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We generalize the Hausdorff fuzzy metric in the sense of Rodrı́guez-López and Romaguera, and
we introduce a new M∞-fuzzy metric, where M∞-fuzzy metric can be thought of as the degree of
nearness between two fuzzy sets with respect to any positive real number. Moreover, under φ-con-
traction condition, in the fuzzymetric space, we give some common fixed point theorems for fuzzy
mappings.

1. Introduction

The concept of fuzzy sets was introduced initially by Zadeh [1] in 1965. After that, to use this
concept in topology and analysis, many authors have expansively developed the theory of
fuzzy sets and application [2, 3]. In the theory of fuzzy topological spaces, one of the main
problems is to obtain an appropriate and consistent notion of fuzzy metric space. This pro-
blem was investigated by many authors [4–13] from different points of view. George and
Veeramani’s fuzzymetric space [6] has beenwidely accepted as an appropriate notion of met-
ric fuzziness in the sense that it provides rich topological structures which can be obtained, in
many cases, from classical theorems. Further, it is necessary to mention that this fuzzy metric
space has very important application in studying fixed point theorems for contraction-type
mappings [7, 14–16]. Besides that, a number of metrics are used on subspaces of fuzzy sets.
For example, the sendographmetric [17–19] and the d∞-metric for fuzzy sets [20–25] induced
by the Hausdorff-Pompeiu metric have been studied most frequently, where d∞-metric is an
ordinary metric between two fuzzy sets. Combining fuzzy metric (in the sense of George and
Veeramani) and Hausdorff-Pompeiu metric, Rodrı́guez-Lópezand Romaguera [26] construct
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a Hausdorff fuzzy metric, where Hausdorff fuzzy metric can be thought of as the degree of
nearness between two crisp nonempty compact sets with respect to any positive real number.

In this present investigation, considering the Hausdorff-Pompeiu metric and theories
on fuzzy metric spaces (in the sense of George and Veeramani) together, we study the degree
of nearness between two fuzzy sets as a natural generalization of the degree of nearness bet-
ween two crisp sets, in turn, it helps in studying new problems in fuzzy topology. Based on
the Hausdorff fuzzy metric HM, we introduce a suitable notion for the M∞-fuzzy metric on
the fuzzy sets whose λ-cut are nonempty compact for each λ ∈ [0, 1]. In particular, we explore
several properties of M∞-fuzzy metric. Then, under φ-contraction condition, we give some
common fixed point theorems in the fuzzy metric space on fuzzy sets.

2. Preliminaries

According to [27], a binary operation ∗ : [0, 1] × [0, 1] → [0, 1] is called a continuous t-norm
if ([0, 1], ∗) is an Abelian topological semigroups with unit 1 such that a ∗ b ≤ c ∗ d whenever
a ≤ c and b ≤ d for all a, b, c, d ∈ [0, 1].

Definition 2.1 (see [6]). The 3-tuple (X,M, ∗) is said to be a fuzzy metric space if X is an arbi-
trary set, ∗ is a continuous t-norm, andM is a fuzzy set onX2×(0,∞) satisfying the following
conditions, for all x, y, z ∈ X, t, s > 0:

(i) M(x, y, t) > 0;

(ii) M(x, y, t) = 1 if and only if x = y;

(iii) M(x, y, t) = M(y, x, t);

(iv) M(x, z, t + s) ≥ M(x, y, t) ∗M(z, y, s);

(v) M(x, y,−) : (0,∞) → [0, 1] is continuous.

If (X,M, ∗) is a fuzzy metric space, it will be said that (M, ∗) is a fuzzy metric on X.

A simply but useful fact [7] is that M(x, y,−) is nondecreasing for all x, y ∈ X. Let
(X, d) be a metric space. Denote by a · b the usual multiplication for all a, b ∈ [0, 1], and let
Md be the fuzzy set defined on X ×X × (0,∞) by

Md

(
x, y, t

)
=

t

t + d
(
x, y
) . (2.1)

Then, (X,Md, ·) is a fuzzy metric space, and (Md, ·) is called the standard fuzzy metric in-
duced by d [8].

George and Veeramani [6] proved that every fuzzy metric (M, ∗) on X generates a
topology τM on X which has a base the family of open sets of the form:

{BM(x, ε, t) : x ∈ X, 0 < ε < 1, t > 0}, (2.2)

where BM(x, ε, t) = {y ∈ X : M(x, y, t) > 1 − ε} for all ε ∈ (0, 1) and t > 0. They proved that
(X, τM) is a Hausdorff first countable topological space. Moreover, if (X, d) is a metric space,
then the topology generated by d coincides with the topology τMd generated by the induced
fuzzy metric (Md, ∗) (see [8]).
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Lemma 2.2 (see [6]). Let (X,M, ∗) be a fuzzy metric space and let τ be the topology induced by the
fuzzy metric. Then, for a sequence {xn}n∈N

in X, xn → x if and only ifM(xn, x, t) → 1 as n → ∞
for all t > 0.

Definition 2.3 (see [6]). A sequence {xn}n∈N
in a fuzzy metric space (X,M, ∗) is called a

Cauchy sequence if and only if for each 1 > ε > 0, t > 0, there exists n0 ∈ N such that
M(xn, xm, t) > 1 − ε for all n,m ≥ n0. A fuzzy metric space is said to be complete if and only
if every Cauchy sequence is convergent.

Definition 2.4 (see [13]). Let A be a nonempty subset of a fuzzy metric space (X,M, ∗). For
a ∈ X and t > 0, M(a,A, t) = sup{M(a, y, t) | y ∈ A, t > 0}.

Lemma 2.5 (see [28]). Let G be a set and let {Gα : α ∈ [0, 1]} be a family of subsets of G such that

(1) G0 = G;

(2) α ≤ β implies Gβ ⊆ Gα;

(3) α1 ≤ α2 ≤ · · · , limn→∞αn = α implies Gα =
⋂∞

n=1 Gαn .

Then, the function ϕ : G → [0, 1] defined by ϕ(x) = sup{α ∈ [0, 1] : x ∈ Gα} has the property that
{x ∈ G : ϕ(x) ≥ α} = Gα for every α ∈ [0, 1].

Next, we recall some pertinent concepts on Hausdorff fuzzy metric. Denote by C0(X)
the set of nonempty closed and bounded subsets of a metric space (X, d). It is well known
(see, e.g., [29]) that the function Hd defined on C0(X) × C0(X) by

Hd(A,B) = max

{

sup
a∈A

d(a, B), sup
b∈B

d(A, b)

}

, (2.3)

for all A,B ∈ C0(X), is a metric on C0(X) called the Hausdorff-Pompeiu metric. In [30], it is
proved that the metric (C(X),H) is complete provided X is complete.

Let C(X) be the set of all nonempty compact subsets of a fuzzy metric space (X,M, ∗),
A,B ∈ C(X), t > 0, according to [26], the Hausdorff fuzzy metricHM on C(X)×C(X)× (0,∞)
is defined as

HM(A,B, t) = min
{
inf
a∈A

M(a, B, t), inf
b∈B

M(A, b, t)
}

= min
{
ρ(A,B, t), ρ(B,A, t)

}
,

(2.4)

where ρ(A,B, t) = infa∈A M(a, B, t), and (HM, ∗) is a fuzzy metric on C(X). It is shown that
ρ(A,B, t) = 1 if and only if A ⊆ B, and HM(A,B, t) = 1 if and only if A = B.

Lemma 2.6 (see [26]). Let (X,M, ∗) be a fuzzy metric space. Then, (C(X),HM, ∗) is complete if and
only if (X,M, ∗) is complete.

Lemma 2.7 (see [26]). Let (X, d) be a metric space. Then, the Hausdorff fuzzy metric (HMd, ·) of the
standard fuzzy metric (Md, ·) coincides with standard fuzzy metric (MHd, ·) of the Hausdorff metric
Hd on C(X).
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3. On M∞-Fuzzy Metric

Let (X,M, ∗) be a fuzzy metric space. Denote by C(X) the totality of fuzzy sets:

μ : X −→ [0, 1] = I, (3.1)

which satisfy that, for each λ ∈ I, the λ-cut of μ,

[
μ
]
λ =
{
x ∈ X : μ(x) ≥ λ

}
, (3.2)

is nonempty compact in X.

Definition 3.1. Let (X,M, ∗) be a fuzzymetric space. TheM∞-fuzzymetric between two fuzzy
sets is induced by the Hausdorff fuzzy metric HM as

M∞
(
μ1, μ2, t

)
= min

{
ρ∞
(
μ1, μ2, t

)
, ρ∞
(
μ2, μ1, t

)}
, (3.3)

where μ1, μ2 ∈ C(X), t > 0, and

ρ∞
(
μ1, μ2, t

)
= inf

0≤λ≤1
ρ
([
μ1
]
λ,
[
μ2
]
λ, t
)

(3.4)

is the fuzzy separation of μ1 from μ2.

Lemma 3.2. Let (X,M, ∗) be a fuzzy metric space, μ1, μ2, μ3 ∈ C(X), s, t > 0. Then one has

(1) M∞(μ1, μ2, t) ∈ (0, 1],

(2) M∞(μ1, μ2, t) = M∞(μ2, μ1, t),

(3) ρ∞(μ1, μ2, t) = 1 if and only if μ1 ⊆ μ2,

(4) M∞(μ1, μ2, t) = 1 if and only if μ1 = μ2,

(5) if μ1 ⊆ μ2, then ρ∞(μ1, μ3, t + s) ≥ M∞(μ2, μ3, t),

(6) ρ∞(μ1, μ3, t + s) ≥ M∞(μ1, μ2, t) ∗ ρ∞(μ2, μ3, s),

(7) M∞(μ1, μ3, t + s) ≥ M∞(μ1, μ2, t) ∗M∞(μ2, μ3, s),

(8) M∞(μ1, μ2,−) : (0,∞) → [0, 1] is continuous.

Proof. For (1), by the definition of the λ-cut [μ1]λ, for every λ ∈ I, [μ1]λ is nonempty compact
in X. By the theorem of nested intervals, there exists a point a0 in [μ1]λ for every λ ∈ I,
likewise, there exists a points b0 in [μ2]λ for every λ ∈ I. Thus,M∞(μ1, μ2, t) > 0. Moreover, it
is clear that A = B ⇔ HM(A,B, t) = 1 ⇔ M∞(μ1, μ2, t) = 1.

For (2), it is clear that M∞(μ1, μ2, t) = M∞(μ2, μ1, t).
For (3), since ρ∞(μ1, μ2, t) = 1 if and only if ρ([μ1]λ, [μ2]λ, t) = 1 for all λ ∈ I, which im-

plies [μ1]λ ⊆ [μ2]λ for all λ ∈ I, we have that ρ∞(μ1, μ2, t) = 1 if and only if μ1 ⊆ μ2.
For (4), it follows from (3).
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For (5), for every λ ∈ I, any x ∈ [μ1]λ, y ∈ [μ2]λ and z ∈ [μ3]λ, by the proof of
Theorem 1 in [26], we have

M(x, z, t + s) ≥ M
(
x, y, t

) ∗M(y, z, s) (3.5)

with all x, y, z ∈ X, which implies

M
(
x,
[
μ3
]
λ, t + s

) ≥ M
(
x, y, t

) ∗M(y, [μ3
]
λ, s
)

(3.6)

for all x ∈ [μ1]λ and all y ∈ [μ2]λ. Since μ1 ⊆ μ2, then ρ([μ1]λ, [μ2]λ, s) = 1. By (iv) of
Definition 2.1 and the arbitrariness of x and y, we have

ρ
([
μ1
]
λ,
[
μ3
]
λ, t + s

)
= inf

x∈[μ1]λ
M
(
x,
[
μ3
]
λ, t + s

)

≥ inf
x∈[μ1]λ

M
(
x,
[
μ2
]
λ, s
) ∗ inf

y∈[μ2]λ
M
(
y,
[
μ3
]
λ, t
)

= ρ
([
μ1
]
λ,
[
μ2
]
λ, s
) ∗ ρ([μ2

]
λ,
[
μ3
]
λ, t
)

= ρ
([
μ2
]
λ,
[
μ3
]
λ, t
)

≥ HM

([
μ2
]
λ,
[
μ3
]
λ, t
)
,

(3.7)

which implies

inf
0≤λ≤1

ρ
([
μ1
]
λ,
[
μ3
]
λ, t + s

) ≥ inf
0≤λ≤1

HM

([
μ2
]
λ,
[
μ3
]
λ, t
)
. (3.8)

Consequently, ρ∞(μ1, μ3, t + s) ≥ M∞(μ2, μ3, t).
For (6), for every λ ∈ I, by the proof of (5) and (iv) of Definition 2.1, we have

inf
0≤λ≤1

ρ
([
μ1
]
λ,
[
μ3
]
λ, t + s

) ≥ inf
0≤λ≤1

{
ρ
([
μ1
]
λ,
[
μ2
]
λ, t
) ∗ ρ([μ2

]
λ,
[
μ3
]
λ, s
)}

≥ inf
0≤λ≤1

{
HM

([
μ1
]
λ,
[
μ2
]
λ, t
) ∗ ρ([μ2

]
λ,
[
μ3
]
λ, s
)}

.
(3.9)

Consequently, ρ∞(μ1, μ3, t + s) ≥ M∞(μ1, μ2, t) ∗ ρ∞(μ2, μ3, s).
For (7), for every λ ∈ I, by the proof of (6), we have

inf
0≤λ≤1

ρ
([
μ1
]
λ,
[
μ3
]
λ, t + s

) ≥ inf
0≤λ≤1

{
ρ
([
μ1
]
λ,
[
μ2
]
λ, t
) ∗ ρ([μ2

]
λ,
[
μ3
]
λ, s
)}

≥
{

inf
0≤λ≤1

ρ
([
μ1
]
λ,
[
μ2
]
λ, t
)
}
∗
{

inf
0≤λ≤1

ρ
([
μ2
]
λ,
[
μ3
]
λ, s
)
}
.

(3.10)

Similarly, it can be shown that

inf
0≤λ≤1

ρ
([
μ3
]
λ,
[
μ1
]
λ, t + s

) ≥
{

inf
0≤λ≤1

ρ
([
μ3
]
λ,
[
μ2
]
λ, s
)
}
∗
{

inf
0≤λ≤1

ρ
([
μ2
]
λ,
[
μ1
]
λ, t
)
}
. (3.11)

Hence, M∞(μ1, μ3, t + s) ≥ M∞(μ1, μ2, t) ∗M∞(μ2, μ3, s).
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For (8), by the continuity on (0,∞) of the function t 
→ HM(A,B, t), it is clear that
M∞(μ1, μ2,−) : (0,∞) → [0, 1] is continuous.

Theorem 3.3. Let (X,M, ∗) be a fuzzy metric space. Then, (C(X),M∞, ∗) is a fuzzy metric space,
whereM∞ is a fuzzy set on the C(X) × C(X) × (0,+∞).

Proof. It is easily proved by Lemma 3.2.

Example 3.4. Let d be the Euclidean metric on R, and let A = [a1, a2] and let B = [b1, b2] be
two compact intervals. Then, Hd(A,B) = max{|a1 − b1|, |a2 − b2|}. Let (R,Md, ∗) be a fuzzy
metric space, where a ∗ b the usual multiplication for all a, b ∈ [0, 1], and Md is defined on
R × R × (0,∞) by

Md

(
x, y, t

)
=

t

t + d
(
x, y
) . (3.12)

Denote by C(R) the totality of fuzzy sets μ : R → [0, 1] which satisfy that for each λ ∈ I, the
λ-cut of μ[μ]λ = {x ∈ R : μ(x) ≥ λ} is a nonempty compact interval. For any λ-cuts of fuzzy
sets μ1, μ2 ∈ C(R) and for all t > 0, by a simple calculation, we have

HM

([
μ1
]
λ,
[
μ2
]
λ, t
)
=

t

t +Hd

([
μ1
]
λ,
[
μ2
]
λ

) . (3.13)

So by Definition 3.1, we get

M∞
(
μ1, μ2, t

)
= inf

0≤λ≤1
t

t +Hd

([
μ1
]
λ,
[
μ2
]
λ

) . (3.14)

4. Properties of the M∞-Fuzzy Metric

Definition 4.1. Let (C(X),M∞, ∗) be a fuzzy metric space. For t ∈ (0,+∞), define B(μ, r, t)with
center a fuzzy set μ ∈ C(X) and radius r, 0 < r < 1, t > 0 as

B
(
μ, r, t

)
=
{
γ ∈ C(X) | M∞

(
μ, γ, t

)
> 1 − r

}
. (4.1)

Proposition 4.2. Every B(μ, r, t) is an open set.

Proof. It is identical with the proof in [6].

Proposition 4.3. Let (C(X),M∞, ∗) be a fuzzy metric space. Define τM∞ = {A ⊂ C(X) | μ ∈ A if
and only if there exist t > 0 and r, 0 < r < 1 such that B(μ, r, t) ⊂ A}.

Then, τM∞ is a topology on C(X).

Proof. It is identical with the proof in [6].

Definition 4.4. A sequence {μn} in a fuzzy metric space (C(X),M∞, ∗) is a Cauchy sequence
if and only if for each ε > 0, t > 0, there exists n0 ∈ N such that M∞(μn, μm, t) > 1 − ε for all
n,m ≥ n0.
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Lemma 4.5. Let (C(X),M∞, ∗) be a fuzzy metric space on fuzzy metricM∞ and let τ be the topology
induced by the fuzzy metric M∞. Then, for a sequence {μn} in C(X), μn → μ if and only if
M∞(μ, μn, t) → 1 as n → ∞.

Proof. It is identical with the proof of Theorem 3.11 in [6].

Theorem 4.6. The fuzzy metric space (C(X),M∞, ∗) is complete provided (X,M, ∗) is complete.

Proof. Let (X,M, ∗) be a complete fuzzy metric space and let a sequence {μn, n ≥ 1} be a
Cauchy sequence in C(X). Consider a fixed 0 < λ < 1. Then, {[μn]λ, n ≥ 1} is a Cauchy sequ-
ence in (C(X),HM, ∗), where C(X) denotes all nonempty compact subsets of (X,M, ∗).

Since (C(X),HM, ∗) is complete by Lemma 2.6, it follows that [μn]λ → μλ ∈ C(X).
Actually, from the definition of M∞ and the continuity of HM, it is easy to see that [μn]λ →
μλ, uniformly in λ ∈ [0, 1].

Now, consider the family {μλ : λ ∈ [0, 1]}, where μ0 = X. Take λ ≤ β, we have

ρ
(
μβ, μλ, t

) ≥ ρ

(
μβ,
[
μn

]
β,

t

3

)
∗ ρ
(
[
μn

]
β,
[
μn

]
λ,

t

3

)
∗ ρ
(
[
μn

]
λ, μλ,

t

3

)
. (4.2)

Since [μn]β ⊆ [μn]λ, it follows that ρ([μn]β, [μn]λ, t/3) = 1. Thus, for each 0 < ε < 1, ρ(μβ,
μλ, t) ≥ ρ(μβ, [μn]β, t/3) ∗ ρ([μn]λ, μλ, t/3) if n is large enough. Hence, ρ(μβ, μλ, t) = 1, and by
Lemma 3.2, we have μβ ⊆ μλ.

Now, take λn ↑ and limn→∞λn = λ. We have to show that μλ =
⋂∞

n=1 μλn . It is clear that

μλ ⊆
∞⋂

n=1

μλn . (∗)

On the other hand, we have

ρ

( ∞⋂

n=1

μλn , μλ, t

)

≥ ρ

( ∞⋂

n=1

μλn ,
∞⋂

n=1

[
μj

]
λn
,
t

3

)

∗ ρ
( ∞⋂

n=1

[
μj

]
λn
,
[
μj

]
λ
,
t

3

)

∗ ρ
(
[
μj

]
λ
, μλ,

t

3

)
,

(4.3)

for fixed j. However,

ρ

( ∞⋂

n=1

[
μj

]
λn
,
[
μj

]
λ
,
t

3

)

= 1. (4.4)

Consequently, for every 0 < ε < 1, there exists 0 < ε0 < ε < 1 such that (1−ε0)∗(1−ε0)∗(1−ε0) >
1 − ε. For given ε0, since [μj]λ → μλ, there exists jε0 such that

ρ

( ∞⋂

n=1

μλn , μλ, t

)

≥ ρ

( ∞⋂

n=1

μλn ,
∞⋂

n=1

[
μj

]
λn
,
t

3

)

∗ (1 − ε0), (4.5)
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for j ≥ jε0 . Now,

ρ

( ∞⋂

n=1

μλn ,
∞⋂

n=1

[
μj

]
λn
,
t

3

)

≥ ρ

( ∞⋂

n=1

μλn , μλp ,
t

9

)

∗ ρ
(
μλp ,
[
μj

]
λn
,
t

9

)
∗ ρ
(
[
μj

]
λp
,
∞⋂

n=1

[
μj

]
λn
,
t

9

)

,

(4.6)

for any p ≥ 1. Since
⋂∞

n=1 μλn ⊆ μλp , we obtain

ρ

( ∞⋂

n=1

μλn ,
∞⋂

n=1

[
μj

]
λn
, t

)

≥ ρ

(
μλp ,
[
μj

]
λp
,
t

2

)
∗ ρ
(
[
μj

]
λp
,
∞⋂

n=1

[
μj

]
λn
,
t

2

)

. (4.7)

Now, ρ(μλp , [μj]λp , t/2) > 1 − ε0 for j ≥ j0 and all t > 0. Note that (since the convergence
[μj]λ → μλ is uniform in λ) j0 does not depend on p. Since {[μj]λp , p ≥ 1} decreases to
⋂∞

n=1[μj]λn , if follows that ρ([μj]λp0 ,
⋂∞

n=1[μj]λn , t/2) > 1 − ε0 for some p0 (depending on j).

Thus, ρ(
⋂∞

n=1 μλn ,
⋂∞

n=1[μj]λn , t/3) ≥ (1 − ε0) ∗ (1 − ε0), if j is large.
Finally, by taking j large enough, we obtain

ρ

( ∞⋂

n=1

μλn , μλ, t

)

≥ (1 − ε0) ∗ (1 − ε0) ∗ (1 − ε0) ≥ 1 − ε, (4.8)

that is,

∞⋂

n=1

μλn ⊆ μλ. (∗∗)

From (4.3) and (4.9), it yields
⋂∞

n=1 μλn = μλ. Thus, Lemma 2.5 is applicable and there exists
μ ∈ C(X) for every λ ∈ [0, 1] such that [μn]λ → μλ. It remains to show that μn → μ in (C(X),
M∞, ∗).

Let ε > 0. Then, since {μn} is a Cauchy sequence, there exists nε such that n,m > nε im-
plies M∞(μn, μm, t) > 1 − ε.

Let n(> nε) be fixed. Then,

HM

([
μn

]
λ,
[
μ
]
λ, t
)
= lim

m→∞
HM

([
μn

]
λ,
[
μm

]
λ, t
) ≥ lim

m→∞
inf

0≤λ≤1
HM

([
μn

]
λ,
[
μm

]
λ, t
)

= lim
m→∞

M∞
(
μn, μm, t

)
> 1 − ε.

(4.9)

Thus, μn → μ in the M∞-fuzzy metric. The proof is completed.

Lemma 4.7. Let (X,M, ∗) be a compact fuzzy metric space and compact subsetsA,B ∈ C(X). Then,
for each x ∈ A and t > 0, there exists a y ∈ B such thatM(x, y, t) ≥ HM(A,B, t).
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Proof. Suppose there exists a x0 ∈ A such that M(x0, y, t) < HM(A,B, t) for any y ∈ B and
t > 0. Then,

sup
y∈B

M
(
x0, y, t

)
< HM(A,B, t), (4.10)

that is,

sup
y∈B

M
(
x0, y, t

)
< min

{

inf
x∈B

sup
y∈A

M
(
x, y, t

)
, inf
x∈A

sup
y∈B

M
(
x, y, t

)
}

. (4.11)

So,

sup
y∈B

M
(
x0, y, t

)
< inf

x∈A
sup
y∈B

M
(
x, y, t

)
. (4.12)

This is a contradiction with x ∈ A.

Lemma 4.8. Let (X,M, ∗) be a compact fuzzy metric space, t > 0 and A,B ∈ C(X). Then, for any
compact set A1 ⊆ A, there exists a compact set B1 ⊆ B such that HM(A1, B1, t) ≥ HM(A,B, t).

Proof. LetC = {y : there exists a x ∈ A1 such thatM(x, y, t) ≥ HM(A,B, t)} and let B1 = C
⋂
B.

For any x ∈ A1 ⊆ A, t > 0, by Lemma 4.7, there exists a y ∈ B such that

M
(
x, y, t

) ≥ HM(A,B, t). (4.13)

Thus, B1 /= ∅, moreover, B1 is compact since it is closed in X and B1 ⊆ B.
Now, for any x ∈ A1, t > 0, there exists a y ∈ B1 such that

M
(
x, y, t

) ≥ HM(A,B, t). (4.14)

Thus, we have M(x, B1, t) ≥ HM(A,B, t), which implies that

ρ(A1, B1, t) = inf
x∈A1

M(x, B1, t) ≥ HM(A,B, t). (4.15)

Similarly, it can be shown that ρ(A1, B1, t) ≥ HM(A,B, t).
Hence, HM(A1, B1, t) ≥ HM(A,B, t). This completes the proof.

Theorem 4.9. Let (X,M, ∗) be a compact fuzzy metric space and μ1, μ2 ∈ C(X), t > 0. Then, for any
μ3 ∈ C(X) satisfying μ3 ⊆ μ1, there exists a μ4 ∈ C(X) such that μ4 ⊆ μ2 and

M∞
(
μ3, μ4, t

) ≥ M∞
(
μ1, μ2, t

)
. (4.16)

Proof. Since μ1, μ2, and μ3 are normal, we have ∅/= [μ3]λ ⊆ [μ1]λ and ∅/= [μ2]λ for all λ ∈ I. Let

Cλ =
{
y : there exists a x ∈ [μ3

]
λ such that M

(
x, y, t

) ≥ M∞
(
μ1, μ2, t

)}
, (4.17)
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and let Bλ = Cλ
⋂
[μ2]λ. For any x ∈ [μ3]λ ⊆ [μ1]λ, by Lemma 4.7, there exists a y ∈ [μ2]λ such

that

M
(
x, y, t

) ≥ HM

([
μ1
]
λ,
[
μ2
]
λ, t
) ≥ M∞

(
μ1, μ2, t

)
. (4.18)

Thus, Bλ is nonempty compact in X, moreover, Bλ ⊆ Bγ if 0 ≤ γ ≤ λ ≤ 1.
From the proof of Lemma 4.8, we have

HM

([
μ3
]
λ, Bλ, t

) ≥ M∞
(
μ1, μ2, t

)
. (4.19)

By Lemma 3.1 in [28], there exists a fuzzy set μ4 with the property that [μ4]λ = Bλ for λ ∈ I.
Since Bλ are nonempty compact for all λ ∈ I, we have μ4 ∈ C(X). Consequently,

M∞
(
μ3, μ4, t

) ≥ M∞
(
μ1, μ2, t

)
. (4.20)

This completes the proof.

Definition 4.10 (see [24]). Let X,Y be any fuzzy metric space. F is said to be a fuzzy mapping
if and only if F is a mapping from the space C(X) into C(Y ), that is, F(μ) ∈ C(Y ) for each
μ ∈ C(X).

5. Common Fixed Point Theorems in the Fuzzy Metric Space on
Fuzzy Sets

Theorem 5.1. Let (X,M, ∗) be a compact fuzzy metric space and let {Fi}∞i=1 be a sequence of fuzzy
self-mappings of C(X). Let φ : [0, 1] → [0, 1] be a nondecreasing function satisfying the following
condition: φ is continuous from the left and

φ(h) ∗ φ2(h) ∗ · · · ∗ φn(h) −→ 1 as n −→ ∞, ∀h ∈ (0, 1], (5.1)

where φn denote the nth iterative function of φ. Suppose that for each μ1, μ2 ∈ C(X), and for arbitrary
positive integers i and j, i /= j, t > 0,

M∞
(Fi

(
μ1
)
,Fj

(
μ2
)
, t
) ≥ φ

(
inf
{
M∞

(
μ1, μ2, t

)
, ρ∞
(
μ1,Fi

(
μ1
)
, 2t
)
, ρ∞
(
μ2,Fj

(
μ2
)
, 2t
)
,

1
2
[
ρ∞
(
μ2,Fi

(
μ1
)
, 4t
)
+ ρ∞

(
μ1,Fj

(
μ2
)
, 4t
)]
})

,

(5.2)

then there exists μ∗ ∈ C(X) such that μ∗ ⊆ Fi(μ∗) for all i ∈ Z+.

Proof. Let μ0 ∈ C(X) and μ1 ⊆ F1(μ0). By Theorem 4.9, for any t > 0, there exists μ2 ∈ C(X)
such that μ2 ⊆ F2(μ1) and

M∞
(
μ1, μ2, t

) ≥ M∞
(F1
(
μ0
)
,F2
(
μ1
)
, t
)
. (5.3)
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Again by Theorem 4.9, for any t > 0, we can find μ3 ∈ C(X) such that μ3 ⊆ F3(μ2) and

M∞
(
μ2, μ3, t

) ≥ M∞
(F2
(
μ1
)
,F3
(
μ2
)
, t
)
. (5.4)

By induction, we produce a sequence {μn} of points of C(X) such that

μn+1 ⊆ Fn+1
(
μn

)
, n = 0, 1, 2, . . . ;

M∞
(
μn, μn+1, t

) ≥ M∞
(Fn

(
μn−1

)
,Fn+1

(
μn

)
, t
)
.

(5.5)

Now, we prove that {μn} is a Cauchy sequence in C(X). In fact, for arbitrary positive integer
n, by the inequality (5.2), Lemma 3.2, and the formula (5.5), we have

M∞
(
μn, μn+1, t

) ≥ M∞
(Fn

(
μn−1

)
,Fn+1

(
μn

)
, t
)

≥ φ

(
inf
{
M∞

(
μn−1, μn, t

)
, ρ∞
(
μn−1,Fn

(
μn−1

)
, 2t
)
, ρ∞
(
μn,Fn+1

(
μ2
)
, 2t
)
,

1
2
[
ρ∞
(
μn−1,Fn+1

(
μn

)
, 4t
)
+ ρ∞

(
μn,Fn

(
μn−1

)
, 4t
)]
})

,

≥ φ

(
inf
{
M∞

(
μn−1, μn, t

)
,M∞

(
μn−1, μn, t

)
,

M∞
(
μn, μn+1, 2t

)
,
1
2
[
M∞

(
μn−1, μn+1, 2t

)
+ 1
]
})

,

≥ φ

(
inf
{
M∞

(
μn−1, μn, t

)
,M∞

(
μn, μn+1, t

)
,

M∞
(
μn, μn+1, 2t

)
,
1
2
[
M∞

(
μn−1, μn, t

)
+ 1 ∗M∞

(
μn, μn+1, t

)
+ 1
]
})

,

(5.6)

where μn ⊆ Fn(μn−1) implies ρ∞(μn,Fn(μn−1), 2t) = 1, by (3) of Lemma 3.2. In addition, it is
easy to get that φ(h) > h for all h ∈ (0, 1). In fact, suppose that there exists some t0 ∈ (0, 1)
such that φ(h0) ≤ h0. Since φ is nondecreasing, we have

φn(h0) ≤ φn−1(h0) ≤ · · · ≤ φ(h0) ≤ h0. (5.7)

Since φ(h) ∗ φ2(h) ∗ · · · ∗ φn(h) → 1 as n → ∞, for all h ∈ (0, 1), then we have φn(h0) → 1
as n → ∞. From the inequality (5.7), we have 1 ≤ h0. This is a contradiction which implies
φ(h) > h for all h ∈ (0, 1). We can prove that M∞(μn−1, μn, t) ≤ M∞(μn, μn+1, t). In fact, if
M∞(μn−1, μn, t) > M∞(μn, μn+1, t), then from the inequality (5.6), we get

M∞
(
μn, μn+1, t

) ≥ φ
(
M∞

(
μn, μn+1, t

))
> M∞

(
μn, μn+1, t

)
, (5.8)

which is a contradiction. Thus, from the inequality (5.6), we have

M∞
(
μn, μn+1, t

) ≥ φ
(
M∞

(
μn−1, μn, t

)) ≥ · · · ≥ φn(M∞
(
μ0, μ1, t

))
. (5.9)
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Furthermore, for arbitrary positive integers m and k, we have

1 ≥ M∞
(
μk, μk+m, t

)

≥ M∞

(
μk, μk+1,

t

m

)
∗M∞

(
μk+1, μk+2,

t

m

)
∗ · · · ∗M∞

(
μk+m−1, μk+m,

t

m

)

≥ φk

(
M∞

(
μ0, μ1,

t

m

))
∗ φk+1

(
M∞

(
μ0, μ1,

t

m

))
∗ · · · ∗ φk+m−1

(
M∞

(
μ0, μ1,

t

m

))
,

(5.10)

and φ(h) ∗ φ2(h) ∗ · · · ∗ φn(h) → 1 as n → ∞, for all h ∈ (0, 1), it follows that

φk

(
M∞

(
μ0, μ1,

t

m

))
∗ φk+1

(
M∞

(
μ0, μ1,

t

m

))
∗ · · · ∗ φk+m−1

(
M∞

(
μ0, μ1,

t

m

))
(5.11)

is convergent, which implies that {μn} is a Cauchy sequence in C(X). Since X is a compact
fuzzy metric space, it follows X is complete. By Theorem 4.6, C(X) is complete. Let μn → μ∗.
Next, we show that μ∗ ⊆ Fi(μ∗) for all i ∈ Z+. In fact, for arbitrary positive integers i and j,
i /= j, by Theorem 4.9, we have

ρ∞
(
μ∗,Fi

(
μ∗
)
, t
)

≥ M∞

(
μ∗, μj ,

t

4

)
∗ ρ∞

(
μj,Fi

(
μ∗
)
,
3t
4

)

≥ M∞

(
μ∗, μj ,

t

4

)
∗M∞

(
Fj

(
μj−1
)
,Fi

(
μ∗
)
,
t

2

)

≥ M∞

(
μ∗, μj ,

t

4

)
∗ φ
(
inf
{
M∞

(
μj−1, μ∗,

t

2

)
, ρ∞
(
μj−1,Fj

(
μj−1
)
, t
)
, ρ∞
(
μ∗,Fi

(
μ∗
)
, t
)
,

1
2
[
ρ∞
(
μ∗,Fj

(
μj−1
)
, 2t
)
+ ρ∞

(
μj−1,Fi

(
μ∗
)
, 2t
)]
})

≥ M∞

(
μ∗, μj ,

t

4

)
∗ φ
(
inf
{
M∞

(
μj−1, μ∗,

t

2

)
,M∞

(
μj−1, μj ,

t

2

)
, ρ∞
(
μ∗,Fi

(
μ∗
)
, t
)
,

1
2
[
M∞

(
μ∗, μj , t

)
+M∞

(
μ∗, μj−1, t

) ∗ ρ∞
(
μ∗,Fi

(
μ∗
)
, t
)]
})

,

(5.12)

where μj ⊆ Fj(μj−1) implies ρ∞(μj,Fj(μj−1), t) = 1. Letting n → ∞,M∞(μn, μ∗, t) = 1, and
using the left continuity of φ, we have

ρ∞
(
μ∗,Fi

(
μ∗
)
, t
) ≥ φ

(
ρ∞
(
μ∗,Fi

(
μ∗
)
, t
))
, (5.13)

which implies ρ∞(μ∗,Fi(μ∗), t) = 1. Hence, by Lemma 3.2, it follows that μ∗ ⊆ Fi(μ∗). Then,
the proof is completed.
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Theorem 5.2. Let (X,M, ∗) be a compact fuzzy metric space and let {Fi}∞i=1 be a sequence of fuzzy
self-mappings of C(X). Suppose that for each μ1, μ2 ∈ C(X), and for arbitrary positive integers i and
j, i /= j, t > 0,

M∞
(Fi

(
μ1
)
,Fj

(
μ2
)
, t
) ≥ φ

(
M∞

(
μ1, μ2, t

)
, ρ∞
(
μ1,Fi

(
μ1
)
, 2t
)
,

ρ∞
(
μ2,Fj

(
μ2
)
, 2t
)
, ρ∞
(
μ1,Fj

(
μ2
)
, 4t
)
, ρ∞
(
μ2,Fi

(
μ1
)
, t
))
,

(5.14)

where φ(h1, h2, h3, h4, h5) : (0, 1]5 → [0, 1] is nondecreasing and continuous from the left for each
variable. Denote γ(h) = φ(h, h, h, a, b), where (a, b) ∈ {(h ∗ h, 1), (1, h ∗ h)}. If

γ(h) ∗ γ2(h) ∗ · · · ∗ γn(h) −→ 1 as n −→ ∞, ∀h ∈ (0, 1], (5.15)

where γn denote the nth iterative function of γ , then there exists μ∗ ∈ C(X) such that μ∗ ⊆ Fi(μ∗) for
all i ∈ Z+.

Proof. Let μ0 ∈ C(X) and μ1 ⊆ F1(μ0). By Theorem 4.9, for any t > 0, there exists μ2 ∈ C(X)
such that μ2 ⊆ F2(μ1) and

M∞
(
μ1, μ2, t

) ≥ M∞
(F1
(
μ0
)
,F2
(
μ1
)
, t
)
. (5.16)

Again by Theorem 4.9, for any t > 0, we can find μ3 ∈ C(X) such that μ3 ⊆ F3(μ2) and

M∞
(
μ2, μ3, t

) ≥ M∞
(F2
(
μ1
)
,F3
(
μ2
)
, t
)
. (5.17)

By induction, we produce a sequence {μn} of points of C(X) such that

μn+1 ⊆ Fn+1
(
μn

)
, n = 0, 1, 2, . . . ;

M∞
(
μn, μn+1, t

) ≥ M∞
(Fn

(
μn−1

)
,Fn+1

(
μn

)
, t
)
.

(5.18)

Now, we prove that {μn} is a Cauchy sequence in C(X). In fact, for arbitrary positive integer
n, by the inequality (5.14), Lemma 3.2, and the formula (5.18), we have

M∞
(
μn, μn+1, t

) ≥ M∞
(Fn

(
μn−1

)
,Fn+1

(
μn

)
, t
)

≥ φ
(
M∞

(
μn−1, μn, t

)
, ρ∞
(
μn−1,Fn

(
μn−1

)
, 2t
)
,

ρ∞
(
μn,Fn+1

(
μn

)
, 2t
)
, ρ∞
(
μn−1,Fn+1

(
μn

)
, 4t
)
, ρ∞
(
μn,Fn

(
μn−1

)
, t
))

≥ φ
(
M∞

(
μn−1, μn, t

)
,M∞

(
μn−1, μn, t

)
,M∞

(
μn, μn+1, t

)
,M∞

(
μn−1, μn+1, 2t

)
, 1
)

≥ φ
(
M∞

(
μn−1, μn, t

)
,M∞

(
μn−1, μn, t

)
,

M∞
(
μn, μn+1, t

)
,M∞

(
μn−1, μn, t

) ∗M∞
(
μn, μn+1, t

)
, 1
)
,

(5.19)

where μn ⊆ Fn(μn−1) implies ρ∞(μn,Fn(μn−1), 2t) = 1 by (3) in Lemma 3.2 Likewise, we
have γ(h) > h for all h ∈ (0, 1), t > 0. If M∞(μn−1, μn, t) > M∞(μn, μn+1, t), then from the
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inequality (5.19), we obtain

M∞
(
μn, μn+1, t

) ≥ γ
(
M∞

(
μn, μn+1, t

))
> M∞

(
μn, μn+1, t

)
, (5.20)

which is a contradiction. Thus, from the inequality (5.19), we have

M∞
(
μn, μn+1, t

) ≥ γ
(
M∞

(
μn−1, μn, t

)) ≥ · · · ≥ γn
(
M∞

(
μ0, μ1, t

))
. (5.21)

Furthermore, for arbitrary positive integers m and k, we have

M∞
(
μn, μn+1, t

) ≥ φ
(
M∞

(
μn−1, μn, t

)
,M∞

(
μn−1, μn, t

)
,

M∞
(
μn, μn+1, t

)
,M∞

(
μn−1, μn, t

) ∗M∞
(
μn, μn+1, t

)
, 1
)

≥ φ
(
M∞

(
μn−1, μn, t

)
,M∞

(
μn−1, μn, t

)
,

M∞
(
μn−1, μn, t

)
,M∞

(
μn−1, μn, t

) ∗M∞
(
μn−1, μn, t

)
, 1
)

= γ
(
M∞

(
μn−1, μn, t

))
,

M∞
(
μn, μn+1, t

) ≥ γ
(
M∞

(
μn−1, μn, t

)) ≥ · · · ≥ γ
(
M∞

(
μ0, μ1, t

))
.

(5.22)

Furthermore, for arbitrary positive integers m and k, we have

1 ≥ M∞
(
μk, μk+m, t

)

≥ M∞

(
μk, μk+1,

t

m

)
∗M∞

(
μk+1, μk+2,

t

m

)
∗ · · · ∗M∞

(
μk+m−1, μk+m,

t

m

)

≥ γk
(
M∞

(
μ0, μ1,

t

m

))
∗ γk+1

(
M∞

(
μ0, μ1,

t

m

))
∗ · · · ∗ γk+m−1

(
M∞

(
μ0, μ1,

t

m

))
.

(5.23)

Since φ(h) ∗ φ2(h) ∗ · · · ∗ φn(h) → 1 as n → ∞, for all h ∈ (0, 1), it follows that

γk
(
M∞

(
μ0, μ1,

t

m

))
∗ γk+1

(
M∞

(
μ0, μ1,

t

m

))
∗ · · · ∗ γk+m−1

(
M∞

(
μ0, μ1,

t

m

))
(5.24)

is convergent, this implies that {μn} is a Cauchy sequence in C(X). SinceX is a compact fuzzy
metric space, it follows that X is complete. By Theorem 4.6, C(X) is complete. Let μn → μ∗.
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Now, we show that μ∗ ⊆ Fi(μ∗) for all i ∈ Z+. In fact, for arbitrary positive integers i and j,
i /= j, by Theorem 4.9, we have

ρ∞
(
μ∗,Fi

(
μ∗
)
, t
)

≥ M∞

(
μ∗, μj ,

t

4

)
∗ ρ∞

(
μj,Fi

(
μ∗
)
,
3t
4

)

≥ M∞

(
μ∗, μj ,

t

4

)
∗M∞

(
Fj

(
μj−1
)
,Fi

(
μ∗
)
,
t

2

)

≥ M∞

(
μ∗, μj ,

t

4

)
∗ φ
(
M∞

(
μj−1, μ∗,

t

2

)
, ρ∞
(
μj−1,Fj

(
μj−1
)
, t
)
,

ρ∞
(
μ∗,Fi

(
μ∗
)
, t
)
, ρ∞
(
μj−1,Fi

(
μ∗
)
, 2t
)
, ρ∞
(
μ∗,Fj

(
μj−1
)
, t
)
)

≥ M∞

(
μ∗, μj ,

t

4

)
∗ φ
(
M∞

(
μj−1, μ∗,

t

2

)
,M∞

(
μj−1, μj ,

t

2

)
, ρ∞
(
μ∗,Fi

(
μ∗
)
, t
)
,

M∞
(
μj−1, μ∗, t

) ∗ ρ∞
(
μ∗,Fi

(
μ∗
)
, t
)
,M∞

(
μ∗, μj ,

t

2

))
,

(5.25)

where μj ⊆ Fj(μj−1) implies ρ∞(μj,Fj(μj−1), t) = 1. Letting n → ∞,M∞(μn, μ∗, t) = 1, and
using the left continuity of φ, we have

ρ∞
(
μ∗,Fi

(
μ∗
)
, t
) ≥ φ

(
1, 1, ρ∞

(
μ∗,Fi

(
μ∗
)
, t
)
, ρ∞
(
μ∗,Fi

(
μ∗
)
, t
)
, 1
) ≥ γ

(
ρ∞
(
μ∗,Fi

(
μ∗
)
, t
))
,

(5.26)

which implies ρ∞(μ∗,Fi(μ∗), t) = 1. Hence, by Lemma 3.2, it follows that μ∗ ⊆ Fi(μ∗), then the
proof is completed.

Now, we give an example to illustrate the validity of the results in fixed point theory.
For simplicity, we only exemplify Theorem 5.1, while the example may be similarly con-
structed for Theorem 5.2.

Example 5.3. Let (C(X),M∞, ∗) be a fuzzy metric space, where X = [−1, 1],Md,HM, andM∞
are the same as in Example 3.4. Then, (C(X),M∞, ∗) is a compact metric space.

Now, define φ : [0, 1] → [0, 1] as φ(x) =
√
x, and define {Fi}∞i=1 a sequence of fuzzy

self-mappings of C(X) as

Fi

(
μ
)
=

1
2i
μ, for any μ ∈ C(X). (5.27)

For arbitrary positive integers i and j, without loss of generality, suppose i < j. For
each μ1, μ2 ∈ C(X), by a routine calculation, we have

M∞
(Fi

(
μ1
)
,Fj

(
μ2
)
, t
)
= M∞

(
1
2i
μ1,

1
2j
μ2, t

)

= M∞

(
μ1,

1
2j−i

μ2, 2it
)
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≥ M∞
(
μ1, μ2, 2it

)

≥ φ
(
M∞

(
μ1, μ2, t

))

≥ φ

(
inf
{
M∞

(
μ1, μ2

)
, ρ∞
(
μ1,Fi

(
μ1
)
, 2t
)
, ρ∞
(
μ2,Fj

(
μ2
)
, 2t
)
,

1
2
[
ρ∞
(
μ2,Fi

(
μ1
)
, 4t
)
+ ρ∞

(
μ1,Fj

(
μ2
)
, 4t
)]
})

.

(5.28)

Therefore, by Theorem 5.1, we assert that the sequence of fuzzy self-mappings {Fi}∞i=1 has a
common fixed point μ∗ in C(X). In fact, it is easy to check that

μ∗(x) =

⎧
⎨

⎩

1, if x = (0, 0, . . .),

0, otherwise.
(5.29)

6. Conclusion

So far many authors have made a great deal of work in the Hausdorff-Pompeiu metric [20–
25]. To describe the degree of nearness between two crisp sets, Rodrguez-López and
Romaguera have defined Hausdorff fuzzy metric. In this paper, we define a new M∞-fuzzy
metric, which describes the degree of nearness between two fuzzy sets. Then, some properties
onM∞-fuzzymetric are discussed. In addition, in this new circumstances, we give some fixed
point theorems which are the important generalizations of contraction mapping principle in
functional analysis.

The results of the present paper may be applied in different settings. In terms of topo-
logy, one can make use of topology in data analysis and knowledge acquisition [31]. For
another, topologies corresponding to fuzzy sets are used to detect dependencies of attributes
in information systemswith respect to gradual rules as in [32]. Furthermore, fuzzy fixed point
theory can be used in existence and continuity theorems for dynamical systems with some
vague parameters [33, 34]. In addition, this work offers a new tool for the description and
analysis of fuzzy metric spaces. It would be possible to obtain more topological properties on
the new fuzzymetric space. So, we hope our results contribute to dealingwith some problems
in practical applications for future study.
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