 2$, $a(x) \in L^{p_i(x)}(\Omega)$, $a(x) \geq 0$, $\beta \geq 0$ is a constant, then the Nemitsky operator from $L^{p_1(x)}(\Omega)$ to $L^{p_2(x)}(\Omega)$ defined by $(N_{\alpha}u)(x) = g(x,u(x))$ is a continuous and bounded operator.

Theorem 2.10. Assume that $0 \in \overline{\Omega}$ and the boundary of Ω possesses the cone property. Suppose that $p(x), s(x), q(x) \in C(\overline{\Omega})$, $0 \leq s(x) < N$ for $x \in \overline{\Omega}$. If $q(x)$ satisfies $1 \leq q(x) < p_1^*(x)$ for $x \in \overline{\Omega}$, there is a compact embedding $W^{1,p(x)}(\Omega) \hookrightarrow L^{q(x)}_{[x]=s(x)}(\Omega)$.
Abstract and Applied Analysis

Theorem 2.11. Assume that $0 \in \mathbb{R}$ and the boundary of Ω possesses the cone property. Suppose that $p(x), s(x), q(x) \in C(\overline{\Omega}), 0 \leq s(x) \ll p(x)$ for $x \in \overline{\Omega}$. There is a continuous embedding $W^{1,p(x)}(\Omega) \hookrightarrow L^{p(x)}_{|x|^{-\alpha}}(\Omega)$.

Proof. Let $u \in W^{1,p(x)}(\Omega)$. Note that

$$
\int_{\Omega} \frac{|u|^{p(x)}|x|^{s(x)}}{|x|^{p(x)}} \, dx = \int_{\Omega} \frac{|u|^{p(x)}|x|^{p(x)-s(x)}}{|x|^{p(x)}} \, dx \\
\leq C_1 \left(\left\| \frac{|u|}{x} \right\|_{p/s} \left\| |u|^{N(p(x)-s(x))/(N-p(x))} \right\|_{p/(p-s)} \right).
$$

By Theorems 2.7 and 2.10, we have $\|u\|_{p,s} \leq C_2 \|u\|_{1,p} < \infty$ and $\|u\|_{p} \leq C_3 \|u\|_{1,p} < \infty$. So we get

$$
\int_{\Omega} \left(\frac{|u|}{x} \right)^{p(x)/s(x)} \, dx = \int_{\Omega} \frac{|u|^{p(x)}}{x} \, dx < \infty,
$$

$$
\int_{\Omega} |u|^{N(p(x)-s(x))/(N-p(x))-(p(x)/(p-s(x)))} \, dx = \int_{\Omega} |u|^{p(x)} \, dx < \infty.
$$

Furthermore, we obtain $\int_{\Omega} |u|^{p(x)}/|x|^{s(x)} \, dx < \infty$. This shows $W^{1,p(x)}(\Omega) \hookrightarrow L^{p(x)}(\Omega)$, then by the closed graph theorem in Banach space, we get the continuous embedding $W^{1,p(x)}(\Omega) \hookrightarrow L^{p(x)}_{|x|^{-\alpha}}(\Omega)$. \qed

3. The Principle of Concentration Compactness

In this section, we will establish the principle of concentration compactness in $W^{1,p(x)}_{0}(\Omega)$.

We denote by $\mathcal{M}(\overline{\Omega})$ the space of finite nonnegative Borel measures on $\overline{\Omega}$. A sequence $\mu_n \rightharpoonup \mu$ weakly-* in $\mathcal{M}(\overline{\Omega})$ is defined by $(\mu_n, u) \rightarrow (\mu, u)$, for any $u \in C(\overline{\Omega}) \cap C^\infty(\Omega)$.

We first give two lemmas. From [13] we can obtain the proof of the following lemmas. Assume that $p(x)$ is Lipschitz continuous satisfying (2.4) and $s(x)$ is continuous on $\overline{\Omega}$.

Lemma 3.1. Let $\{u_n\} \subset L^{p(x)}_{|x|^{-\alpha}}(\Omega)$ be bounded, and $u_n \rightarrow u \in L^{p(x)}_{|x|^{-\alpha}}(\Omega)$ a.e. on Ω, then

$$
\lim_{n \to \infty} \int_{\Omega} \frac{|u_n|^{p(x)}}{|x|^{s(x)}} - \frac{|u_n - u|^{p(x)}}{|x|^{s(x)}} \, dx = \int_{\Omega} \frac{|u|^{p(x)}}{|x|^{s(x)}} \, dx.
$$

Lemma 3.2. Let $\delta > 0, 0 < r < R < 1$, and $r/R \leq k(\delta) = \min\{\exp(-\delta/(2\tilde{C}))^{n/p} (1-n), e^{-|s-1|/(n-1)}\}$, where $\tilde{C} = ((1/(1 + (\delta/2))^{1/(p-1)} - 1)) + 1)^{p-1} \max\{2C^n, 2Cr \}|s-1| p/n, |s-1|$.

denotes the surface area of the unit sphere in \(\mathbb{R}^n \) and \(C \) satisfies the inequality \(\|u\|_{L^p(\Omega)} \leq C\|\nabla u\|_{L^p(\Omega)} \).

Then for every \(u \in W_0^{1,p(x)}(\Omega) \),

\[
\int_{B_r(x_0)} \frac{|u|^{p(x)}}{|x|^{n(p(x))}} \, dx \leq C^* \max \left\{ \left(\int_{B_r(x_0)} |\nabla u|^{p(x)} \, dx + \delta \max \left\{ \|u\|_{L^p}^{p^*_r}, \|u\|_{L^p_1}^{p^*_r} \right\} \right)^{p^*_r/p^*}, \left(\int_{B_r(x_0)} |u|^{p(x)} \, dx + \delta \max \left\{ \|u\|_{L^p}^{p^*_r}, \|u\|_{L^p_1}^{p^*_r} \right\} \right)^{p^*_r/p^*} \right\},
\]

(3.2)

where \(C^* = \sup \{ \int_\Omega |u|^{p(x)} / |x|^{n(p(x))} \, dx : \|u\|_{L^p(\Omega)} \leq 1, \ u \in W_0^{1,p(x)}(\Omega) \} \).

Theorem 3.3. Let \(\{u_n\} \subset W_0^{1,p(x)}(\Omega) \) with \(\|u_n\|_{L^p(\Omega)} \leq 1 \) such that

\[
u_n \rightarrow u \quad \text{weakly in } W_0^{1,p(x)}(\Omega),
\]

\[
|\nabla u_n|^{p(x)} + |u_n|^{p(x)} \rightarrow \mu \quad \text{weakly-\star in } M(\overline{\Omega}),
\]

\[
|u_n|^{p(x)} \rightarrow \nu \quad \text{weakly-\star in } M(\overline{\Omega}),
\]

(3.3)

as \(n \rightarrow \infty \). Then the limit measures are of the form

\[
\mu = |\nabla u|^{p(x)} + |u|^{p(x)} + \sum_{j \in J} \mu_j \delta_{x_j} + \mu_0 \delta_0 + \tilde{\mu}, \quad \mu(\overline{\Omega}) \leq 1,
\]

\[
\nu = |u|^{p(x)} \frac{|x|^{n(p(x))}}{|x|^{n(p(x))}} + \sum_{j \in J} \nu_j \delta_{x_j} + \nu_0 \delta_0, \quad \nu(\overline{\Omega}) \leq C^*,
\]

(3.4)

where \(J \) is a countable set, \(\{\mu_j\} \subset [0, \infty) \), \(\{\nu_j\} \subset [0, \infty) \), \(\mu_0 \geq 0, \nu_0 \geq 0 \), \(\{x_j\} \subset \overline{\Omega}, \tilde{\mu} \in M(\overline{\Omega}) \) is a nonatomic positive measure. \(\delta_{x_j} \) and \(\delta_0 \) are atomic measures which concentrate on \(x_j \) and 0, respectively. \(C^* \) is as defined in Lemma 3.2. The atoms and the regular part satisfy the generalized Sobolev inequalities

\[
\nu(\overline{\Omega}) \leq C^* \max \left\{ \mu(\overline{\Omega})^{p^*_r/p^*}, \mu(\overline{\Omega})^{p^*_r/p^*} \right\},
\]

\[
\nu_j \leq C^* \max \left\{ \mu_j^{p^*_r/p^*}, \mu_j^{p^*_r/p^*} \right\},
\]

\[
\nu_0 \leq C^* \max \left\{ \mu_0^{p^*_r/p^*}, \mu_0^{p^*_r/p^*} \right\}.
\]

(3.5)
Abstract and Applied Analysis

Proof. By Lemma 3.2, for every \(\delta > 0 \), there exists \(k(\delta) > 0 \) such that for \(0 < r < R \) with \(r/R \leq k(\delta) \),

\[
\int_{B_r(0)} \frac{|u_n|^{p'(x)}_{\Omega}}{|x|^{p(x)}} \, dx
\]

\[
\leq C^* \max \left\{ \left(\int_{B_r(0)} \left| \nabla u_n \right|^{p(x)} + |u_n|^{p(x)} \, dx + \delta \max \left\{ \|u_n\|^{p'_r}_{1,p'}, \|u_n\|^{p_r}_{1,p'} \right\} \right)^{p'_r/p'} , \left(\int_{B_r(0)} \left| \nabla u_n \right|^{p(x)} + |u_n|^{p(x)} \, dx + \delta \max \left\{ \|u_n\|^{p'_r}_{1,p'}, \|u_n\|^{p_r}_{1,p'} \right\} \right)^{p'_r/p'} \right\}. \tag{3.6}
\]

Let \(\eta_1 \in C_0^\infty(B_r(0)) \) and \(\eta_2 \in C_0^\infty(B_{2R}(0)) \) such that \(0 \leq \eta_1, \eta_2 \leq 1 \), \(\eta_1 \equiv 1 \) in \(B_{r/2}(0) \) and \(\eta_2 \equiv 1 \) in \(B_R(0) \). Then we have

\[
\int_{B_r(0)} \frac{|u_n|^{p'(x)}_{\Omega}}{|x|^{p(x)}} \eta_1 \, dx \rightarrow \int_{B_r(0)} \eta_1 \, d\nu,
\]

\[
\int_{B_{2R}(0)} \left(\left| \nabla u_n \right|^{p(x)} + |u_n|^{p(x)} \right) \eta_2 \, dx \rightarrow \int_{B_{2R}(0)} \eta_2 \, d\mu.
\tag{3.7}
\]

Thus,

\[
\int_{B_r(0)} \eta_1 \, d\nu \leq C^* \max \left\{ \left(\int_{B_{2R}(0)} \eta_2 \, d\mu + \delta \right)^{p'_r/p'} , \left(\int_{B_{2R}(0)} \eta_2 \, d\mu + \delta \right)^{p'_r/p'} \right\}. \tag{3.8}
\]

Furthermore,

\[
\nu\left(\{0\} \right) \leq \nu(B_{r/2}(0)) \leq C^* \max \left\{ (\mu(B_{2R}(0)) + \delta)^{p'_r/p'} , (\mu(B_{2R}(0)) + \delta)^{p'_r/p'} \right\}. \tag{3.9}
\]

Let \(\delta \rightarrow 0 \) and \(R \rightarrow 0 \), then we get

\[
\nu\left(\{0\} \right) \leq C^* \max \left\{ \mu(\{0\})^{p'_r/p'} , \mu(\{0\})^{p'_r/p'} \right\}, \tag{3.10}
\]

that is,

\[
\nu_0 \leq C^* \max \left\{ \mu_0^{p'_r/p'} , \mu_0^{p'_r/p'} \right\}. \tag{3.11}
\]

By Theorem 2.11 and the definition of \(C^* \), we have

\[
\int_{\Omega} \frac{|u|^{p'(x)}_{\Omega}}{|x|^{p(x)}} \, dx \leq C^* \max \left\{ \left(\int_{\Omega} \left| \nabla u \right|^{p(x)} + |u|^{p(x)} \, dx \right)^{p'_r/p'} , \left(\int_{\Omega} \left| \nabla u \right|^{p(x)} + |u|^{p(x)} \, dx \right)^{p'_r/p'} \right\}. \tag{3.12}
\]
Similar to the proof of Theorem 3.1 in [13], we get
\begin{equation}
\nu = \frac{|u|^{p'(x)}}{|x|^{p(x)}} + \sum_{j=1}^{n} \nu_j \delta_{x_j} + \nu_0 \delta_0
\end{equation}
(3.13)
and the other results.

\section{4. Existence of Solutions}

Let \(O(N)\) be the group of orthogonal linear transformations in \(\mathbb{R}^N\), and \(G\) is a subgroup of \(O(N)\). For \(x \neq 0\), we denote the cardinality of \(G_x = \{gx : g \in G\}\) by \(|G_x|\) and set \(|G| = \inf_{x \in \mathbb{R}^N, x \neq 0}|G_x|\). An open subset \(\Omega \subset \mathbb{R}^N\) is \(G\)-invariant if \(g\Omega = \Omega\) for any \(g \in G\).

\textbf{Definition 4.1.} Let \(\Omega\) be a \(G\)-invariant open subset of \(\mathbb{R}^N\). The action of \(G\) on \(W^{1,p(x)}_0(\Omega)\) is defined by \(gu(x) = u(g^{-1}x)\) for any \(u \in W^{1,p(x)}_0(\Omega)\). The subspace of invariant functions is defined by
\[
W^{1,p(x)}_{0,G}(\Omega) = \left\{ u \in W^{1,p(x)}_0(\Omega) : gu = u, \forall g \in G \right\}.
\] (4.1)

A functional \(I : W^{1,p(x)}_0(\Omega) \to \mathbb{R}^N\) is \(G\)-invariant if \(I \circ g = I\) for any \(g \in G\).

Set
\[
I(u) = \int_\Omega \frac{1}{p(x)} \left(\left| \nabla u \right|^{p(x)} + \left| u \right|^{p(x)} \right) - \frac{h(x)}{p'(x)} \frac{\left| u \right|^{p'(x)}}{\left| x \right|^{p(x)}} - F(x,u)dx
\]
(4.2)
\[
F(x,t) = \int_0^t f(x,s)ds.
\]

The critical points of \(I(u)\), that is,
\[
0 = I'(u)\varphi = \int_\Omega \left| \nabla u \right|^{p(x)-2} \nabla u \nabla \varphi + \left| u \right|^{p(x)-2}u\varphi - h(x)\frac{\left| u \right|^{p'(x)-2}u}{\left| x \right|^{p(x)}} \varphi - f(x,u)\varphi dx
\] (4.3)
for all \(\varphi \in W^{1,p(x)}_0(\Omega)\), are weak solutions of the problem (1.1). So next we need only to consider the existence of nontrivial critical points of \(I(u)\).

In this paper, assume that \(G = O(N)\) and \(\Omega\) is \(O(N)\)-invariant. By (F-3) and (F-5), we get that \(I\) is \(O(N)\)-invariant. By the principle of symmetric criticality of Krawcewicz and Marzantowicz [20], \(u\) is a critical point of \(I\) if and only if \(u\) is a critical point of \(\tilde{I} = I|_{W^{1,p(x)}_0(\Omega)}\).

So we only need to prove the existence of critical points of \(\tilde{I}\) on \(W^{1,p(x)}_{0,\Omega}(\Omega)\).

\textbf{Lemma 4.2.} Any \((PS)_c\) sequence \(\{u_n\} \subset W^{1,p(x)}_{0,\Omega}(\Omega)\) possesses a convergent subsequence.
Abstract and Applied Analysis

Proof. Suppose that \(I(u_n) \to c, c \in \mathbb{R} \), and \(\tilde{I}(u_n) \to 0 \) in \((W^{1,p(x)}_0(\Omega))^* \). Let \(I(x) = (p(x) + p_*^r(x))/2 \) and \(|\nabla (1/I(x))| \leq C \). Denote \(a = \inf_{x \in \tilde{\Omega}} ((1/p(x)) - (1/I(x))) > 0 \) and \(b = \inf_{x \in \tilde{\Omega}} ((1/I(x)) - (1/p_*^r(x))) > 0 \). Then we have

\[
\tilde{I}(u_n) - \left< \tilde{I}(u_n), \frac{u_n}{I(x)} \right> \\
= \int_{\Omega} \left(\frac{1}{p(x)} - \frac{1}{I(x)} \right) \left(|\nabla u_n|^{p(x)} + |u_n|^{p(x)} \right) + h(x) \left(\frac{1}{I(x)} - \frac{1}{p_*^r(x)} \right) \frac{|u_n|^{p^*_r(x)}}{|x|^{p^*_r(x)}} \\
+ \frac{1}{I(x)} f(x, u_n) u_n - F(x, u_n) dx - \int_{\Omega} |\nabla u_n|^{p(x)-2} \nabla u_n \nabla \left(\frac{1}{I(x)} \right) u_n dx \\ \\
\geq \int_{\Omega} a \left(|\nabla u_n|^{p(x)} + |u_n|^{p(x)} \right) + b h(x) \frac{|u_n|^{p^*_r(x)}}{|x|^{p^*_r(x)}} + \frac{1}{I(x)} f(x, u_n) u_n - F(x, u_n) dx \\
- \int_{\Omega} |\nabla u_n|^{p(x)-2} \nabla u_n \nabla \left(\frac{1}{I(x)} \right) u_n dx.
\]

By Young's inequality, for \(\varepsilon_1 \in (0, 1) \), we get

\[
\left| |\nabla u_n|^{p(x)-2} \nabla u_n \cdot u_n \right| \leq \varepsilon_1 |\nabla u_n|^{p(x)} + \varepsilon_1 |u_n|^{p^*_r(x)} + C(\varepsilon_1).
\]

By (F-2), \(|(1/I(x)) f(x, u_n) u_n - F(x, u_n)| \leq C(|u_n| + |u_n|^{q(x)})\), then we have for \(\varepsilon_2 \in (0, 1) \)

\[
|u_n| + |u_n|^{q(x)} \leq \varepsilon_2 |u_n|^{p^*_r(x)} + C(\varepsilon_2).
\]

From \(h(x)/|x|^{p(x)} \to \infty \) as \(x \to 0 \), we get that there exists \(\overline{H} > 0 \) such that \(h(x)/|x|^{p(x)} > \overline{H} \) for any \(x \in \Omega \), so we have

\[
\tilde{I}(u_n) - \left< \tilde{I}(u_n), \frac{u_n}{I(x)} \right> \\
\geq \int_{\Omega} a \left(|\nabla u_n|^{p(x)} + |u_n|^{p(x)} \right) dx + \int_{\Omega} b \overline{H} |u_n|^{p^*_r(x)} dx - C\varepsilon_1 \int_{\Omega} |\nabla u_n|^{p(x)} dx \\
- C(\varepsilon_1 + \varepsilon_2) \int_{\Omega} |u_n|^{p^*_r(x)} dx - C(\varepsilon_1) - C(\varepsilon_2).
\]

Take \(\varepsilon_1 \) and \(\varepsilon_2 \) sufficiently small such that \(C\varepsilon_1 < a/2 \) and \(C(\varepsilon_1 + \varepsilon_2) \leq \overline{b}\overline{H} \), thus,

\[
c + 1 > I(u_n) \geq \int_{\Omega} \frac{a}{2} \left(|\nabla u_n|^{p(x)} + |u_n|^{p(x)} \right) dx - C,
\]

if \(n \) is sufficiently large. Furthermore, we obtain \(\|u_n\|_{1,p} < \infty \).
Note that
\[
\Omega \left(|\nabla u_n|^{p(x)-2} \nabla u_n - |\nabla u|^{{p(x)-2}} \nabla u \right) (\nabla u_n - \nabla u) dx \\
\leq \left| \left\langle \tilde{T}(u_n), u_n - u \right\rangle + \int_\Omega \left| \left(|u_n|^{p(x)-2} u_n - |u|^{p(x)-2} u \right)(u_n - u) \right| dx \\
+ \int_\Omega \left| h(x) \left(\frac{|u_n|^{p'_n(x)-2} u_n - |u|^{p'_n(x)-2} u}{|x|^{q(x)}} \right)(u_n - u) \right| dx \\
+ \int_\Omega \left| (f(x,u_n) - f(x,u))(u_n - u) \right| dx \right) \\
\triangleq \sum_{i=1}^5 I_i.
\] (4.9)

Because \{u_n\} is bounded in \(W^{1,p(x)}_{0,\Omega(N)}(\Omega)\), there exists a subsequence (still denoted by \(u_n\)) such that \(u_n \rightharpoonup u\) weakly in \(W^{1,p(x)}_{0,\Omega(N)}(\Omega)\). Then we have \(u_n \rightarrow u\) in \(L^{q(x)}(\Omega)\). It is easy to get \(I_1 \rightarrow 0\), \(I_2 \rightarrow 0\), and \(I_3 \rightarrow 0\). By (F-2)

\[
\int_\Omega |f(x,u_n)|^{q(x)} dx \\
\leq \int_\Omega \left(c_1 + c_2 |u_n|^{q(x)-1} \right)^{q(x)} dx \\
\leq C \int_\Omega (1 + |u_n|)^{(q(x)-1)q(x)} dx \\
\leq C \left(|\Omega| + \int_\Omega |u_n|^{q(x)} dx \right).
\] (4.10)

Then we have that \(\|f(x,u_n)\|_q\) is bounded. By

\[
I_5 \leq 2 \|f(x,u_n)\|_q \|u_n - u\|_q + 2 \|f(x,u)\|_q \|u_n - u\|_{q'}
\] (4.11)

we get \(I_5 \rightarrow 0\).

Next we show that \(I_4 \rightarrow 0\). Note that

\[
I_4 \leq h^0 \left(\int_\Omega \frac{|u_n|^{p'_n(x)-1}}{|x|^{q(x)}} - |u_n - u| dx + \int_\Omega \frac{|u|^{p'_n(x)-1}}{|x|^{q(x)}} - |u_n - u| dx \right) \\
\leq 2h^0 \left(\left\| \frac{|u_n|^{p'_n(x)-1}}{|x|^{q(x)/p'_n(x)}} \right\|_{p'_n} \left\| u_n - u \right\|_{p'_n} + \left\| \frac{|u|^{p'_n(x)-1}}{|x|^{q(x)/p'_n(x)}} \right\|_{p'_n} \left\| u_n - u \right\|_{p'_n} \right)
\] (4.12)
where $h^0 = \max_{x \in \Omega} h(x)$. By Theorem 2.11, $\|u_n\|_{L^p(\Omega)}^{-1} / |x|^{\sigma(\cdot)} / \mu_{\ast}$ is bounded. If we show that there exists a subsequence (still denoted by $\{u_n\}$) such that $\int_{\Omega} |u_n - u| |x|^{\sigma(\cdot)} dx \to 0$ as $n \to \infty$, then $I_4 \to 0$.

As $u_n \rightharpoonup u$ weakly in $W_{0,0}^{1,p(x)}(\Omega)$, passing to a subsequence, still denoted by $\{u_n\}$, by Theorem 3.3 we assume that there exist $\mu, \nu \in \mathcal{M}(\overline{\Omega})$ and $\{x_j\}_{j \in J}$ in $\overline{\Omega}$ such that $|\nabla u_n|^{p(x)} + |u_n|^{p(x)} \to \mu$ weakly in $\mathcal{M}(\overline{\Omega})$ and $|u_n|^{p(x)} / |x|^{\sigma(\cdot)} \to \nu$ weakly in $\mathcal{M}(\overline{\Omega})$, where

$$\nu = \frac{|u_n|^{p(x)}}{|x|^{\sigma(x)}} + \sum_{j \in J} \nu_j \delta_{x_j} + \nu_0 \delta_0,$$ (4.13)

J is a countable set, $\{\mu_j\} \subset [0, \infty)$, $\{\nu_j\} \subset [0, \infty)$, $\mu_0 \geq 0$, $\nu_0 \geq 0$, $\tilde{\mu} \in \mathcal{M}(\overline{\Omega})$ is a nonatomic positive measure. Take $\eta \equiv 1$, then

$$\lim_{n \to \infty} \int_{\Omega} \frac{|u_n|^{p(x)} - \eta}{|x|^{\sigma(x)}} dx = \int_{\Omega} \eta d\nu = \int_{\Omega} \frac{|u|^{|p(x)} - \eta}{|x|^{\sigma(x)}} dx + \sum_{j \in J} \nu_j + \nu_0.$$ (4.14)

We claim $\nu_0 = 0$ and $\nu_j = 0$ for any $j \in J$. First we consider ν_0.

For any $\varepsilon > 0$, choose $\varphi_0 \in C_0^\infty(B_{2\varepsilon}(0))$ such that $0 \leq \varphi_0 \leq 1$, $\varphi_0 = 1$ on $B_{\varepsilon}(0)$ and $|\nabla \varphi_0| \leq 2 / \varepsilon$. Then

$$\langle \tilde{I}(u_n), u_n \varphi_0 \rangle = \int_{\Omega} \left(|\nabla u_n|^{p(x)} + |u_n|^{p(x)} \right) \varphi_0 dx - \int_{\Omega} h(x) \frac{|u_n|^{p(x)} \varphi_0}{|x|^{\sigma(x)}} dx$$

$$- \int_{\Omega} f(x, u_n) u_n \varphi_0 dx + \int_{\Omega} |\nabla u_n|^{p(x) - 2} \nabla u_n \nabla \varphi_0 u_n dx.$$ (4.15)

We have

$$\lim_{n \to \infty} \int_{B_{2\varepsilon}(0)} \frac{|u_n|^{p(x)} \varphi_0}{|x|^{\sigma(x)}} dx = \int_{B_{2\varepsilon}(0)} \varphi_0 d\mu,$$ (4.16)

$$\lim_{n \to \infty} \int_{B_{2\varepsilon}(0)} |u_n^{p(x)} \varphi_0| dx = \int_{B_{2\varepsilon}(0)} \varphi_0 d\nu.$$ (4.17)

By Theorem 2.1,

$$\int_{B_{2\varepsilon}(0)} |\nabla u_n|^{p(x) - 2} \nabla u_n \nabla \varphi_0 u_n dx$$

$$\leq 2 \|u_n \varphi_0\|_{p, B_{2\varepsilon}(0)} \left\| |\nabla u_n|^{p(x) - 1} \right\|_{p', B_{2\varepsilon}(0)}$$ (4.17)

$$\leq C \|u_n \varphi_0\|_{p, B_{2\varepsilon}(0)}.$$
By Theorem 2.6, we have \(u_n \to u \) in \(L^{p(x)}(\Omega) \), then
\[
\lim_{n \to \infty} \int_{B_2(0)} |u_n \nabla \varphi_0|^{p(x)} \, dx = \int_{B_2(0)} |u \nabla \varphi_0|^{p(x)} \, dx.
\]
(4.18)

Furthermore,
\[
\int_{B_2(0)} |u \nabla \varphi_0|^{p(x)} \, dx \leq 2 \left\| \nabla \varphi_0 \right\|_{N/p, B_2(0)} \left\| u \right\|_{p^{(0)}, B_2(0)} \left\| u \right\|_{N/(N-p), B_2(0)}.
\]
(4.19)

where \(\omega_N \) is the volume of the unit ball. By \(\lim_{\epsilon \to 0} \int_{B_2(0)} |u|^p \, dx = 0 \), then we have
\[
\lim \lim_{\epsilon \to 0} \lim_{n \to \infty} \int_{\Omega} \left| \nabla u_n \right|^{p(x)-2} \nabla u_n \nabla \varphi_0 u_n \, dx = 0.
\]
(4.20)

Since \(\| f(x,u_n) \|_q \) is bounded and by Theorem 2.9 we have
\[
\lim_{n \to \infty} \int_{B_2(0)} \left| f(x,u_n) - f(x,u) \right|^{q(x)} \, dx = 0.
\]
(4.21)

From
\[
\int_{B_2(0)} \left| f(x,u_n) u_n - f(x,u) u \right| \, dx
\]
(4.22)

\[
\leq 2 \| f(x,u_n) \|_q \| u_n - u \|_q + 2 \| f(x,u_n) - f(x,u) \|_q \| u \|_q,
\]
we have
\[
\lim_{n \to \infty} \int_{B_2(0)} f(x,u_n) u_n \varphi_0 \, dx = \int_{B_2(0)} f(x,u) u \varphi_0 \, dx.
\]
(4.23)

Therefore,
\[
\lim \lim_{\epsilon \to 0} \lim_{n \to \infty} \int_{B_2(0)} f(x,u_n) u_n \varphi_0 \, dx = \lim_{\epsilon \to 0} \int_{B_2(0)} f(x,u) u \varphi_0 \, dx = 0.
\]
(4.24)

Thus, we have
\[
0 = \lim_{n \to \infty} \left(\tilde{I}(u_n), u_n \varphi_0 \right) = \int_{B_2(0)} \varphi_0 \, d\mu - \int_{B_2(0)} h(x) \varphi_0 \, dv - \int_{B_2(0)} f(x,u) u \varphi_0 \, dx
\]
(4.25)

\[
+ \lim_{n \to \infty} \int_{B_2(0)} \left| \nabla u_n \right|^{p(x)-2} \nabla u_n \nabla \varphi_0 \cdot u_n \, dx.
\]
Abstract and Applied Analysis

Furthermore, we obtain

$$0 = \lim_{\varepsilon \to 0} \lim_{n \to \infty} \left< \tilde{T}(u_n), u_n \varphi_0 \right> = \mu_0 - h(0) \nu_0. \quad (4.26)$$

As \(h(0) = 0, \mu_0 = 0, \) thus, \(\nu_0 = 0. \)

Next we consider \(\nu_j \) for any \(j \in J. \) Suppose \(\exists j_0 \in J \) such that \(\nu_{j_0} > 0. \) Note that \(u_n \in W^{1,p(x)}_0(\Omega) \), then for any \(g \in O(N), \nu(gx_{j_0}) = \nu(x_{j_0}) > 0. \) By \(|O(N)| = \infty, \) we get \(\nu(\{gx_{j_0} : g \in O(N)\}) = \infty. \) As the measure \(\nu \) is finite, that is a contradiction. So we obtain that \(\nu_0 = 0 \) and \(\nu_j = 0 \) for any \(j \in J. \) Thus,

$$\lim_{n \to \infty} \int_{\Omega} \frac{|u_n|^{p_j(x)}}{|x|^{s_j(x)}} \, dx = \int_{\Omega} \frac{|u|^{p_j(x)}}{|x|^{s_j(x)}} \, dx. \quad (4.27)$$

By Lemma 3.1, we obtain \(\lim_{n \to \infty} \int_{\Omega} |u_n - u|^{p_j(x)} / |x|^{s_j(x)} \, dx = 0, \) that is, \(u_n \to u \) strongly in \(L^{p_j(x)}(\Omega). \)

We obtain that \(\{u_n\} \) possesses a subsequence (still denoted by \(\{u_n\} \)), such that \(I_i \to 0, \) \(i = 1, \ldots, 5, \) as \(n \to \infty. \) Thus, \(\int_{\Omega} (|\nabla u_n|^{p(x)-2} \nabla u_n - |\nabla u|^{p(x)-2} \nabla u)(\nabla u_n - \nabla u) \, dx \to 0, \) as \(n \to \infty. \) As in the proof of Theorem 3.1 in [5], we divide \(\Omega \) into two parts:

$$\Omega_1 = \{ x \in \Omega : p(x) \geq 2 \}, \quad \Omega_2 = \{ x \in \Omega : p(x) < 2 \}. \quad (4.28)$$

We have

$$\int_{\Omega_1} |\nabla u_n - \nabla u|^{p(x)} \, dx + \int_{\Omega_2} |\nabla u_n - \nabla u|^{p(x)} \, dx \to 0, \quad (4.29)$$

that is, \(\int_{\Omega} |\nabla u_n - \nabla u|^{p(x)} \, dx \to 0. \) Then \(u_n \to u \) in \(W^{1,p(x)}_0(\Omega) \).

Since \(W^{1,p(x)}_0(\Omega) \) is a separable and reflexive Banach space, \(W^{1,p(x)}_0(\Omega) \) is also a separable and reflexive Banach space. So there exist \(\{e_n\}_{n=1}^{\infty} \subset W^{1,p(x)}_0(\Omega) \) and \(\{e_n^*\}_{n=1}^{\infty} \subset (W^{1,p(x)}_0(\Omega))^* \) such that

$$\left\{ e^*_j, e_i \right\} = \begin{cases} 1, & i = j, \\ 0, & i \neq j, \end{cases} \quad (4.30)$$

$$W^{1,p(x)}_0(\Omega) = \overline{\text{span}\{e_n : n = 1, 2, \ldots\}},$$

$$\left(W^{1,p(x)}_0(\Omega)\right)^* = \overline{\text{span}\{e^*_n : n = 1, 2, \ldots\}}.$$

For \(k = 1, 2, \ldots, \) denote \(X_k = \text{span}\{e_k\}, \) \(Y_k = \overline{\bigoplus_{j=1}^k X_j}, \) \(Z_k = \overline{\bigoplus_{j=k}^{\infty} X_j}. \)
Theorem 4.3. Under assumptions (F-1)–(F-5), the problem (1.1) admits a sequence of solutions \(
abla u_n \subset W^{1,p(x)}_{0,\Omega(N)}(\Omega)\) such that \(I(u_n) \to \infty\).

Proof. Set \(\varphi(u) = \int_{\Omega} F(x,u) \, dx\). We first show that \(\varphi(u)\) is weakly strongly continuous. Let \(u_n \to u\) weakly in \(W^{1,p(x)}_{0,\Omega(N)}(\Omega)\). So we have \(u_n \to u\) in \(L^q(x)(\Omega)\). Note that

\[|F(x,u)| \leq C \left(|u| + |u|^{q(x)}\right) \leq C \left(1 + |u|^{q(x)}\right),\]

(4.31)

then by Theorem 2.9 we obtain \(F(x,u_n) \to F(x,u)\) in \(L^1(\Omega)\). By Proposition 3.5 in [18],

\[\beta_k = \beta_k(r) = \sup_{u \in Z_k, \|u\|_p \leq r} \int_{\Omega} |F(x,u)| \, dx \to 0,\]

(4.32)

as \(k \to \infty\) for \(r > 0\).

Set

\[\theta_k = \theta_k(r) = \sup_{u \in Z_k, \|u\|_p \leq r} \int_{\Omega} \frac{|u|^{p(x)}}{|x|^{s(x)}} \, dx.\]

(4.33)

Next we show \(\theta_k \to \sum_{j \in I} \nu_j + \nu_0\) as \(k \to \infty\). Note that \(0 \leq \theta_{k+1} \leq \theta_k\), then \(\theta_k \to \theta \geq 0\), as \(k \to \infty\). There exists \(u_k \in Z_k\) with \(\|u_k\|_1 \leq r\) such that \(0 \leq \theta_k - \int_{\Omega} (|u_k|^{p(x)}/|x|^{s(x)}) \, dx < 1/k\), for each \(k = 1, 2, \ldots\). As \(W^{1,p(x)}_{0,\Omega(N)}(\Omega)\) is reflexive, passing to a subsequence, still denoted by \(\{u_k\}\), we assume \(u_k \to u\) weakly in \(W^{1,p(x)}_{0,\Omega(N)}(\Omega)\). We claim \(u = 0\). In fact, for any \(e_m^*(u_k) = 0\), when \(k > m\), then \(e_m^*(u_k) \to 0\) as \(k \to \infty\). It is immediate to get \(e_m^*(u_k) = 0\) for any \(m \in \mathbb{N}\). Then we have \(u = 0\). By Theorem 3.3, there exist a finite measure \(\nu\) and a sequence \(\{x_j\} \subset \Omega\) such that

\[\frac{|u_k|^{p(x)}}{|x|^{s(x)}} \to \nu = \frac{|u|^{p(x)}}{|x|^{s(x)}} + \sum_{j \in I} \nu_j \delta_{x_j} + \nu_0 \delta_0,\]

(4.34)

where \(I\) is countable. Set \(\eta \equiv 1\), we obtain \(\int_{\Omega} (|u_k|^{p(x)}/|x|^{s(x)}) \, \eta dx \to \sum_{j \in I} \nu_j + \nu_0\). So we have

\[
\lim_{k \to \infty} \theta_k = \sum_{j \in I} \nu_j + \nu_0 \leq \nu(\Omega) < \infty.
\]

For any \(n \in \mathbb{N}\), there exists a positive integer \(k_n\) such that \(\beta_k(n) \leq 1\) and \(\theta_k(n) \leq \sum_{j \in I} \nu_j + \nu_0 + 1\) for all \(k \geq k_n\). Assume that \(k_n < k_{n+1}\) for each \(n\). Define \(\{r_k : k = 1, 2, \ldots\}\) in the following way:

\[r_k = \begin{cases} n, & k_n \leq k < k_n + 1, \\ 1, & 1 \leq k < k_1. \end{cases}\]

(4.35)
Then we get \(r_k \to \infty \) as \(k \to \infty \). Hence, for \(u \in Z_k \) with \(\|u\|_{1,p} = r_k \), we get

\[
\bar{T}(u) \geq \frac{1}{p^+} \|u\|_{1,p}^{p^+} - \frac{h^0}{p_g} \theta_k(r_k) - \beta_k(r_k)
\]

\[
\geq \frac{1}{p^+} \|u\|_{1,p}^{p^+} - \frac{h^0}{p_g} \left(\sum_{j=1} \nu_j + \nu_0 + 1 \right) - 1,
\]

(4.36)

where \(h^0 \) is as defined in Lemma 4.2. So

\[
\inf_{u \in Z_k, \|u\|_{1,p} = r_k} \bar{T}(u) \to \infty \quad \text{as } k \to \infty.
\]

(4.37)

Note that for \(\epsilon \in (0,1) \), \(|F(x,u)| \leq C \epsilon \|u\|^{p^*(x)} + C(\epsilon)\), then

\[
\int_{\Omega} F(x,u)dx \leq C \epsilon \int_{\Omega} |u|^{p^*(x)}dx + C(\epsilon)|\Omega|.
\]

(4.38)

We have

\[
\bar{T}(u) \leq \int_{\Omega} |\nabla u|^{p(x)} + |u|^{p(x)}dx - \int_{\Omega} \bar{H}|u|^{p^*(x)}dx + C \epsilon \int_{\Omega} |u|^{p^*(x)}dx + C(\epsilon)|\Omega|.
\]

(4.39)

Take \(\epsilon \) sufficiently small so that \(C \epsilon \leq \bar{H}/2p^*_s \), then

\[
\bar{T}(u) \leq \int_{\Omega} |\nabla u|^{p(x)} + |u|^{p(x)}dx - m \int_{\Omega} |u|^{p^*(x)}dx + C,
\]

(4.40)

where \(m = \bar{H}/2p^*_s \). Since the dimension of \(Y_k \) is finite, any two norms on \(Y_k \) are equivalent, then \(k_1 \|u\|_{1,p} \leq \|u\|_{p^*_s} \leq k_2 \|u\|_{1,p} \), \(k_1, k_2 > 0 \). As in the proof of Theorem 4.2 in [13], we can find hypercubes \(\{Q_i\}_{i=1}^Q \) which mutually have no common points such that \(\overline{Q} \subseteq \bigcup_{i=1}^Q Q_i \) and \(p^*_s = \sup_{y \in \overline{Q}} p(y) < \inf_{y \in \Omega} p_s(y) = p^*_s \), where \(\Omega_i = Q_i \cap \Omega \). Then we have

\[
\bar{T}(u) \leq \sum_{\|u\|_{1,p,Q_i} > 1} \left(\|u\|_{1,p,Q_i}^{p^*_s} - m k_{Q_i}^{p^*_s} \|u\|_{1,p,Q_i}^{p^*_s} \right) \\
+ \sum_{\|u\|_{1,p,Q_i} \leq 1} \left(\|u\|_{1,p,Q_i}^{p^*_s} - m k_{Q_i}^{p^*_s} \|u\|_{1,p,Q_i}^{p^*_s} \right) + C
\]

(4.41)

Let \(f_i(t) = t^{p^*_s} - m k_{Q_i}^{p^*_s} t^{p^*_s} \), for \(i = 1, \ldots, Q \). Take \(s_i > 0 \) such that \(f_i(s_i) = \max_{t \geq 0} f_i(t) \geq f_i(0) = 0 \).

Denote \(g_i(t) = t^{p^*_s} - m k_{Q_i}^{p^*_s} t^{p^*_s} + \sum_{j=1}^Q f_j(s_i) + C \), for \(i = 1, \ldots, Q \). By \(\lim_{t \to \infty} g_i(t) = -\infty \), there
exists $t_0 > 0$ such that $g_i(t) \leq 0$ for $t \in [t_0, +\infty)$, for all $i = 1, \ldots, Q$. For any $k = 1, 2, \ldots$, take $\|u\|_{1,p} = \rho_k = \max \{Qt_0, r_k + 1\}$. Note that $\exists i_0$ such that

$$\|u\|_{1,p,\Omega_0} \geq \frac{1}{Q} \sum_{i=1}^{Q} \|u\|_{1,p,\Omega_k} \geq \frac{\rho_k}{Q} \geq t_0. \quad (4.42)$$

Then we have $g_{\rho_k}(\|u\|_{1,p,\Omega_0}) \leq 0$. Thus,

$$\bar{I}(u) \leq g_0 \left(\|u\|_{1,p,\Omega_0} \right) = \sum_{i=1}^{Q} f_i(s_i) + f_i \left(\|u\|_{1,p,\Omega_0} \right) + Q + C \leq 0. \quad (4.43)$$

Therefore, $\bar{I}(u) \leq 0$ for $u \in Y_k \cap S_{\rho_k}$, where $S_{\rho_k} = \{ u : \|u\|_{1,p} = \rho_k \}$. From Lemma 4.2 we have that $\bar{I}(u)$ satisfies $(PS)_c$ condition. In view of (F-4), by Fountain Theorem [21], we conclude the result.

\section*{Acknowledgments}

This research is supported by the Mathematical Tianyuan Foundation of China (Grant No. 11126027), NPU Foundation for Fundamental Research (NPU-FFR-JC20100220, NPU-FFR-JC20110229).

\section*{References}

Abstract and Applied Analysis

