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This paper describes a new variant of harmony search algorithmwhich is inspired by awell-known
item “elite decision making.” In the new algorithm, the good information captured in the current
global best and the second best solutions can be well utilized to generate new solutions, following
some probability rule. The generated new solution vector replaces the worst solution in the
solution set, only if its fitness is better than that of the worst solution. The generating and updating
steps and repeated until the near-optimal solution vector is obtained. Extensive computational
comparisons are carried out by employing various standard benchmark optimization problems,
including continuous design variables and integer variables minimization problems from the liter-
ature. The computational results show that the proposed new algorithm is competitive in finding
solutions with the state-of-the-art harmony search variants.

1. Introduction

In 2001, Geem et al. [1] proposed a new metaheuristic algorithm, harmony search (HS) algo-
rithm, which imitates the behaviors of music improvisation process. In that algorithm, the
harmony in music is analogous to the optimization solution vector, and the musicians
improvisations are analogous to local and global search schemes in optimization techniques.
The HS algorithm does not require initial values for the decision variables. Furthermore,
instead of a gradient search, the HS algorithm uses a stochastic random search that is based
on the harmony memory considering rate and the pitch adjusting rate so that derivative
information is unnecessary. These features increase the flexibility of the HS algorithm and
have led to its application to optimization problems in different areas including music com-
position [2], Sudoku puzzle solving [3], structural design [4, 5], ecological conservation [6],
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and aquifer parameter identification [7]. The interested readers may refer the review papers
[8–10] and the references therein for further understanding.

HS algorithm is good at identifying the high performance regions of the solution
space at a reasonable time but gets into trouble in performing local search for numerical
applications. In order to improve the fine-tuning characteristic of HS algorithm, Mahdavi
et al. [11] discussed the impacts of constant parameters on HS algorithm and presented a new
strategy for tuning these parameters.Wang andHuang [12] used the harmonymemory (HM)
(set of solution vectors) to automatically adjust parameter values. Fesanghary et al. [13] use
sequential quadratic programming technique to speed up local search and improve precision
of the HS algorithm solution. Omran and Mahdavi [14] proposed a so-called the global best
HS algorithm, in which concepts from swarm intelligence are borrowed to enhance the per-
formance of HS algorithm such that the new harmony can mimic the best harmony in the
HM. Also, Geem [15] proposed a stochastic derivative for discrete variables based on an HS
algorithm to optimize problems with discrete variables and problems in which the mathe-
matical derivative of the function cannot be analytically obtained. Pan et al. [16] used the
good information captured in the current global best solution to generate new harmonies.
Jaberipour and Khorram [17] described two HS algorithms through parameter adjusting
technique. Yadav et al. [18] designed an HS algorithm which maintains a proper balance
between diversification and intensification throughout the search process by automatically
selecting the proper pitch adjustment strategy based on its HM. Pan et al. [19] divided the
whole HM into many small-sized sub-HMs and performed the evolution in each sub-HM
independently and thus presented a local-best harmony search algorithm with dynamic sub-
populations. Later on, the excellent ideas of mutation and crossover strategies used in [19]
were adopted in designing the differential evolution algorithm and obtained perfect result for
global numerical optimization by Islam et al. [20].

Considering that, in political science and sociology, a small minority (elite) always
holds themost power inmaking the decisions, that is, elite decisionmaking. One could image
that the good information captured in the current elite harmonies can be well utilized to
generate new harmonies. Thus, in our elite decisionmaking HS (EDMHS) algorithm, the new
harmony will be randomly generated between the best and the second best harmonies in the
historic HM, following some probability rule. The generated harmony vector replaces the
worst harmony in the HM, only if its fitness (measured in terms of the objective function) is
better than that of the worst harmony. These generating and updating procedures repeat until
the near-optimal solution vector is obtained. To demonstrate the effectiveness and robustness
of the proposed algorithm, various benchmark optimization problems, including continuous
design variables and integer variables minimization problems, are used. Numerical results
reveal that the proposed new algorithm is very effective.

This paper is organized as follows. In Section 2, a general harmony search algorithm
and its recently developed variants will be reviewed. Section 3 introduces our method that
has “Elite-Decision-Making” property. Section 4 presents the numerical results for somewell-
known benchmark problems. Finally, conclusions are given in the last section.

2. Harmony Search Algorithm

In the whole paper, the optimization problem is specified as follows:

Minimize f(x), subject to xi ∈ Xi, i = 1, 2, . . . ,N, (2.1)
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where f(x) is an objective function, x is the set of each decision variable (xi),N is the number
of decision variables, and Xi is the set of the possible range of values for each decision vari-
able, that is xL

i ≤ Xi ≤ xU
i and xL

i and xU
i are the lower and upper bounds for each decision

variable, respectively.

2.1. The General HS Algorithm

The general HS algorithm requires several parameters as follows:

HMS: harmony memory size,

HMCR: harmony memory considering rate,

PAR: pitch adjusting rate,

bw: bandwidth vector.

Remarks. HMCR, PAR, and bw are very important factors for the high efficiency of the HS
methods and can be potentially useful in adjusting convergence rate of algorithms to the
optimal solutions. These parameters are introduced to allow the solution to escape from local
optima and to improve the global optimum prediction of the HS algorithm.

The procedure for a harmony search, which consists of Steps 1–4.

Step 1. Create and randomly initialize an HM with HMS. The HM matrix is initially filled
with as many solution vectors as the HMS. Each component of the solution vector is gene-
rated using the uniformly distributed random number between the lower and upper bounds
of the corresponding decision variable [xL

i , x
U
i ], where i ∈ [1,N].

The HM with the size of HMS can be represented by a matrix as

HM =

⎛
⎜⎜⎜⎜⎝

x1
1 x1

2 · · · x1
N

x2
1 x2

2 · · · x2
N

...
...

. . .
...

xHMS
1 xHMS

2 · · · xHMS
N

⎞
⎟⎟⎟⎟⎠

. (2.2)

Step 2. Improvise a new harmony from the HM or from the entire possible range. After defin-
ing the HM, the improvisation of the HM, is performed by generating a new harmony vector
x′ = (x′1, x

′
2, . . . , x

′
N). Each component of the new harmony vector is generated according to

x′i ←−
{
x′i ∈ HM (:, i) with probability HMCR,
x′i ∈ Xi, with probability 1-HMCR,

(2.3)

where HMCR is defined as the probability of selecting a component from the HM members,
and (1-HMCR) is, therefore, the probability of generating a component randomly from the
possible range of values. Every x′i obtained from HM is examined to determine whether it
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should be pitch adjusted. This operation uses the PAR parameter, which is the rate of pitch
adjustment as follows:

x′i ←−
{
x′i ± rand[0, 1] × bw with probability PAR,
x′i, with probability 1-PAR,

(2.4)

where rand[0, 1] is the randomly generated number between 0 and 1.

Step 3. Update the HM. If the new harmony is better than the worst harmony in the HM,
include the new harmony into the HM and exclude the worst harmony from the HM.

Step 4. Repeat Steps 2 and 3 until the maximum number of searches is reached.

2.2. The Improved HS Algorithm

To improve the performance of the HS algorithm and eliminate the drawbacks associated
with fixed values of PAR and bw, Mahdavi et al. [11] proposed an improved harmony search
(IHS) algorithm that uses variable PAR and bw in improvisation step. In their method, PAR
and bw change dynamically with generation number as expressed below:

PAR
(
gn
)
= PARmin +

PARmax − PARmin

MaxItr
× gn, (2.5)

where PAR(gn) is the pitch adjusting rate for each generation, PARmin is the minimum pitch
adjusting rate, PARmax is the maximum pitch adjusting rate, and MaxItr and gn is the maxi-
mum and current search number, respectively. We have

bw
(
gn
)
= bwmaxe

c×gn, (2.6)

where

c =
log(bwmin/bwmax)

MaxIter
. (2.7)

Numerical results reveal that the HS algorithm with variable parameters can find
better solutions when compared to HS and other heuristic or deterministic methods and is a
powerful search algorithm for various engineering optimization problems, see [11].

2.3. Global Best Harmony Search (GHS) Algorithm

In 2008, Omran and Mahdavi [14] presented a GHS algorithm by modifying the pitch adjust-
ment rule. Unlike the basic HS algorithm, the GHS algorithm generates a new harmony vector
x′ bymaking use of the best harmony vector xbest = {xbest

1 , xbest
2 , . . . , xbest

n } in theHM. The pitch
adjustment rule is given as follows:

x′j = xbest
k , (2.8)
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where k is a random integer between 1 and n. The performance of the GHS is investigated and
compared with HS. The experiments conducted show that the GHS generally outperformed
the other approaches when applied to ten benchmark problems.

2.4. A Self-Adaptive Global Best HS (SGHS) Algorithm

In 2010, Pan et al. [16] presented a SGHS algorithm for solving continuous optimization
problems. In that algorithm, a new improvisation scheme is developed so that the good infor-
mation captured in the current global best solution can be well utilized to generate new har-
monies. The pitch adjustment rule is given as follows:

x′j = xbest
j , (2.9)

where j = 1, . . . , n. Numerical experiments based on benchmark problems showed that the
proposed SGHS algorithmwasmore effective in finding better solutions than the existing HS,
HIS, and GHS algorithms.

3. An Elite Decision Making HS Algorithm

The key differences between the proposed EDMHS algorithm and IHS, GHS, and SGHS are
in the way of improvising the new harmony.

3.1. EDMHS Algorithm for Continuous Design Variables Problems

The EDMHS has exactly the same steps as the IHS with the exception that Step 3 is modified
as follows.

In this step, a new harmony vector x′ = (x′1, x
′
2, . . . , x

′
N)T is generated from

x′i ←−
{
x′i ∈ [HM(s, i),HM(b, i)] with probability HMCR,
x′i ∈ Xi, with probability 1-HMCR,

(3.1)

where HM(s, i) and HM(b, i) are the ith element of the second-best harmony and the best
harmony, respectively.

3.2. EDMHS Algorithm for Integer Variables Problems

Many real-world applications require the variables to be integers. Methods developed for
continuous variables can be used to solve such problems by rounding off the real optimum
values to the nearest integers [14, 21]. However, in many cases, rounding-off approach may
result in an infeasible solution or a poor suboptimal solution value and may omit the alter-
native solutions.
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In EDMHS algorithm for integer programming, we generate the integer solution vec-
tor in the initial step and improvise step, that is, each component of the new harmony vector
is generated according to

x′i ←−
{
x′i ∈ round([HM(s, i),HM(b, i)]) with probability HMCR,
x′i ∈ Xi, with probability 1-HMCR,

(3.2)

where round(∗) means round off for (∗). The pitch adjustment is operated as follows:

x′i ←−
{
x′i ± 1 with probability PAR,
x′i, with probability 1-PAR.

(3.3)

4. Numerical Examples

This section is about the performance of the EDMHS algorithm for continuous and integer
variables examples. Several examples taken from the optimization literature are used to show
the validity and effectiveness of the proposed algorithm. The parameters for all the algorithm
are given as follows: HMS = 20, HMCR = 0.90, PARmin = 0.4, PARmax = 0.9, bwmin = 0.0001,
and bwmax = 1.0. In the processing of the algorithm, PAR and bw are generated according to
(2.5) and (2.6), respectively.

4.1. Some Simple Continuous Variables Examples

For the following five examples, we adopt the same variable ranges as presented in [4]. Each
problem is run for 5 independent replications, the mean fitness of the solutions for four
variants HS algorithm, IHS, SGHS, SGHS, and EDMHS, is presented in tables.

4.1.1. Rosenbrock Function

Consider the following:

f(x) = 100
(
x2 − x2

1

)2
+ (1 − x1)2. (4.1)

Due to a long narrow and curved valley present in the function, Rosenbrock function [4,
22] is probably the best known test case. The minimum of the function is located at x∗ =
(1.0, 1.0) with a corresponding objective function value of f(x∗) = 0.0. The four algorithms
were applied to the Rosenbrock function using bounds between −10.0 and 10.0 for the two
design variables x1 and x2. After the 50,000 searches, we arrived at Table 1.
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Table 1: Four HS algorithms for Rosenbrock function.

Variables IHS GHS SGHS EDMHS
x1 1.0000028617324386 0.9913653798835682 1.0000082201314386 0.9999992918896516
x2 1.0000062226347253 0.9837656861940776 1.0000169034081148 0.9999985841159521
f1(x) 0.0000000000331057 0.0001667876726056 0.0000000000890147 0.0000000000005014

Table 2: Four HS algorithms for Goldstein and Price function I.

Variables IHS GHS SGHS EDMHS
x1 0.0000043109765698 −0.0108343859912985 −0.0000010647548017 −0.0000022210968748
x2 −0.9999978894568922 −1.0091267108154769 −1.0000037827893109 −1.0000008657021768
f(x) 3.0000000046422932 3.0447058568657721 3.0000000055974083 3.0000000011515664

4.1.2. Goldstein and Price Function I (with Four Local Minima)

Consider the following:

f(x) =
{
1 + (x1 + x2 + 1)2

(
19 − 14x1 + 3x2

1 − 14x2 + 6x1x2 + 3x2
2

)}

×
{
30 + (2x1 − 3x2)2

(
18 − 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2

)}
.

(4.2)

Goldstein and Price function I [4, 13, 23] is an eighth-order polynomial in two variables.
However, the function has four local minima, one of which is global, as follows: f(1.2, 0.8) =
840.0, f(1.8, 0.2) = 84.0, f(−0.6,−0.4) = 30, and f∗(0.0, 1.0) = 3.0 (global minimum). In this
example, the bounds for two design variables (x1 and x2) were set between −5.0 and 5.0.
After 8000 searches, we arrived at Table 2.

4.1.3. Eason and Fenton’s Gear Train Inertia Function

Consider the following:

f(x) =
1
10

{
12 + x2

1 +
1 + x2

2

x2
1

+
x2
1x

2
2 + 100

(x1x2)4

}
. (4.3)

This function [4, 24] consists of a minimization problem for the inertia of a gear train. The
minimum of the function is located at x∗ = (1.7435, 2.0297) with a corresponding objective
function value of f∗(x) = 1.744152006740573. The four algorithms were applied to the gear
train inertia function problem using bounds between 0.0 and 10.0 for the two design variables
x1 and x2. After 800 searches, we arrived at Table 3.
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Table 3: Four HS algorithms for Eason and Fenton’s gear train inertia function.

Variables IHS GHS SGHS EDMHS
x1 1.7434541913586368 1.7131403370902785 1.7434648607226395 1.7434544417399731
x2 2.0296978640691021 2.0700437540873073 2.0296831598594332 2.0296925490097708
f(x) 1.7441520055927637 1.7447448145676987 1.7441520056712445 1.7441520055905921

Table 4: Four HS algorithms for Wood function.

Variables IHS GHS SGHS EDMHS
x1 0.9367413185752959 0.9993702652662329 0.9917327966129160 1.0001567183702584
x2 0.8772781982936317 0.9987850979456709 0.9835814785067265 1.0003039053776117
x3 1.0596918740170123 0.9993702652662329 1.0081526992384837 0.9998357549633209
x4 1.1230215213184420 0.9987850979456709 1.0164353912102084 0.9996725376532794
f(x) 0.0136094062872233 0.0000602033138483 0.0002433431550602 0.0000001061706105

4.1.4. Wood Function

Consider the following:

f(x) = 100
(
x2 − x2

1

)2
+ (1 − x1)2 + 90

(
x4 − x2

3

)2
+
(
1 − x2

3

)2

+ 10.1
[
(x2 − 1)2 + (x4 − 1)2

]
+ 19.8(x2 − 1)(x4 − 1).

(4.4)

The Wood function [4, 25] is a fourth-degree polynomial, that is, a particularly good test of
convergence criteria and simulates a feature of many physical problems quite well. The mini-
mum solution of the function is obtained at x∗ = (1, 1, 1, 1)T , and the corresponding objective
function value is f∗(x) = 0.0. When applying the four algorithms STO the function, the four
design variables, x1, x2, x3, x4, were initially structured with random values bounded bet-
ween −5.0 and 5.0, respectively. After 70,000 searches, we arrived at Table 4.

4.1.5. Powell Quartic Function

Consider the following:

f(x) = (x1 + 10x2)2 + 5(x3 − x4)2 + (x2 − 2x3)4 + 10(x1 − x4)4. (4.5)

The second derivative of the Powell quartic function [4, 26] becomes singular at theminimum
point, it is quite difficult to obtain the minimum solution (i.e., f∗(0, 0, 0, 0) = 0.0) using
gradient-based algorithms. When applying the EDMHS algorithm to the function, the four
design variables, x1, x2, x3, x4, were initially structured with random values bounded bet-
ween −5.0 and 5.0, respectively. After 50,000 searches, we arrived at Table 5.

It can be seen from Tables 1–5, comparing with IHS, GHS, and SGHS algorithms, that
the EDMHS produces the much better results for four test functions. Figures 1–5 present
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Table 5: Four HS algorithms for Powell quartic function.

Variables IHS GHS SGHS EDMHS
x1 −0.0383028653671760 −0.0256621703960072 0.0334641210434073 −0.0232662093056917
x2 0.0038093414837046 0.0023707007810820 −0.0033373644857512 0.0023226342970439
x3 −0.0195750968208506 −0.0199247989791340 0.0159748222727847 −0.0107227792768697
x4 −0.0195676609811871 −0.0199247989791340 0.0160018633328343 −0.0107574107951817
f(x) 0.0000046821615160 0.0000070109937353 0.0000024921236096 0.0000005715572753
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Figure 1: Convergence of Rosenbrock function.
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Figure 2: Convergence of Goldstein and Price function I.
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Figure 4: Convergence of Wood function.

a typical solution history graph along iterations for the five functions, respectively. It can be
observed that four evolution curves of the EDMHS algorithm reach lower level than that of
the other compared algorithms. Thus, it can be concluded that overall the EDMHS algorithm
outperforms the other methods for the above examples.



Journal of Applied Mathematics 11

0 1 2 3 4 5
×104

104

102

100

10−2

10−4

10−6

10−8

IHS
GHS

SGHS
EDMHS

Number of interions

Figure 5: Convergence of Powell quartic function.

4.2. More Benchmark Problems with 30 Dimensions

To test the performance of the proposed EDMHS algorithm more extensively, we proceed to
evaluate and compare the IHS, GHS, SGHS, and EDMHS algorithms based on the following
6 benchmark optimization problems listed in CEC2005 [27]with 30 dimensions.

(1) Sphere function:

f(x) =
n∑
i=1

x2
i , (4.6)

where global optimum x∗ = 0 and f(x∗) = 0 for −100 ≤ xi ≤ 100.

(2) Schwefel problem:

f(x) = −
n∑
i=1

(
xi sin

(√
|xi|
))

, (4.7)

where global optimum x∗ = (420.9687, . . . , 420.9687) and f(x∗) = −12569.5 for
−500 ≤ xi ≤ 500.

(3) Griewank function:

f(x) =
1

4000

n∑
i=1

x2
i −

n∏
i=1

cos
(

xi√
i

)
+ 1, (4.8)

where global optimum x∗ = 0 and f(x∗) = 0 for −600 ≤ xi ≤ 600.
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Table 6: AE and SD generated by the compared algorithms.

Problem IHS IHS GHS GHS SGHS SGHS EDMHS EDMHS
AE SD AE SD AE SD AE SD

Sphere 1.27e − 07 1.79e − 07 1.41e − 02 2.36e − 02 5.30e − 07 1.27e − 06 1.07e − 07 1.31e − 07
Schwefel 4.83e − 01 7.06e − 01 2.11e − 02 3.01e − 02 7.70e − 01 1.15e − 00 7.03e − 01 1.61e − 00
Griewank 1.18e − 01 1.87e − 01 8.83e − 02 1.57e − 01 8.02e − 03 1.05e − 02 1.02e − 02 1.51e − 02
Rastrigin 9.72e − 01 1.18e − 00 1.09e − 02 2.05e − 02 1.12e − 00 1.43e − 00 1.48e − 00 1.93e − 00
Ackley 5.11e − 01 6.06e − 01 2.05e − 02 2.83e − 02 2.13e − 01 2.98e − 01 3.34e − 01 3.85e − 01
Rosenbrock 3.37e + 01 4.08e + 01 6.77e + 01 8.97e + 01 3.46e + 01 3.80e + 01 3.17e + 01 4.02e + 01

(4) Rastrigin function:

f(x) =
n∑
i=1

(
x2
i − 10 cos(2πxi) + 10

)
, (4.9)

where global optimum x∗ = 0 and f(x∗) = 0 for −5.12 ≤ xi ≤ 5.12.

(5) Ackley’s function:

f(x) = −20 exp
⎛
⎝−0.2

√√√√ 1
30

n∑
i=1

x2
i

⎞
⎠ − exp

(
1
30

n∑
i=1

cos(2πxi)

)
+ 20 + e, (4.10)

where global optimum x∗ = 0 and f(x∗) = 0 for −32 ≤ xi ≤ 32.

(6) Rosenbrock’s Function:

f(x) =
n−1∑
i=1

(
100
(
xi+1 − x2

i

)2
+ (xi − 1)2

)
, (4.11)

where global optimum x∗ = (1, . . . , 1) and f(x∗) = 0 for −5 ≤ xi ≤ 10.

The parameters for the IHS algorithm, HMS = 5, HMCR = 0.9, bwmax = (xU
j − xL

j )/20,
bwmin = 0.0001, PARmin = 0.01, and PARmax = 0.99 and for the GHS algorithm, HMS = 5,
HMCR = 0.9, PARmin = 0.01, and PARmax = 0.99.

Table 6 presents the average error (AE) values and standard deviations (SD) over these
30 runs of the compared HS algorithms on the 6 test functions with dimension equal to 30.

4.3. Integer Variables Examples

Six commonly used integer programming benchmark problems are chosen to investigate the
performance of the EDMHS integer algorithm. For all the examples, the design variables,
xi, i = 1, . . . ,N, are initially structured with random integer values bounded between −100
and 100, respectively. Each problem is run 5 independent replications, each with approxi-
mately 800 searches, all the optimal solution vector are obtained.
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4.3.1. Test Problem 1

Consider the following:

f1(x) =
(
9x2

1 + 2x2
2 − 11

)2
+
(
3x2

1 + 4x2
2 − 7

)2
, (4.12)

where x∗ = (1, 1)T and f1(x∗) = 0, see [14, 21, 28].

4.3.2. Test Problem 2

Consider the following:

f2(x) = (x1 + 10x2)2 + 5(x3 − x4)2 + (x2 − x3)4 + 10(x3 − x4)4, (4.13)

where x∗ = (0, 0, 0, 0)T and f2(x∗) = 0, see [14, 21, 28].

4.3.3. Test Problem 3

Consider the following:

f3(x) = 2x2
1 + 3x2

2 + 4x1x2 − 6x1 − 3x2, (4.14)

where

x∗1 = (4,−2)T , x∗2 = (3,−2)T , x∗3 = (2,−1)T (4.15)

and f3(x∗) = 0, see [14, 21, 29].

4.3.4. Test Problem 4

Consider the following:

f4(x) = xTx, (4.16)

where x∗ = (0, 0, 0, 0, 0)T and f4(x∗) = 0, see [14, 21, 30].
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4.3.5. Test Problem 5

Consider the following:

f5(x) = −(15, 27, 36, 18, 12)x + xT

⎛
⎜⎜⎜⎜⎜⎝

35 −20 −10 32 −10
−20 40 −6 −31 32
−10 −6 11 −6 −10
32 −31 −6 38 −20
−10 32 −10 −20 31

⎞
⎟⎟⎟⎟⎟⎠

x, (4.17)

where x∗ = (0, 11, 22, 16, 6)T and x∗ = (10, 12, 23, 17, 6)T with f5(x∗) = −737, see [21, 28].

4.3.6. Test Problem 6

Consider the following:

f6(x) = −3803.84 − 138.08x1 − 232.92x2 + 123.08x2
1 + 203.64x2

2 + 182.25x1x2, (4.18)

where x∗ = (0, 1)T and f6(x∗) = −3833.12, see [21, 28].

5. Conclusion

This paper presented an EDMHS algorithm for solving continuous optimization prob-
lems and integer optimization problems. The proposed EDMHS algorithm applied a newly
designed scheme to generate candidate solution so as to benefit from the good information
inherent in the best and the second best solution in the historic HM.

Further work is still needed to investigate the effect of EDMHS and adopt this strategy
to solve the real optimization problem.
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