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We first prove the existence of solutions for a generalized mixed equilibrium problem under
the new conditions imposed on the given bifunction and introduce the algorithm for solving
a common element in the solution set of a generalized mixed equilibrium problem and the
common fixed point set of finite family of asymptotically nonexpansivemappings. Next, the strong
convergence theorems are obtained, under some appropriate conditions, in uniformly convex and
smooth Banach spaces. The main results extend various results existing in the current literature.

1. Introduction

Let E be a real Banach space with the dual E∗ and C be a nonempty closed convex subset of
E. We denote by N and R the sets of positive integers and real numbers, respectively. Also,
we denote by J the normalized duality mapping from E to 2E

∗
defined by

Jx =
{
x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2

}
, ∀x ∈ E, (1.1)

where 〈·, ·〉 denotes the generalized duality pairing. Recall that if E is smooth, then J is single
valued and if E is uniformly smooth, then J is uniformly norm-to-norm continuous on
bounded subsets of E. We will still denote by J the single-valued duality mapping.
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Amapping S : C → E is called nonexpansive if ‖Sx−Sy‖ ≤ ‖x−y‖ for all x, y ∈ C. Also
a mapping S : C → C is called asymptotically nonexpansive if there exists a sequence {kn} ⊂
[1,∞) with kn → 1 as n → ∞ such that ‖Snx − Sny‖ ≤ kn‖x − y‖ for all x, y ∈ C and for
each n ≥ 1. Denote by F(S) the set of fixed points of S, that is, F(S) = {x ∈ C : Sx = x}. The
following example shows that the class of asymptotically nonexpansive mappings which was
first introduced by Goebel and Kirk [1] is wider than the class of nonexpansive mappings.

Example 1.1 (see [2]). Let BH be the closed unit ball in the Hilbert spaceH = l2 and S : BH →
BH a mapping defined by

S(x1, x2, x3, . . .) =
(
0, x2

1, a2x2, a3x3, . . .
)
, (1.2)

where {an} is a sequence of real numbers such that 0 < ai < 1 and
∏∞

i=2 ai = 1/2. Then

∥∥Sx − Sy
∥∥ ≤ 2

∥∥x − y
∥∥, ∀x, y ∈ BH. (1.3)

That is, S is Lipschitzian but not nonexpansive. Observe that

∥∥Snx − Sny
∥∥ ≤ 2

n∏
i=2

ai

∥∥x − y
∥∥, ∀x, y ∈ BH, n ≥ 2. (1.4)

Here kn = 2
∏n

i=2ai → 1 as n → ∞. Therefore, S is asymptotically nonexpansive but not non-
expansive.

A mapping T : C → E∗ is said to be relaxed η-ξ monotone if there exist a mapping
η : C × C → E and a function ξ : E → R positively homogeneous of degree p, that is,
ξ(tz) = tpξ(z) for all t > 0 and z ∈ E such that

〈
Tx − Ty, η

(
x, y

)〉 ≥ ξ
(
x − y

)
, ∀x, y ∈ C, (1.5)

where p > 1 is a constant; see [3]. In the case of η(x, y) = x − y for all x,y ∈ C, T is said to
be relaxed ξ-monotone. In the case of η(x, y) = x − y for all x, y ∈ C and ξ(z) = k‖z‖p, where
p > 1 and k > 0, T is said to be p-monotone; see [4–6]. In fact, in this case, if p = 2, then T is a
k-strongly monotone mapping. Moreover, every monotone mapping is relaxed η-ξmonotone
with η(x, y) = x − y for all x, y ∈ C and ξ = 0. The following is an example of η-ξ monotone
mapping which can be found in [3]. Let C = (−∞,∞), Tx = −x, and

η
(
x, y

)
=

{
−c(x − y

)
, x ≥ y,

c
(
x − y

)
, x < y,

(1.6)

where c > 0 is a constant. Then, T is relaxed η-ξ monotone with

ξ(z) =

{
cz2, z ≥ 0,
−cz2, z < 0.

(1.7)
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A mapping T : C → E∗ is said to be η-hemicontinuous if, for each fixed x, y ∈ C, the mapping
f : [0, 1] → (−∞,+∞) defined by f(t) = 〈T(x + t(y − x)), η(y, x)〉 is continuous at 0+. For
a real Banach space E with the dual E∗ and for C a nonempty closed convex subset of E, let
f : C×C → R be a bifunction, ϕ : C → R a real-valued function and T : C → E∗ be a relaxed
η-ξ monotone mapping. Recently, Kamraksa and Wangkeeree [7] introduced the following
generalized mixed equilibrium problem (GMEP).

Findx ∈ C such that f
(
x, y

)
+
〈
Tx, η

(
y, x

)〉
+ ϕ

(
y
) ≥ ϕ(x), ∀y ∈ C. (1.8)

The set of such x ∈ C is denoted by GMEP(f, T), that is,

GMEP
(
f, T

)
=
{
x ∈ C : f

(
x, y

)
+
〈
Tx, η

(
y, x

)〉
+ ϕ

(
y
) ≥ ϕ(x), ∀y ∈ C

}
. (1.9)

Special Cases

(1) If T is monotone that is T is relaxed η-ξ monotone with η(x, y) = x − y for all x, y ∈ C and
ξ = 0, (1.8) is reduced to the following generalized equilibrium problem (GEP).

Findx ∈ C such that f
(
x, y

)
+
〈
Tx, y − x

〉
+ ϕ

(
y
) ≥ ϕ(x), ∀y ∈ C. (1.10)

The solution set of (1.10) is denoted by GEP(f), that is,

GEP
(
f
)
=
{
x ∈ C : f

(
x, y

)
+
〈
Tx, y − x

〉
+ ϕ

(
y
) ≥ ϕ(x), ∀y ∈ C

}
. (1.11)

(2) In the case of T ≡ 0 and ϕ ≡ 0, (1.8) is reduced to the following classical equilibrium
problem

Find x ∈ C such that f
(
x, y

) ≥ 0, ∀y ∈ C. (1.12)

The set of all solution of (1.12) is denoted by EP(f), that is,

EP
(
f
)
=
{
x ∈ C : f

(
x, y

) ≥ 0, ∀y ∈ C
}
. (1.13)

(3) In the case of f ≡ 0, (1.8) is reduced to the following variational-like inequality
problem [3].

Find x ∈ C such that
〈
Tx, η

(
y, x

)〉
+ ϕ

(
y
) − ϕ(x) ≥ 0, ∀y ∈ C. (1.14)

The generalized mixed equilibrium problem (GMEP) (1.8) is very general in the sense
that it includes, as special cases, optimization problems, variational inequalities, minimax
problems, and Nash equilibrium problems. Using the KKM technique introduced by Kanster
et al. [8] and η-ξ monotonicity of the mapping ϕ, Kamraksa and Wangkeeree [7] obtained
the existence of solutions of generalized mixed equilibrium problem (1.8) in a real reflexive
Banach space.
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Some methods have been proposed to solve the equilibrium problem in a Hilbert
space; see, for instance, Blum and Oettli [9], Combettes and Hirstoaga [10], and Moudafi
[11]. On the other hand, there are several methods for approximation fixed points of a
nonexpansive mapping; see, for instance, [12–17]. Recently, Tada and Takahashi [13, 16] and
S. Takahashi and W. Takahashi [17] obtained weak and strong convergence theorems for
finding a common elements in the solution set of an equilibrium problem and the set of fixed
point of a nonexpansive mapping in a Hilbert space. In particular, Tada and Takahashi [16]
established a strong convergence theorem for finding a common element of two sets by using
the hybrid method introduced in Nakajo and Takahashi [18]. They also proved such a strong
convergence theorem in a uniformly convex and uniformly smooth Banach space.

On the other hand, in 1953, Mann [12] introduced the following iterative procedure to
approximate a fixed point of a nonexpansive mapping S in a Hilbert space H:

xn+1 = αnxn + (1 − αn)Sxn, ∀n ∈ N, (1.15)

where the initial point x0 is taken in C arbitrarily and {αn} is a sequence in [0, 1]. However,
we note that Manns iteration process (1.15) has only weak convergence, in general; for
instance, see [19–21]. In 2003, Nakajo and Takahashi [18] proposed the following sequence
for a nonexpansive mapping S in a Hilbert space:

x0 = x ∈ C,

yn = αnxn + (1 − αn)Sxn,

Cn =
{
z ∈ C :

∥∥yn − z
∥∥ ≤ ‖xn − z‖},

Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0},

xn+1 = PCn∩Qnx0,

(1.16)

where 0 ≤ αn ≤ a < 1 for all n ∈ N, and PCn∩Dn is the metric projection from E onto Cn ∩Dn.
Then, they proved that {xn} converges strongly to PF(T)x0. Recently, motivated byNakajo and
Takahashi [18] and Xu [22], Matsushita and Takahashi [14] introduced the iterative algorithm
for finding fixed points of nonexpansive mappings in a uniformly convex and smooth Banach
space: x0 = x ∈ C and

Cn = co{z ∈ C : ‖z − Sz‖ ≤ tn‖xn − Sxn‖},

Dn = {z ∈ C : 〈xn − z, J(x − xn)〉 ≥ 0},

xn+1 = PCn∩Dnx, n ≥ 0,

(1.17)

where coD denotes the convex closure of the set D, {tn} is a sequence in (0, 1) with
tn → 0. They proved that {xn} generated by (1.17) converges strongly to a fixed point
of S. Very recently, Dehghan [23] investigated iterative schemes for finding fixed point of
an asymptotically nonexpansive mapping and proved strong convergence theorems in a
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uniformly convex and smooth Banach space. More precisely, he proposed the following
algorithm: x1 = x ∈ C, C0 = D0 = C and

Cn = co{z ∈ Cn−1 : ‖z − Snz‖ ≤ tn‖xn − Snxn‖},
Dn = {z ∈ Dn−1 : 〈xn − z, J(x − xn)〉 ≥ 0},

xn+1 = PCn∩Dnx, n ≥ 0,

(1.18)

where {tn} is a sequence in (0, 1) with tn → 0 as n → ∞ and S is an asymptotically nonex-
pansive mapping. It is proved in [23] that {xn} converges strongly to a fixed point of S.

On the other hand, recently, Kamraksa and Wangkeeree [7] studied the hybrid pro-
jection algorithm for finding a common element in the solution set of the GMEP and the
common fixed point set of a countable family of nonexpansive mappings in a uniformly
convex and smooth Banach space.

Motivated by the above mentioned results and the on-going research, we first prove
the existence results of solutions for GMEP under the new conditions imposed on the
bifunction f . Next, we introduce the following iterative algorithm for finding a common
element in the solution set of the GMEP and the common fixed point set of a finite family of
asymptotically nonexpansive mappings {S1, S2, . . . , SN} in a uniformly convex and smooth
Banach space: x0 ∈ C, D0 = C0 = C, and

x1 = PC0∩D0x0 = PCx0,

C1 = co{z ∈ C : ‖z − S1z‖ ≤ t1‖x1 − S1x1‖},

u1 ∈ C such that f
(
u1, y

)
+ ϕ

(
y
)
+
〈
Tu1, η

(
y, u1

)〉
+

1
r1

〈
y − u1, J(u1 − x1)

〉
, ∀y ∈ C,

D1 = {z ∈ C : 〈u1 − z, J(x1 − u1)〉 ≥ 0},

x2 = PC1∩D1x0,

...

CN = co{z ∈ CN−1 : ‖z − SNz‖ ≤ t1‖xN − SNxN‖},

uN ∈ C such that f
(
uN, y

)
+ ϕ

(
y
)
+
〈
TuN, η

(
y, uN

)〉
+

1
rN

〈
y − uN, J(uN − xN)

〉
, ∀y ∈ C,

DN = {z ∈ DN−1 : 〈uN − z, J(xN − uN)〉 ≥ 0},

xN+1 = PCN∩DNx0,

CN+1 = co
{
z ∈ CN :

∥∥∥z − S2
1z
∥∥∥ ≤ t1

∥∥∥xN+1 − S2
1xN+1

∥∥∥
}
,

uN+1 ∈ C such that f
(
uN+1, y

)
+ ϕ

(
y
)
+
〈
TuN+1, η

(
y, uN+1

)〉

+
1

rN+1

〈
y − uN+1, J(uN+1 − xN+1)

〉
, ∀y ∈ C,
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DN+1 = {z ∈ DN : 〈uN+1 − z, J(xN+1 − uN+1)〉 ≥ 0},
xN+2 = PCN+1∩DN+1x0,

...

C2N = co
{
z ∈ C2N−1 :

∥∥∥z − S2
Nz

∥∥∥ ≤ t1
∥∥∥x2N − S2

Nx2N

∥∥∥
}
,

u2N ∈ C such that f
(
u2N, y

)
+ ϕ

(
y
)
+
〈
Tu2N, η

(
y, u2N

)〉

+
1

r2N

〈
y − u2N, J(u2N − x2N)

〉
, ∀y ∈ C,

D2N = {z ∈ D2N−1 : 〈u2N − z, J(x2N − u2N)〉 ≥ 0},
x2N+1 = PC2N∩D2Nx0,

C2N+1 = co
{
z ∈ C2N :

∥∥∥z − S31z
∥∥∥ ≤ t1

∥∥∥x2N+1 − S3
1x2N+1

∥∥∥
}
,

u2N+1 ∈ C such that f
(
u2N+1, y

)
+ ϕ

(
y
)
+
〈
Tu2N+1, η

(
y, u2N+1

)〉

+
1

r2N+1

〈
y − u2N+1, J(u2N+1 − x2N+1)

〉
, ∀y ∈ C,

D2N+1 = {z ∈ D2N : 〈u2N+1 − z, J(x2N+1 − u2N+1)〉 ≥ 0},
x2N+2 = PC2N+1∩D2N+1x0,

...

(1.19)

The above algorithm is called the hybrid iterative algorithm for a finite family of asymptot-
ically nonexpansive mappings from C into itself. Since, for each n ≥ 1, it can be written as
n = (h−1)N+i, where i = i(n) ∈ {1, 2, . . . ,N}, h = h(n) ≥ 1 is a positive integer and h(n) → ∞
as n → ∞. Hence the above table can be written in the following form:

x0 ∈ C, D0 = C0 = C,

Cn = co
{
z ∈ Cn−1 :

∥∥∥z − S
h(n)
i(n) z

∥∥∥ ≤ tn
∥∥∥xn − S

h(n)
i(n) xn

∥∥∥
}
, n ≥ 1,

un ∈ C such that f
(
un, y

)
+ ϕ

(
y
)
+
〈
Tun, η

(
y, un

)〉

+
1
rn

〈
y − un, J(un − xn)

〉
, ∀y ∈ C, n ≥ 1,

Dn = {z ∈ Dn−1 : 〈un − z, J(xn − un)〉 ≥ 0}, n ≥ 1,

xn+1 = PCn∩Dnx0, n ≥ 0.

(1.20)

Strong convergence theorems are obtained in a uniformly convex and smooth Banach space.
The results presented in this paper extend and improve the corresponding Kimura and
Nakajo [24], Kamraksa and Wangkeeree [7], Dehghan [23], and many others.
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2. Preliminaries

Let E be a real Banach space and let U = {x ∈ E : ‖x‖ = 1} be the unit sphere of E. A Banach
space E is said to be strictly convex if for any x, y ∈ U,

x /=y implies
∥∥x + y

∥∥ < 2. (2.1)

It is also said to be uniformly convex if for each ε ∈ (0, 2], there exists δ > 0 such that for any
x, y ∈ U,

∥∥x − y
∥∥ ≥ ε implies

∥∥x + y
∥∥ < 2(1 − δ). (2.2)

It is known that a uniformly convex Banach space is reflexive and strictly convex. Define a
function δ : [0, 2] → [0, 1] called the modulus of convexity of E as follows:

δ(ε) = inf
{
1 −

∥∥∥∥
x + y

2

∥∥∥∥ : x, y ∈ E, ‖x‖ =
∥∥y∥∥ = 1,

∥∥x − y
∥∥ ≥ ε

}
. (2.3)

Then E is uniformly convex if and only if δ(ε) > 0 for all ε ∈ (0, 2]. A Banach space E is said
to be smooth if the limit

lim
t→ 0

∥∥x + ty
∥∥ − ‖x‖
t

(2.4)

exists for all x, y ∈ U. Let C be a nonempty, closed, and convex subset of a reflexive, strictly
convex, and smooth Banach space E. Then for any x ∈ E, there exists a unique point x0 ∈ C
such that

‖x0 − x‖ ≤ min
y∈C

∥∥y − x
∥∥. (2.5)

The mapping PC : E → C defined by PCx = x0 is called the metric projection from E onto C.
Let x ∈ E and u ∈ C. The following theorem is well known.

Theorem 2.1. Let C be a nonempty convex subset of a smooth Banach space E and let x ∈ E and
y ∈ C. Then the following are equivalent:

(a) y is a best approximation to x : y = PCx,

(b) y is a solution of the variational inequality:

〈
y − z, J

(
x − y

)〉 ≥ 0 ∀z ∈ C, (2.6)

where J is a duality mapping and PC is the metric projection from E onto C.

It is well known that if PC is a metric projection from a real Hilbert space H onto a
nonempty, closed, and convex subset C, then PC is nonexpansive. But, in a general Banach
space, this fact is not true.

In the sequel one will need the following lemmas.
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Lemma 2.2 (see [25]). Let E be a uniformly convex Banach space, let {αn} be a sequence of real
numbers such that 0 < b ≤ αn ≤ c < 1 for all n ≥ 1, and let {xn} and {yn} be sequences in E
such that lim supn→∞‖xn‖ ≤ d, lim supn→∞‖yn‖ ≤ d and limn→∞‖αnxn + (1 − αn)yn‖ = d. Then
limn→∞‖xn − yn‖ = 0.

Dehghan [23] obtained the following useful result.

Theorem 2.3 (see [23]). LetC be a bounded, closed, and convex subset of a uniformly convex Banach
space E. Then there exists a strictly increasing, convex, and continuous function γ : [0,∞) → [0,∞)
such that γ(0) = 0 and

γ

(
1
km

∥∥∥∥∥S
m

(
n∑
i=1

λixi

)
−

n∑
i=1

λiS
mxi

∥∥∥∥∥

)
≤ max

1≤j≤k≤n

(∥∥xj − xk

∥∥ − 1
km

∥∥Smxj − Smxk

∥∥
)

(2.7)

for any asymptotically nonexpansive mapping S of C into C with {kn}, any elements x1, x2, . . . , xn ∈
C, any numbers λ1, λ2, . . . , λn ≥ 0 with

∑n
i=1 λi = 1 and eachm ≥ 1.

Lemma 2.4 (see [26, Lemma 1.6]). Let E be a uniformly convex Banach space, C be a nonempty
closed convex subset of E and S : C → C be an asymptotically nonexpansive mapping. Then (I − S)
is demiclosed at 0, that is, if xn ⇀ x and (I − S)xn → 0, then x ∈ F(S).

The following lemma can be found in [7].

Lemma 2.5 (see [7, Lemma 3.2]). Let C be a nonempty, bounded, closed, and convex subset of a
smooth, strictly convex, and reflexive Banach space E, let T : C → E∗ be an η-hemicontinuous and
relaxed η−ξ monotone mapping. Let f be a bifunction from C×C toR satisfying (A1), (A3), and (A4)
and let ϕ be a lower semicontinuous and convex function from C to R. Let r > 0 and z ∈ C. Assume
that

(i) η(x, y) + η(y, x) = 0 for all x, y ∈ C;

(ii) for any fixed u, v ∈ C, the mapping x �→ 〈Tv, η(x, u)〉 is convex and lower semicontinu-
ous;

(iii) ξ : E → R is weakly lower semicontinuous, that is, for any net {xβ}, xβ converges to x in
σ(E, E∗) which implies that ξ(x) ≤ lim inf ξ(xβ).

Then there exists x0 ∈ C such that

f
(
x0, y

)
+
〈
Tx0, η

(
y, x0

)〉
+ ϕ

(
y
)
+
1
r

〈
y − x0, J(x0 − z)

〉 ≥ ϕ(x0), ∀y ∈ C. (2.8)

Lemma 2.6 (see [7, Lemma 3.3]). Let C be a nonempty, bounded, closed, and convex subset of a
smooth, strictly convex, and reflexive Banach space E, let T : C → E∗ be an η-hemicontinuous and
relaxed η-ξ monotone mapping. Let f be a bifunction from C × C to R satisfying (A1)–(A4) and
let ϕ be a lower semicontinuous and convex function from C to R. Let r > 0 and define a mapping
Φr : E → C as follows:

Φr(x) =
{
z ∈ C : f

(
z, y

)
+
〈
Tz, η

(
y, z

)〉
+ ϕ

(
y
)
+
1
r

〈
y − z, J(z − x)

〉 ≥ ϕ(z), ∀y ∈ C
}

(2.9)
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for all x ∈ E. Assume that

(i) η(x, y) + η(y, x) = 0, for all x, y ∈ C;

(ii) for any fixed u, v ∈ C, the mapping x �→ 〈Tv, η(x, u)〉 is convex and lower semicontinuous
and the mapping x �→ 〈Tu, η(v, x)〉 is lower semicontinuous;

(iii) ξ : E → R is weakly lower semicontinuous;

(iv) for any x, y ∈ C, ξ(x − y) + ξ(y − x) ≥ 0.

Then, the following holds:

(1) Φr is single valued;

(2) 〈Φrx −Φry, J(Φrx − x)〉 ≤ 〈Φrx −Φry, J(Φry − y)〉 for all x, y ∈ E;

(3) F(Φr) = EP(f, T);

(4) EP(f, T) is nonempty closed and convex.

3. Existence of Solutions for GMEP

In this section, we prove the existence results of solutions for GMEP under the new conditions
imposed on the bifunction f .

Theorem 3.1. Let C be a nonempty, bounded, closed, and convex subset of a smooth, strictly convex,
and reflexive Banach space E, let T : C → E∗ be an η-hemicontinuous and relaxed η-ξ monotone
mapping. Let f be a bifunction from C × C to R satisfying the following conditions (A1)–(A4):

(A1) f(x, x) = 0 for all x ∈ C;

(A2) f(x, y) + f(y, x) ≤ min{ξ(x − y), ξ(y − x)} for all x, y ∈ C;

(A3) for all y ∈ C, f(·, y) is weakly upper semicontinuous;

(A4) for all x ∈ C, f(x, ·) is convex.

For any r > 0 and x ∈ E, define a mapping Φr : E → C as follows:

Φr(x) =
{
z ∈ C : f

(
z, y

)
+
〈
Tz, η

(
y, z

)〉
+ ϕ

(
y
)
+
1
r

〈
y − z, J(z − x)

〉 ≥ ϕ(z), ∀y ∈ C

}
,

(3.1)

where ϕ is a lower semicontinuous and convex function from C to R. Assume that

(i) η(x, y) + η(y, x) = 0, for all x, y ∈ C;

(ii) for any fixed u, v ∈ C, the mapping x �→ 〈Tv, η(x, u)〉 is convex and lower semicontinuous
and the mapping x �→ 〈Tu, η(v, x)〉 is lower semicontinuous;

(iii) ξ : E → R is weakly lower semicontinuous.

Then, the following holds:

(1) Φr is single valued;

(2) 〈Φrx −Φry, J(Φrx − x)〉 ≤ 〈Φrx −Φry, J(Φry − y)〉 for all x, y ∈ E;
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(3) F(Φr) = GMEP(f, T);

(4) GMEP(f, T) is nonempty closed and convex.

Proof. For each x ∈ E. It follows from Lemma 2.5 that Φr(x) is nonempty.
(1) We prove that Φr is single valued. Indeed, for x ∈ E and r > 0, let z1, z2 ∈ Φrx.

Then

f(z1, z2) +
〈
Tz2, η(z2, z1)

〉
+ ϕ(z2) +

1
r
〈z1 − z2, J(z1 − x)〉 ≥ ϕ(z1),

f(z2, z1) +
〈
Tz1, η(z1, z2)

〉
+ ϕ(z1) +

1
r
〈z2 − z1, J(z2 − x)〉 ≥ ϕ(z2).

(3.2)

Adding the two inequalities, from (i)we have

f(z2, z1) + f(z1, z2) + 〈Tz1 − Tz2, η(z2, z1)〉 + 1
r
〈z2 − z1, J(z1 − x) − J(z2 − x)〉 ≥ 0. (3.3)

Setting Δ := min{ξ(z1 − z2), ξ(z2 − z1)} and using (A2), we have

Δ +
〈
Tz1 − Tz2, η(z2, z1)

〉
+
1
r
〈z2 − z1, J(z1 − x) − J(z2 − x)〉 ≥ 0, (3.4)

that is,

1
r
〈z2 − z1, J(z1 − x) − J(z2 − x)〉 ≥ 〈

Tz2 − Tz1, η(z2, z1)
〉 −Δ. (3.5)

Since T is relaxed η-ξ monotone and r > 0, one has

〈z2 − z1, J(z1 − x) − J(z2 − x)〉 ≥ r(ξ(z2 − z1) −Δ) ≥ 0. (3.6)

In (3.5) exchanging the position of z1 and z2, we get

1
r
〈z1 − z2, J(z2 − x) − J(z1 − x)〉 ≥ 〈

Tz1 − Tz2, η(z1, z2)
〉 −Δ, (3.7)

that is,

〈z1 − z2, J(z2 − x) − J(z1 − x)〉 ≥ r(ξ(z1 − z2) −Δ) ≥ 0. (3.8)

Now, adding the inequalities (3.6) and (3.8), we have

2〈z2 − z1, J(z1 − x) − J(z2 − x)〉 ≥ 0. (3.9)
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Hence,

0 ≤ 〈z2 − z1, J(z1 − x) − J(z2 − x)〉 = 〈(z2 − x) − (z1 − x), J(z1 − x) − J(z2 − x)〉. (3.10)

Since J is monotone and E is strictly convex, we obtain that z1 − x = z2 − x and hence z1 = z2.
Therefore Sr is single valued.

(2) For x, y ∈ C, we have

f
(
Φrx,Φry

)
+
〈
TΦrx, η

(
Φry,Φrx

)〉
+ ϕ

(
Φry

) − ϕ(Φrx) +
1
r

〈
Φry −Φrx, J(Φrx − x)

〉 ≥ 0,

f
(
Φry,Φrx

)
+
〈
TΦry, η

(
Φrx,Φry

)〉
+ ϕ(Φrx) − ϕ

(
Φry

)
+
1
r

〈
Φrx −Φry, J

(
Φry − y

)〉 ≥ 0.

(3.11)

Setting Λx,y := min{ξ(Φrx −Φry), ξ(Φry −Φrx)} and applying (A2), we get

〈
TΦrx − TΦry, η

(
Φry,Φrx

)〉
+
1
r

〈
Φry −Φrx, J(Φrx − x) − J

(
Φry − y

)〉 ≥ −Λx,y, (3.12)

that is,

1
r

〈
Φry −Φrx, J(Φrx − x) − J

(
Φry − y

)〉 ≥ 〈
TΦry − TΦrx, η

(
Φry,Φrx

)〉 −Λx,y

≥ ξ
(
Φry −Φrx

) −Λx,y ≥ 0.
(3.13)

In (3.13) exchanging the position of Φrx and Φry, we get

1
r

〈
Φrx −Φry, J

(
Φry − y

) − J(Φrx − x)
〉 ≥ 0. (3.14)

Adding the inequalities (3.13) and (3.14), we have

2
r

〈
Φry −Φrx, J(Φrx − x) − J

(
Φry − y

)〉 ≥ 0. (3.15)

It follows that

〈
Φry −Φrx, J(Φrx − x) − J

(
Φry − y

)〉 ≥ 0. (3.16)

Hence

〈
Φrx −Φry, J(Φrx − x)

〉 ≤ 〈
Φrx −Φry, J

(
Φry − y

)〉
. (3.17)

The conclusions (3), (4) follow from Lemma 2.6.
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Example 3.2. Define ξ : R → R and f : R × R → R by

f
(
x, y

)
=

(
x − y

)2
2

, ξ(x) = x2 ∀x, y ∈ R. (3.18)

It is easy to see that f satisfies (A1), (A3), (A4), and (A2): f(x, y) + f(y, x) ≤ min{ξ(x −
y), ξ(x − y)}, for all (x, y) ∈ R × R.

Remark 3.3. Theorem 3.1 generalizes and improves [7, Lemma 3.3] in the following manners.

(1) The condition f(x, y) + f(y, x) ≤ 0 has been weakened by (A2) that is f(x, y) +
f(y, x) ≤ min{ξ(x − y), ξ(y − x)} for all x, y ∈ C.

(2) The control condition ξ(x−y)+ξ(y−x) ≥ 0 imposed on the mapping ξ in [7, Lemma
3.3] can be removed.

If T is monotone that is T is relaxed η-ξ monotone with η(x, y) = x − y for all x, y ∈ C
and ξ = 0, we have the following results.

Corollary 3.4. Let C be a nonempty, bounded, closed, and convex subset of a smooth, strictly convex,
and reflexive Banach space E. Let T : C → E∗ be a monotone mapping and f be a bifunction from
C × C to R satisfying the following conditions (i)–(iv):

(i) f(x, x) = 0 for all x ∈ C;

(ii) f(x, y) + f(y, x) ≤ 0 for all x, y ∈ C;

(iii) for all y ∈ C, f(·, y) is weakly upper semicontinuous;

(iv) for all x ∈ C, f(x, ·) is convex.

For any r > 0 and x ∈ E, define a mapping Φr : E → C as follows:

Φr(x) =
{
z ∈ C : f

(
z, y

)
+
〈
Tz, y − z

〉
+ ϕ

(
y
)
+
1
r

〈
y − z, J(z − x)

〉 ≥ ϕ(z), ∀y ∈ C

}
,

(3.19)

where ϕ is a lower semicontinuous and convex function from C to R. Then, the following holds:

(1) Φr is single valued;

(2) 〈Φrx −Φry, J(Φrx − x)〉 ≤ 〈Φrx −Φry, J(Φry − y)〉 for all x, y ∈ E;

(3) F(Φr) = GEP(f);

(4) GEP(f) is nonempty closed and convex.

4. Strong Convergence Theorems

In this section, we prove the strong convergence theorem of the sequence {xn} defined by
(1.20) for solving a common element in the solution set of a generalized mixed equilibrium
problem and the common fixed point set of a finite family of asymptotically nonexpansive
mappings.
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Theorem 4.1. Let E be a uniformly convex and smooth Banach space and let C be a nonempty,
bounded, closed, and convex subset of E. Let f be a bifunction from C × C to R satisfying (A1)–
(A4). Let T : C → E∗ be an η-hemicontinuous and relaxed η-ξ monotone mapping and ϕ a lower
semicontinuous and convex function from C to R. Let, for each 1 ≤ i ≤ N, Si : C → C be an
asymptotically nonexpansive mapping with a sequence {kn,i}∞n=1, respectively, such that kn,i → 1
as n → ∞. Assume that Ω :=

⋂N
i=1 F(Si) ∩ GMEP(f, T) is nonempty. Let {xn} be a sequence

generated by (1.20), where {tn} and {rn} are real sequences in (0, 1) satisfying limn→∞tn = 0 and
lim infn→∞rn > 0. Then {xn} converges strongly, as n → ∞, to PΩx0, where PΩ is the metric
projection of E onto Ω.

Proof. First, define the sequence {kn} by kn := max{kn,i : 1 ≤ i ≤ N} and so kn → 1 as n → ∞
and

∥∥∥Sh(n)
i(n) x − S

h(n)
i(n) y

∥∥∥ ≤ kn
∥∥x − y

∥∥ ∀x, y ∈ C, (4.1)

where h(n) = j + 1 if jN < n ≤ (j + 1)N, j = 1, 2 . . . ,N and n = jN + i(n); i(n) ∈ {1, 2, . . . ,N}.
Next, we rewrite the algorithm (1.20) as the following relation:

x0 ∈ C, D0 = C0 = C,

Cn = co
{
z ∈ Cn−1 :

∥∥∥z − S
h(n)
i(n) z

∥∥∥ ≤ tn
∥∥∥xn − S

h(n)
i(n) xn

∥∥∥
}
, n ≥ 0,

Dn = {z ∈ Dn−1 : 〈Φrnxn − z, J(xn −Φrnxn)〉 ≥ 0}, n ≥ 1,

xn+1 = PCn∩Dnx0, n ≥ 0,

(4.2)

where Φr is the mapping defined by (3.19). We show that the sequence {xn} is well defined.
It is easy to verify that Cn ∩ Dn is closed and convex and Ω ⊂ Cn for all n ≥ 0. Next, we
prove that Ω ⊂ Cn ∩ Dn. Indeed, since D0 = C, we also have Ω ⊂ C0 ∩ D0. Assume that
Ω ⊂ Ck−1 ∩ Dk−1 for k ≥ 2. Utilizing Theorem 3.1 (2), we obtain

〈Φrkxk −Φrku, J(Φrku − u) − J(Φrkxk − xk)〉 ≥ 0, ∀u ∈ Ω, (4.3)

which gives that

〈Φrkxk − u, J(xk −Φrkxk)〉 ≥ 0, ∀u ∈ Ω, (4.4)

hence Ω ⊂ Dk. By the mathematical induction, we get that Ω ⊂ Cn ∩ Dn for each n ≥ 0 and
hence {xn} is well defined. Now, we show that

lim
n→∞

∥∥xn − xn+j
∥∥ = 0, ∀j = 1, 2, . . . ,N. (4.5)

Put w = PΩx0, since Ω ⊂ Cn ∩Dn and xn+1 = PCn∩Dn , we have

‖xn+1 − x0‖ ≤ ‖w − x0‖, ∀n ≥ 0. (4.6)
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Since xn+2 ∈ Dn+1 ⊂ Dn and xn+1 = PCn∩Dnx0, we have

‖xn+1 − x0‖ ≤ ‖xn+2 − x0‖. (4.7)

Hence the sequence {‖xn − x0‖} is bounded and monotone increasing and hence there exists
a constant d such that

lim
n→∞

‖xn − x0‖ = d. (4.8)

Moreover, by the convexity of Dn, we also have 1/2(xn+1 + xn+2) ∈ Dn and hence

‖x0 − xn+1‖ ≤
∥∥∥x0 − xn+1 + xn+2

2

∥∥∥ ≤ 1
2
(‖x0 − xn+1‖ + ‖x0 − xn+2‖). (4.9)

This implies that

lim
n→∞

∥∥∥∥
1
2
(x0 − xn+1) +

1
2
(x0 − xn+2)

∥∥∥∥ = lim
n→∞

∥∥∥x0 − xn+1 + xn+2

2

∥∥∥ = d. (4.10)

By Lemma 2.2, we have

lim
n→∞

‖xn − xn+1‖ = 0. (4.11)

Furthermore, we can easily see that

lim
n→∞

∥∥xn − xn+j
∥∥ = 0, ∀j = 1, 2, . . . ,N. (4.12)

Next, we show that

lim
n→∞

∥∥∥xn − S
h(n−κ)
i(n−κ) xn

∥∥∥ = 0, for anyκ ∈ {1, 2, . . . ,N}. (4.13)

Fix κ ∈ {1, 2, . . . ,N} and put m = n − κ. Since xn = PCn−1∩Dn−1x, we have xn ∈ Cn−1 ⊆ · · · ⊆ Cm.
Since tm > 0, there exists y1, . . . , yP ∈ C and a nonnegative number λ1, . . . , λP with λ1+· · ·+λP =
1 such that

∥∥∥∥∥xn −
P∑
i=1

λiyi

∥∥∥∥∥ < tm, (4.14)

∥∥∥yi − S
h(m)
i(m) yi

∥∥∥ ≤ tm
∥∥∥xm − S

h(m)
i(m) xm

∥∥∥, ∀i ∈ {1, . . . , P}. (4.15)

By the boundedness of C and {kn}, we can put the following:

M = sup
x∈C

‖x‖, u = P⋂N
i=1F(Si)x0, r0 = sup

n≥1
(1 + kn)‖xn − u‖. (4.16)
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This together with (4.14) implies that

∥∥∥∥∥xn − 1
km

P∑
i=1

λiyi

∥∥∥∥∥ ≤
(
1 − 1

km

)
‖x‖ + 1

km

∥∥∥∥∥xn −
P∑
i=1

λiyi

∥∥∥∥∥ ≤
(
1 − 1

km

)
M + tm,

∥∥∥yi − S
h(m)
i(m) yi

∥∥∥ ≤ tm
∥∥∥xm − S

h(m)
i(m) xm

∥∥∥

≤ tm
∥∥∥xm − S

h(m)
i(m) u

∥∥∥ + tm
∥∥∥Sh(m)

i(m) u − S
h(m)
i(m) xm

∥∥∥

≤ tm‖xm − u‖ + tmkm‖u − xm‖
≤ tm(1 + km)‖xm − u‖
≤ tmr0,

(4.17)

for all i ∈ {1, . . . ,N}. Therefore, for each i ∈ {1, . . . , P}, we get

∥∥∥∥yi − 1
km

S
h(m)
i(m) yi

∥∥∥∥ ≤
∥∥∥yi − S

h(m)
i(m) yi

∥∥∥ +
∥∥∥∥Sh(m)

i(m) yi − 1
km

S
h(m)
i(m) yi

∥∥∥∥

≤ r0tm +
(
1 − 1

km

)
M.

(4.18)

Moreover, since each Si, i ∈ {1, 2, . . . ,N}, is asymptotically nonexpansive, we can obtain that

∥∥∥∥∥
1
km

S
h(m)
i(m)

(
P∑
i=1

λiyi

)
− S

h(m)
i(m) xn

∥∥∥∥∥ ≤
∥∥∥∥∥

1
km

S
h(m)
i(m)

(
P∑
i=1

λiyi

)
− 1
km

S
h(m)
i(m) xn

∥∥∥∥∥

+
∥∥∥∥

1
km

S
h(m)
i(m) xn − S

h(m)
i(m) xn

∥∥∥∥

≤
∥∥∥∥∥

P∑
i=1

λiyi − xn

∥∥∥∥∥ +
(
1 − 1

km

)
M

= tm +
(
1 − 1

km

)
M.

(4.19)

It follows from Theorem 2.3 and the inequalities (4.17)–(4.19) that

∥∥∥xn − S
h(m)
i(m) xn

∥∥∥ ≤
∥∥∥∥∥xn − 1

km

P∑
i=1

λiyi

∥∥∥∥∥ +
1
km

∥∥∥∥∥
P∑
i=1

λi
(
yi − S

h(m)
i(m) yi

)∥∥∥∥∥

+
1
km

∥∥∥∥∥
P∑
i=1

λiS
h(m)
i(m) yi − S

h(m)
i(m)

(
P∑
i=1

λiyi

)∥∥∥∥∥ +

∥∥∥∥∥
1
km

S
h(m)
i(m)

(
P∑
i=1

λiyi

)
− S

h(m)
i(m) xn

∥∥∥∥∥
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≤ 2
[(

1 − 1
km

)
M + tm

]
+
r0tm
km

+ γ−1
(

max
1≤i≤j≤N

(∥∥yi − yj

∥∥ − 1
km

∥∥∥Sh(m)
i(m) yi − S

h(m)
i(m) yj

∥∥∥
))

= 2
(
1 − 1

km

)
M + 2tm +

r0tm
km

+ γ−1
(

max
1≤i≤j≤N

(∥∥yi − yj

∥∥ − 1
km

∥∥∥Sh(m)
i(m) yi − S

h(m)
i(m) yj

∥∥∥
))

≤ 2
(
1 − 1

km

)
M + 2tm +

r0tm
km

+ γ−1
(

max
1≤i≤j≤N

(∥∥∥∥yi − 1
km

S
h(m)
i(m) yi

∥∥∥∥ +
∥∥∥∥yj − 1

km
S
h(m)
i(m) yj

∥∥∥∥
))

≤ 2
(
1 − 1

km

)
M + 2tm +

r0tm
km

+ γ−1
(
2
(
1 − 1

km

)
M + 2r0tm

)
.

(4.20)

Since limn→∞kn = 1 and limn→∞tn = 0, it follows from the above inequality that

lim
n→∞

∥∥∥xn − S
h(m)
i(m) xn

∥∥∥ = 0. (4.21)

Hence (4.13) is proved. Next, we show that

lim
n→∞

‖xn − Slxn‖ = 0; ∀ l = 1, 2, . . . ,N. (4.22)

From the construction of Cn, one can easily see that

∥∥∥xn+1 − S
h(n)
i(n) xn+1

∥∥∥ ≤ tn
∥∥∥xn − S

h(n)
i(n) xn

∥∥∥. (4.23)

The boundedness of C and limn→∞tn = 0 implies that

lim
n→∞

∥∥∥xn+1 − S
h(n)
i(n) xn+1

∥∥∥ = 0. (4.24)

On the other hand, since for any positive integer n > N, n = (n −N)(modN) and n = (h(n)−
1)N + i(n), we have

n −N = (h(n) − 1)N + i(n) = (h(n −N) − 1)N + i(n −N) (4.25)

that is

h(n −N) = h(n) − 1, i(n −N) = i(n). (4.26)
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Thus,

‖xn − Snxn‖ ≤ ‖xn − xn+1‖ +
∥∥∥xn+1 − S

h(n)
i(n) xn+1

∥∥∥ +
∥∥∥Sh(n)

i(n) xn+1 − Snxn

∥∥∥

≤ ‖xn − xn+1‖ +
∥∥∥xn+1 − S

h(n)
i(n) xn+1

∥∥∥ +
∥∥∥Sh(n)

i(n) xn+1 − Snxn+1

∥∥∥ + ‖Snxn+1 − Snxn‖

≤ (1 + k1)‖xn − xn+1‖ +
∥∥∥xn+1 − S

h(n)
i(n) xn+1

∥∥∥ + k1
∥∥∥Sh(n)−1

i(n) xn+1 − xn+1

∥∥∥

≤ (1 + k1)‖xn − xn+1‖ +
∥∥∥xn+1 − S

h(n)
i(n) xn+1

∥∥∥

+ k1
[∥∥∥Sh(n)−1

i(n) xn+1 − S
h(n)−1
i(n) xn

∥∥∥ +
∥∥∥Sh(n)−1

i(n) xn − xn

∥∥∥ + ‖xn − xn+1‖
]

≤ (1 + 2k1)‖xn − xn+1‖ +
∥∥∥xn+1 − S

h(n)
i(n) xn+1

∥∥∥

+ k1
∥∥∥Sh(n−N)

i(n−N) xn+1 − S
h(n−N)
i(n−N) xn

∥∥∥ + k1
∥∥∥Sh(n−N)

i(n−N) xn − xn

∥∥∥

≤ (1 + 2k1)‖xn − xn+1‖ +
∥∥∥xn+1 − S

h(n)
i(n) xn+1

∥∥∥

+ k1kn−N‖xn+1 − xn‖ + k1
∥∥∥Sh(n−N)

i(n−N) xn − xn

∥∥∥

≤ (1 + 2k1 + k1kn−N)‖xn − xn+1‖ +
∥∥∥xn+1 − S

h(n)
i(n) xn+1

∥∥∥ + k1
∥∥∥Sh(n−N)

i(n−N) xn − xn

∥∥∥.
(4.27)

Applying the facts (4.11), (4.13), and (4.24) to the above inequality, we obtain

lim
n→∞

‖xn − Snxn‖ = 0. (4.28)

Therefore, for any j = 1, 2, . . . ,N, we have

∥∥xn − Sn+jxn

∥∥ ≤ ∥∥xn − xn+j
∥∥ +

∥∥xn+j − Sn+jxn+j
∥∥ +

∥∥Sn+jxn+j − Sn+jxn

∥∥

≤ ∥∥xn − xn+j
∥∥ +

∥∥xn+j − Sn+jxn+j
∥∥ + k1

∥∥xn+j − xn

∥∥

= (1 + k1)
∥∥xn − xn+j

∥∥ +
∥∥xn+j − Sn+jxn+j

∥∥ −→ 0 as n −→ ∞,

(4.29)

which gives that

lim
n→∞

‖xn − Slxn‖ = 0; ∀l = 1, 2, . . . ,N, (4.30)

as required. Since {xn} is bounded, there exists a subsequence {xni} of {xn} such that xni ⇀
x̃ ∈ C. It follows from Lemma 2.4 that x̃ ∈ F(Sl) for all l = 1, 2, . . . ,N. That is x ∈ ⋂N

i=1 F(Si).
Next, we show that x̃ ∈ GMEP(f, T). By the construction of Dn, we see from

Theorem 2.1 that Φrnxn = PDnxn. Since xn+1 ∈ Dn, we get

‖xn −Φrnxn‖ ≤ ‖xn − xn+1‖ −→ 0. (4.31)
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Furthermore, since lim infn→∞rn > 0, we have

1
rn
‖J(xn −Φrnxn)‖ =

1
rn
‖xn −Φrnxn‖ −→ 0, (4.32)

as n → ∞. By (4.32), we also have Φrni
xni ⇀ x̃. By the definition of Φrni

, for each y ∈ C, we
obtain

f
(
Φrni

xni , y
)
+
〈
TΦrni

xni , η
(
y,Φrni

xni

)〉
+ ϕ

(
y
)
+

1
rni

〈
y −Φrni

xni , J
(
Φrni

xni − xni

)〉

≥ ϕ
(
Φrni

xni

)
.

(4.33)

By (A3), (4.32), (ii), the weakly lower semicontinuity of ϕ and η-hemicontinuity of T , we
have

ϕ(x̃) ≤ lim inf
i→∞

ϕ
(
Φrni

xni

)

≤ lim inf
i→∞

f
(
Φrni

xni , y
)
+ lim inf

i→∞

〈
TΦrni

xni , η
(
y,Φrni

xni

)〉

+ ϕ
(
y
)
+ lim inf

i→∞
1
rni

〈
y −Φrni

xni , J
(
Φrni

xni − xni

)〉

≤ f
(
x̃, y

)
+ ϕ

(
y
)
+
〈
Tx̃, η

(
y, x̃

)〉
.

(4.34)

Hence,

f
(
x̃, y

)
+ ϕ

(
y
)
+
〈
Tx̃, η

(
y, x̃

)〉 ≥ ϕ(x̃). (4.35)

This shows that x̃ ∈ EP(f, T) and hence x̃ ∈ Ω :=
⋂N

i=1 F(Si) ∩GMEP(f, T).
Finally, we show that xn → w as n → ∞, where w := PΩx0. By the weakly lower

semicontinuity of the norm, it follows from (4.6) that

‖x0 −w‖ ≤ ‖x0 − x̃‖ ≤ lim inf
i→∞

‖x0 − xni‖ ≤ lim sup
i→∞

‖x0 − xni‖ ≤ ‖x0 −w‖. (4.36)

This shows that

lim
i→∞

‖x0 − xni‖ = ‖x0 −w‖ = ‖x0 − x̃‖ (4.37)

and x̃ = w. Since E is uniformly convex, we obtain that x0 − xni → x0 − w. It follows that
xni → w. So we have xn → w as n → ∞. This completes the proof.
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5. Corollaries

Setting Si ≡ S, an asymptotically nonexpansive mapping, in Theorem 4.1 then we have the
following result.

Theorem 5.1. Let E be a uniformly convex and smooth Banach space and let C be a nonempty,
bounded, closed, and convex subset of E. Let f be a bifunction from C × C to R satisfying (A1)–
(A4). Let T : C → E∗ be an η-hemicontinuous and relaxed η-ξ monotone mapping and ϕ a lower
semicontinuous and convex function from C to R. Let S be an asymptotically nonexpansive mapping
with a sequence {kn}, such that kn → 1 as n → ∞. Assume that Ω := F(S) ∩ GMEP(f, T) is
nonempty. Let {xn} be a sequence generated by

x0 ∈ C, D0 = C0 = C,

Cn = co{z ∈ Cn−1 : ‖z − Snz‖ ≤ tn‖xn − Snxn‖}, n ≥ 1,

un ∈ C such that f
(
un, y

)
+ ϕ

(
y
)
+
〈
Tun, η

(
y, un

)〉
+

1
rn

〈
y − un, J(un − xn)

〉
, ∀y ∈ C, n ≥ 1,

Dn = {z ∈ Dn−1 : 〈un − z, J(xn − un)〉 ≥ 0}, n ≥ 1,

xn+1 = PCn∩Dnx0, n ≥ 0,
(5.1)

where {tn} and {rn} are real sequences in (0, 1) satisfying limn→∞tn = 0 and lim infn→∞rn > 0.
Then {xn} converges strongly, as n → ∞, to PΩx0, where PΩ is the metric projection of E onto Ω.

It’s well known that each nonexpansive mapping is an asymptotically nonexpansive
mapping, then Theorem 4.1 works for nonexpansive mapping.

Theorem 5.2. Let E be a uniformly convex and smooth Banach space and let C be a nonempty,
bounded, closed, and convex subset of E. Let f be a bifunction from C × C to R satisfying (A1)–
(A4). Let T : C → E∗ be an η-hemicontinuous and relaxed η-ξ monotone mapping and ϕ a lower
semicontinuous and convex function from C to R. Let S be a nonexpansive mapping of C into itself
such that Ω := F(S) ∩GMEP(f, T)/= ∅. Let {xn} be the sequence in C generated by

x0 ∈ C, D0 = C0 = C,

Cn = co{z ∈ Cn−1 : ‖z − Sz‖ ≤ tn‖xn − Sxn‖}, n ≥ 1,

un ∈ C such that f
(
un, y

)
+ ϕ

(
y
)
+
〈
Tun, η

(
y, un

)〉
+
1
r

〈
y − un, J(un − xn)

〉 ≥ ϕ(un),

∀y ∈ C, n ≥ 0,

Dn = {z ∈ Dn−1 : 〈un − z, J(xn − un)〉 ≥ 0}, n ≥ 1,

xn+1 = PCn∩Dnx0, n ≥ 0,
(5.2)

where {tn} and {rn} are real sequences in (0, 1) satisfying limn→∞tn = 0 and lim infn→∞rn > 0.
Then, the sequence {xn} converges strongly to PΩx0.
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If one takes T ≡ 0 and ϕ ≡ 0 in Theorem 4.1, then one obtains the following result concerning
an equilibrium problem in a Banach space setting.

Theorem 5.3. Let E be a uniformly convex and smooth Banach space and let C be a nonempty,
bounded, closed, and convex subset of E. Let f be a bifunction from C × C to R satisfying (A1)–(A4)
and let S be an asymptotically nonexpansive mapping of C into itself such that Ω :=

⋂∞
n=0 F(Sn) ∩

EP(f)/= ∅. Let {xn} be the sequence in C generated by

x0 ∈ C, D0 = C0 = C,

Cn = co{z ∈ Cn−1 : ‖z − Snz‖ ≤ tn‖xn − Snxn‖}, n ≥ 1,

un ∈ C such that f
(
un, y

)
+

1
rn

〈
y − un, J(un − xn)

〉 ≥ 0, ∀y ∈ C, n ≥ 0,

Dn = {z ∈ Dn−1 : 〈un − z, J(xn − un)〉 ≥ 0}, n ≥ 1,

xn+1 = PCn∩Dnx0, n ≥ 0,

(5.3)

where {tn} and {rn} are real sequences in (0, 1) satisfying limn→∞tn = 0 and lim infn→∞rn > 0.
Then the sequence {xn} converges strongly to PΩx0.

If one takes f ≡ 0 and T ≡ 0 and ϕ ≡ 0 in Theorem 4.1, then one obtains the following
result.

Theorem 5.4. Let E be a uniformly convex and smooth Banach space,C a nonempty, bounded, closed,
and convex subset of E and S an asymptotically nonexpansive mapping of C into itself such that
Ω :=

⋂∞
n=0 F(Sn)/= ∅. Let {xn} be the sequence in C generated by

x0 ∈ C, C0 = C,

Cn = co{z ∈ Cn−1 : ‖z − Snz‖ ≤ tn‖xn − Snxn‖}, n ≥ 1,

xn+1 = PCnx0, n ≥ 0.

(5.4)

If {tn} ⊂ (0, 1) and limn→∞tn = 0, then {xn} converges strongly to PΩx0.
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