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The existence of weak solutions is studied to the initial Dirichlet problem of the equation u; =

u diV(|Vu|p(x)_2Vu), with inf p(x) > 2. We adopt the method of parabolic regularization. After es-
tablishing some necessary uniform estimates on the approximate solutions, we prove the existence
of weak solutions.

1. Introduction

In this paper, we investigate the existence of solutions for the p(x)-Laplacian equation

ou
— 4 di p(x)-2
Frie ud1V<|Vu| Vu), (x,t) € Qr. (1.1)

The equation is supplemented the boundary condition
u(x,t) =0, x€09Q, (1.2)
and the initial condition
u(x,0) =up(x), x€9Q, (1.3)

where Qr = Q x (0,T), inf p(x) > 2, Q C RN is a bounded domain with smooth boundary 0Q
and 0 < ug(x) € C(Q) n WP (Q).
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In the case when p is a constant, there have been many results about the existence,
localization and extendibility and of weak solutions. We refer the readers to the bibiography
given in [1-5] and the references therein.

A new interesting kind of fluids of prominent technological interest has recently
emerged, the so-called electrorheological fluids. This model includes parabolic equations
which are nonlinear with respect to the gradient of the thought solution, and with variable
exponents of nonlinearity. The typical case is the so-called evolution p-Laplace equation with
exponent p as a function of the external electromagnetic field (see [6-12] and the references
therein). In [6], the authors studied the regularity for the parabolic systems related to a class
of non-Newtonian fluids, and the equations involved are nondegenerated.

On the other hand, there are also many results to the corresponding elliptic p(x)-
Laplace equations [13-15].

In the present work, we will study the existence of the solutions to problem (1.1)—(1.3).
As we know, when p is a constant, the nondegenerate problems have classical solutions, and
hence the weak solutions exist. But in the case of p(x)-Laplace type, there are no results to the
corresponding non-degenerate problems. Since (1.1) degenerates whenever u = 0 and Vu =0,
we need to regularize the problem in two aspects corresponding to two different degeneracy:
the first is the initial and boundary value and the second is the equation. We will first
consider the non-degenerate problems. Based on the uniform Schauder estimates and using
the method of continuity, we obtain the existence of classical solutions for non-degenerate
problems. After establishing some necessary uniform estimates on the approximate solutions,
we prove the existence of weak solutions.

This paper is arranged as follows. We first state some auxiliary lemmas in Section 2,
and then we study a general quasilinear equation in Section 3. Subsequently, we discuss the
existence of weak solutions in Section 4.

2. Preliminaries

Denote that

p+ = esssup p(x), p- =ess igfp(x). 2.1)
@

Throughout the paper, we assume that

2<p-<p(x)<ps<oo, V(xt)eQx][0,T], (2.2)

where p_, p.. are given constants.
To study our problems, we need to introduce some new function spaces. Denote that

LP®)(Q) = {u : u is a measurable real-valued function, I [u(x)|P (x>dx<oo},
Q

u(x) p(x)

|u|p(x):inf{f\:)L>O,J‘ del},
Q

L'@(Qr) = {u: uP™ e L'Qn)},
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0, T Wy " (@) = {u: [ul’™ € L'(Qr), [Vul’™ € L'(Qr), ulya = 0},
CHrakral2(0ny = {u cue C*RQrp), D/Dju e C%%2 2r+s=2k, 0<a< 1},
C**(Qr) = {u: DiD5u € C(Qr), 0<2r+s <2k},

WhrO@Q) = fu:u e 'V(Q), [Vl € PD(Q)},

|y, oy = [l @) + Vil gy, Yu € WHPE(Q).

(2.3)
We use Wg’p ®)(Q) to denote the closure of Ce(Q) in WP,
Remark 2.1. In [16,17], Zhikov showed
1,p(x x
W, P (Q) # {v L0 € WHPO(Q), 1]y = o}. (2.4)

Hence, the property of the space is different from the case when p is a constant. This will
bring us some difficulties in taking the limit of the weak solutions. Luckily, our approximating

solutions are in W(} ’p(x), and hence the limit function is also in Wg’p () which avoids the above
difficulties.

We now give the definition of the solutions to our problem.

Definition 2.2. A nonnegative function u € L*(Qr), |Vu| € LP®)(Qr), and u; € L?*(Qr) is said
to be a weak solution of (1.1)—(1.3), if for all ¢ € C5°(Qr) satisfies the following:

Jf <u(pt — u|VuP®2vuve - |Vu|”(x)(p>dx dt =0,

Qr (2.5)
limf |u(x,t) — up(x)|dx = 0.
t=0 )¢

In the following, we state some of the properties of the function spaces introduced as
above.

Proposition 2.3 (see [15, 18]).

(i) The space (LP™(Q), |- |p(x)) is a separable, uniform convex Banach space, and its conjugate
space is L1%(Q), where 1/p(x) +1/q(x) = 1. For any u € LP™(Q) and v € L10(Q),
we have

1 1
uvdx| < <— + —>|u| 100 - 2.6
fQ ot g )MVl (2.6)

(i) If p1,p2 € Co(Q), p1(x) < pa(x) for any x € Q, then LP>®) — LP1®) and the imbedding
continuous.
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(iii) There is a constant C > 0, such that

ul, ., < C|Vu Yue WP (Q). (2.7)

p(x) p(x)”

This implies that |Vul,(x) and ||ull1,p(x) are equivalent norms ofWS’p(x),

(iv) We have [, [ulP™dx > |u|Z;x) -1, forall u € LF™(Q).

Proposition 2.4 (see [18]). If we denote

p(u) = j [uP@dx, VuelFP(Q), (2.8)
Q

then

(i) |u|p(x) < 1(: 1> 1) g P(”) < 1(: 1;> 1)/
P+
p(x)’

P- P+
|u|p(x) <l= |u|p(x) 2 P(u) 2 |u|p(x)/

(i) lulp) > 1= [l < p(u) < Jul

(i) [ulp) — 0 & p(u) = 0; [ulpr) — 0 & p(u) — oo.

Lemma 2.5 (see [4]). Let 6 > 0, A(1)) = (A1(),...,An()) = (72 + )P 2D2, 5 = (s,...,
7N) € RN. Then

[A(m) = AT - [n-nT2Cln-nI", Voo eRY, (2.9)
where C = C(p) is a positive constant depending on p.

3. A General Quasilinear Equation

Here, we will consider the general quasilinear equations

us — aj; (x,t,u, ux)uxi,x]. +a(x,t,u,uy,) =0, (3.1)

u|1"T = q}|rT, (3‘2)

where I't = 9Q x (0,T] U Q x {0}.

Proposition 3.1 (see [19, Theorem 2.9 of Chapter I]). Let u(x,t) be a classical solution of (3.1)
in Qr. Suppose that the functions a;j(x,t,u,p) and a(x,t,u,t) take finite value for any finite u,p,
and (x,t) € @T, and that for (x,t) € Qr and arbitrary u

aij(x,t,u,0)¢ié; > 0,
(3.3)
ua(x,t,u,0) > —bju® - by,
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where by and by are nonnegative constants. Then

max|u(x,t)| < M,
na lu(x, t)| (3.4)

where M depends only on by, by, T, and maxr, |u].
We suppose that for (x,t) € @T,maxQT|u(x, t)] £ M and arbitrary g the functions

aij(x,t,u,q), a(x,t,u,q) are continuous in x,t,u,q, continuously differentiable with respect
to x, u, and g, and satisfy the inequalities

v(1+ )" < @y (x, 11, 9) i < po(1+ |q])" R,

aa,’j 3 oa m(x,t)

— | (1+ +|a| + [— (1 + < 1+ ~,
Sttt [ 2]l <m0 e

aaij 2 oa m(x,t)+1

et e [ 22 < e pad @ o™, 65)

< (e+ P(lq))) (1 +a)" "7,

6ai]~
ou

oa m(x,t)
28 < (e P(laD) (@ + g™,

where P(p) is a nonnegative continuous function that tends to zero for p — oo and 1 <
m(x,t) € C1(Qyr) is an arbitrary function.

Lemma 3.2. Let u(x,t) be a classical solution of (3.1) in Q. Suppose that the conditions of
Proposition 3.1 hold and satisfy (3.5) with a sufficiently small € determined by the numbers M, v,
W, pa, and

P = max P(p). (3.6)
Then
rrg}x|ux(x, t)] < M. (3.7)

The proof of Lemma 3.2 is quite similar to the Theorem 4.1, chapter VI of [19]; one
only has to replace m with m(x, t) and remark that the constants in the proof are depending
only on inf m(x, t) and sup m(x, t); we omit the details.

Theorem 3.3. Suppose that the following conditions are fulfilled.

(a) For (x,t) € @T and arbitrary u either conditions (3.3) are fulfilled.

(b) For (x,t) € @T, |u| < M (where M is taken from estimate (3.4)) and arbitrary p, the
functions a;j(x,t,u, p) and a(x,t,u,p) are continuous and differentiable with respect to x,
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u, and p and satisfy inequalities (3.5) with a sufficiently small € determined by the numbers
M, v, p, p, and

P = maxP(p). (3.8)
p=0

(c) For (x,t) € @T lu| < M and |p| < M (where M; is taken from estimate (3.7)), the
functions a;j(x,t,u,p) and a(x,t,u,p) are continuously differentiable with respect to all
of their arguments.

(d) The boundary condition (3.2) is given by a function g (x,t) belonging to C*F1+P/2(Qr)
and satisfying on Sp = {(x,t) : x € 0Q,t = 0} (3.1), that is,

@t — aij (%,0,¢(x,0), ¢ (x,0)) g, + a(x,0,¢5(x,0)) |, co0 = 0 (3.9)

(in other words, the compatibility conditions of zero and first orders are assumed to be
fulfilled).
(€) We have 0Q € C>*F.

Then there exists a unique solution of problem (3.1) and (3.2) in the space C*F*F/2(Q;).
This solution has derivatives uyy, from L*(Qr).

Proof. We consider problem (3.1) and (3.2) along with a one-parameter family of problems of
the same type

2 m(x)/2-1 j
Lou=u; — |Ta;j(x,t,u,u,) + (1 -7) <1 + ux> i |t

m(x)/2-1
v raletuuy) — (1-17) [q,t_ <1+q}£> ) Aw] _o, (3.10)

ulp, = ‘P|Fr’ 0<7<1, assuming ¢ € C2+ﬁ'1+ﬂ/2<§T>.

Define the Banach space
X = {w € c1+“f<1+“>/2(@> | wlp, = o}. (3.11)

For any w € X, let v = w + . Using Schauder theory, the linear problem

m(x)/2-1
611] (2

m(x)/2-1
gi—(1+42) Aqf] =0, G12)

v — [Tai,-(x, tw,wy) +(1-1) <1 + wi)

+ta(x,t,w,wy) - (1-1)

u|FT = (P|FT

admits a unique solution u € C**#%/2(Q.). Let z = u — ¢, clearly z € X, and define the
map G : X — X such that z = G(w). By [19], we know that G is continuous and compact.
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By Proposition 3.1, Lemma 3.2, and the Leray-Schauder fixed point principle, the operator G
has a fixed point u. O

4, Existence

In this section, we are going to prove the existence of solutions of the problem (1.1)—(1.3).

Theorem 4.1. Assume that p(x) € CY(Q), infp(x) > 2, and 0 < u(x) € C(Q) NW P (Q).
Then the problem (1.1)—(1.3) admits a weak solution u.

Consider the following problem:

ou,, . (p(x)-2)/2
% = uE,qd1V<<|VuE,q|2+11> Vug,,l>, (4.1)

ue/’llST =&, ug,,l|t:0=u0+g, (42)

where St =0Q x (0,T], € € (0,1), and 7 € (0, €). Roughly speaking, here we use to regularize

the initial-boundary value and use 7 to regularize the equation. Thus, we have to carry out

two limit processes, that is, first let 4 — 0 (along a certain subsequence) and then let e — 0.
We first change (4.1) into the form

Uy — ai,-(x, t,u, ux)uxi,xj +a(x, t,u,uy) =0, (4.3)

where

> (p(x)-2)/2 ) (p(x)-4)/2

aij(x,t,u,uy) = ub;; <|Vu|2 +17 +u(p(x)-2) <|Vu|2 +17 oiudju,

(4.4)

>(P(X)—2

/2
a(x, t,u,uy) = u%<|Vu|2 +1 : (31-;9(x)6iuln<|Vu|2 + 11).

It is easily seen that (4.4) satisfies (3.3) and (3.5), where p(x) instead of m(x,t). By
Theorem 3.3, we know that (4.1)-(4.2) has a classical solution .

Proposition 4.2. We have

€ <y < |uol, + & Ue,y S Uy, for e < e (4.5)

Proof. By the maximum principle, we know that £ < 1, , < |ug|o + €.
A simple calculation shows that

O,y g,y
a—; — ai]' (x, t, ugl,yl, Vusl,,l) Walx] + a(x, t, ugllrll V”el,rz) = 01
o, | (4.6)
2, 7
5 aij (%, ey, y, Vidg, ) 5 0%, +a(x,t,ug, y, Vite, ) =0,

where a;j(x,t,u, u,) and a(x,t, u,uy,) are defined as (4.4).
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It is easy to prove that
&iai; (X, b, Uey y, Vide, )& 2 emPOD212, wg e RN, (4.7)

Hence, we have

Oug,y O,y

0% (they,y — ey )
= T \Man Py

= aij (x, t, Uei,ns Vu£1,7’l> 0x; axl
Pty (4.8)

0x; 0X;

+ [aij (o, t ey, Vidg, ) — aij (X, b, Uy, y, Vi, )]

+ [a(x,t,uey,p, Vidg, ) — a(x,t, e, y, Vidg, y)]-

Letw = ug,,y — Uey,y, aij(x,t) = aij(x,t,ug,y, Ve, ). Using the mean value theorem, we have

g,
[aij (o, £, ey, Vider, ) = @ij (%, ey, ny Videy, )] W
o*u
= [a,-]‘ (x, £ Uey,n, Vuswz) — aij (x, t, e,y V”Szﬂl)] .
axi ax]-
(4.9)
g,
+ [aij (%, t, ey, Vit y) — aij (X, 8, Uey, n, Ve, y) | Bx; 0x;
0
- dk(x,t)a—:; + e(x, bw.
Similarly, we get
ow
a(x/ t/ u&‘],r[/ Vué‘]r?l) - a(x/ t/ u&‘z,r[/ Vuez,ﬂ) = fk (x/ t) a_xk + g(x/ t)w/ (410)
where di(x,t),e(x,t), fx(x,t), and g(x,t) are bounded functions. Hence, we see that
0w _ i, =0 0w -+ be(x, t) +c(x ). (4.11)
ot TV oxax K '

Since w < 0 on I't, by comparison principle of linear parabolic equation, we have w < 0. O

Lemma 4.3. Forall a € [0,1) and 1 € (0, €), there hold

p(x)/2
| Vi, |2+11

H< "ua> dxdt < C,

Qr 5’1

6uE -
JJ dx dt <C.
Qr

(4.12)
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Proof. Multiplying (4.1) by 1% , integrating both sides of the equality over Qr and integrating

by parts, we derive

0
H ”E“ 1 doc dt = —f S T) Ul (x,0) ) e
Qr
x)-2)/
= J‘J‘Q u div<<|Vu€,,1|2 +71>(p( " 2Vug,q)dxalt
(p(x)-2)/2 Ok,
B G e

_(1—0()J‘J‘ <|Vu5,,1|2+ >(P(x)2 |Vu5,1|u dx dt,
Qr

E?’l’

(4.13)

where v denotes the outward normal to 0Q x (0,T). Since from (4.5), u,,, > ¢, we have
Oug,,/0v <0 on 0Q x (0, T). Hence

x)-2)/
HQ (1ol 1) " VP, e it < i _1a)2 fgu;j;(x,omxgc, (4.14)

where C = C(a, Q, |uol,,)-
Using u,,, > € > 17 and Young’s inequality, we have

2 (p(x)-2)/2  _
qff Vug,|"+1 u,, dx dt
or <| € 'll > £,1

> (p(x)-2)/2

<|V”€rrl| +1
< JI (p(x)-2)a/p(x) 2a/p(x) dx dt (4'15)
Qr u‘fq P uE,,lp

1 /2
< EI[I[QT<|VuEITI|2+71> uy dxdt + C(p-,p:, T,Q).

Combining (4.14) with (4.15) yields

JfQ <|Vu€,rl |2 + n)p(x)/zu;“,l dxdt = ff |Vue,, |2 + 11>(P(x)72)/2u;“n <|Vug,,l |2 + q)dx dt
T
< HJJ | Vi, |* + >(p(x uy dxdt+C

(x)/2
< —ff |Vue,rl| +71>Ig ufdxdt+C(p,T,Q).
2)),, :
(4.16)

Hence,

(x)/2
ff (|Vug,,1|2 + q)p uydxdt < C. (4.17)
Qr
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Multiplying (4.1) by (du,,/0t) u} n, integrating both sides of the equality over Qr and
integrating by parts and noticing that (u,,); = 0 on 0Q x (0,T), we derive

oL,
H < - ”> ughdx dt
Qr
(p(x)-2)/2 Ou,
IIQT le( |Vug,l| > ug,,z> de dt
(p(x)-2)/2 O,y
IIQT d1V< |Vu5,1| ) ug,l7>dx dt
(p(x)-2)/2 Ou,
-H <<|Vug,,1|2+11)p Vug,q>V< g'”>dxdt
Qor t (4.18)
(p(x)-2)/2 ou,
_JJ <<|Vu€rn|2+71> b Vum>V<%>dxdt

= f p(x)<|Vu£,1(x T)| +11> (X)/zdx

2 p(x)/2
+ fg ;m (|Vug,,1(x,0)| + 71) dx

1 2 p(x)/2
< —_— .
<[ e (7l +2)" s

O

Equation (4.5), Lemma 4.3, and Proposition 2.3 imply that, for any € € (0,1), there
exists a subsequence of u,,, denoted by u,y,, and a function u. € L*(Qr) Vu € LPY(Qr),
such that,asnp =1 — 0,

Uy — U, a.e in Qr, (4.19)

Vue, — Vu,, weaklyin LPW (Qr), (4.20)
Ou, n ou, 5

e, i . 4.21

o o weaklyin L*(Qr) (4.21)

Lemma 4.4. As 1 =1 — 0, we have

M ” | Vit — Vi |[PPdxc dt — 0,
Qr

2) f f |[Vate " = [V P doe dt — 0,
Qr

) HQT(
@ HQ

(4.22)

|Vug,,1|2 — |V [P™

(p(x)-2)/2
) e dxdt — 0,

> (p(x)-2)/2

vus,q - u£|vug|p(x)_2Vug dx dt — 0.

ug,,l<|Vug,,1|2 +




Journal of Applied Mathematics 11

Proof. Observe that (uz, — u;)/uz, € LPD(0,T; Wé’p “(Q)). Multiplying (4.1) by (uc, —
ug)/u,,,, integrating both sides of the equality over Qr and integrating by parts, we derive

Ou y U, € (p(x)-2)/2
H ( A ZNEE (Va4 1) VuE,nV(ug,,l—ug)>dxdt=0. (4.23)
Qr

Uey

By Holder inequality and Lemma 4.3, we obtain

a £ € €
” AT o, (1 —0), (424)
Qr Ueyn

Hence,

(p(x)-2)/2
JTQ <|Vu£,l |2 + 7l> ’ VeV (e — ue)dx dt — 0. (4.25)

We divide the integral in (4.25) in the following way:

(p(x)-2)/2
ff <|Vug,q|2+1l> Vug,rlv(ug,yl_ug)dxdt
Qr
-2)/2 -2)/2
[ Tuealn) " g = () ] 9 - )t

Qr
-2)/2

+ f f [<|Vug|2+11>(p 0 —|Vug|(p(x)_2)]VuEVug,,ldxdt

Qr

(p(x)-2)/2
+” [|Vu£|(”(x)_2) = (1Vue*+ 1) e ]|Vug|2dxdt
Qr

+ If |Vu€|(p(x)_2)VuEV(u5,n - ug)dx dt
Qr

=L+ + I3+ 1.

(4.26)
From (4.20), we see that
I, —0, (31—0). (4.27)
Using Lemma 4.3, we have
< [ (vulen)™" v | axa
o (4.28)

(p(x)-2)/2
< ﬂ” p(0) (Vi +1) b dxdt —0, (71— 0).
2 Qr
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Now we estimate I,. If p(x) € (2,3], then (p(x) - 1)/2 € (0,1]. Using |a" — b"| < |a - b|"
(re[0,1],a,b>0) gives

o],

< 11(,,_,”/2[ I |Vue,|dxdt —0, (71— 0).
Qr

> (p(x)-1)/2

<|Vu5|2 +1 — [V PO | Vi | doc it

(4.29)

If p(x) > 3, we obtain
(p-3)/2
| < g” (p(x) = 1) (| + 1) T Vugy|dxdt — 0, (7 — 0). (4.30)
Qr
By (4.25), (4.26), and I, I3, I, — 0, we obtain

x)-2)/2 x)-2)/2
I = ff [<|Vu€,,1|2 + q>(p( 2 Vg, - <|Vug|2 + 71>(p( " V”s] +V (e — ue)dx dt — 0,
Qr

(11 — 0).
(4.31)

Again by Lemma 2.5, we get

(p(x)-2)/2 (p()-2)/2
I = ff [(|Vug,rz|2 + 11) Vi, — (IVu$|2 + ’1) vug] Y (1t — ue)dox dt
Qr

> CII | Ve, - Vu£|p(x)dx dt.
Qr

(4.32)

Letting 7 — 0, we obtain (1). Again noticing that

H V200" = V0P| e

£,1 £
Qr
< fo PO (| Vite| + 1Vaae )P || V| = Ve dxc dt
T

(4.33)

< ff p(x) (| Vg, | + |Vu5|)p_1|Vug,,1 - Vu,|dx dt
Qr

< Cp+|| Ve, | + |V”E||p(x) |Vitey = Viee |
< C| Vg, — Vug|

p(x)

p(x)”
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by Proposition 2.4, we see that (2) holds. To prove (3), we have

-2)/2
[ | Qmaal+n)™ 19 = 90|
Qr
-2)/2
< ff <|Vug,,1|2 +11>(P(X) 2 |Vug,,1|p(x)_2 |Vu5,,1|2dx dt
Qr
i f f |Vt " = [Vue P |dxc i
Qr

x)/2
)p( ) dx dt

Il

<|Vug,,1|2 +1 - |Vu6,n|r’(x) |dx dt + J‘J‘Q ||Vu6,n|i’(x) _ |Vug|P(’C)
T

(p(x)-2)/2
< EH p0) ([Tt +1) " Taxdt+ H |1Vt [P = 19| c .
- Qr Qr
(4.34)
Using Lemma 4.3 and (2), we see that (3) holds.
Finally, we prove (4). We have
(p(x)-2)/2
ff Ugy <|Vu€,,1 |2 + 11) e Ve y — te| Vi [P 2 Vi, | dox dt
Qr
(p(x)-2)/2
SJT |u€,,l—ug|<|Vug,,1|2+11> | Ve | dx dt
Qr
(p(x)-2)/2
+ II U, <|Vu£,,1 |2 + 11) e |V, — Vug|dx dt (4.35)
Qr
(p(x)-2)/2
" f f e (Ve )" = VU 02| Ve it
Qr
=I,+ 1, + 1.
Equation (4.19) implies that
I,—0, (71— 0). (4.36)
To estimate I;,, notice that
2
< - .
fos C| [Vitea|”+ 11|(P(X)*2)P(X)/2(P(X)*1) |Viten = Vitelpy =0 (1—0) (4.37)
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As p(x) € (2,3], we have (p(x) —2)/2 € (0,1],

(p(x)-2)/2
| |Vue|dx dt

I < C” |[Vates | = Ve + 1
o

< Cff 2(P(X)—2)/2 <| |Vu€,q |2 _ |Vu€|2
Qr

< C” 200ID/2| 7y, Y|P D2 (|, [+ Vi)
Qr

(p(x)-2)/2

+ 11|(”_2)/2>|Vu£|dx dt

b)/2 (4.38)
dx dt

+ CI (Zq)(p(x)_z)/2|Vu5|dx dt.
Qr

By Holder inequality, we have

I.—0, (n—0). (4.39)
If p(x) > 3, we have
te<cff - ((19ual +n)"" e e )
T
. ‘ <|Vu£,,1|2 + q)l/z — |Vu,|

-3)/
< C” (p(x)-2) <<|V”m|2 . Tl) e |Vu£|p(x)—3>
Qr

|2

|Vue|dx dt

172
. | |Vite | + 17— Ve |Vu,| dx dt (4.40)

-3)/
<C2 x)-2 Vug |~ + 32+ Vu P~
<c22 | (p( o) e e
Qr

(| Viagy| + |Vu5|)3/2|V(u5,,1 —u,)|dx dt

(p(x)=3)/2
- c(zq)l/ZHQ (p(x) -2) <<|Vug|2 1) ’ - |vug|f’<x>-3> Ve |dax dt.

Hence,
I.—0, (71 — O). (4.41)

Thus (4) is proved, and the proof of Lemma 4.4 is complete. O

Proposition 4.5. We obtain that u, is a weak solution of the problem

ou
- ; p(x)-2
Erial d1V<|Vu| Vu),

uls, = ¢, Ul,g = Up + ¢,

(4.42)
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then

e< Ug < |u0|oo té, Ug < Ugy, (51 < 52)/ ae.in QT/ (443)

2
\VuPdx dt < C, Oue\ grdt<C, (4.44)
Qr Qr ot

where C is independent of €.

Proof. Obviously, for all ¢ € (0,1), u. — ¢ € LP®(0,T; W™ (Q)). By Proposition 4.2
and (4.19)—(4.21), we know that (4.43) holds. (4.44) follows from (4.5), (4.19)—(4.21), and
Lemma 4.3. To prove that u satisfies the integral equality in Definition 2.2, we multiply (4.1)
by ¢ € C5°(Qr), integrate both sides of the equality on Qr, and integrate by parts to derive

2 (p(x)-2)/2
fo [—ug,q(pt + Uy <|Vu5,,1| + Tl> Vi, Vo
T
(4.45)
(p(x)-2)/2
+<|Vu€,7l|2+11> ! |Vug,,l|2(p]dxdt=0.
Letting 17 = 7, — 0 to pass to limit and using (4.19) and Lemma 4.4 show that
[—u 0t + 1| Vit | PO DV, Vi + | Via PO ]d dt =
eWt £ £ eV | ue| plax t=0. (446)
Qr
Applying Lemma 4.3, we derive
f |14e,y — 10(x) — g|dx < Ct'/?, (4.47)
Q
where C is independent of € and 7. Hence,
j |ue —ug(x) —gldx — 0, (t —0). (4.48)
Q
O

From (4.43), we see that u is bounded and increasing in €, which implies the existence
of a function u, such that,ase — 0,

u. —u, a.e.inQr, (4.49)
Vu, — Vu, weaklyin L™ (Qr), (4.50)
ou, ou

— in 2 4.51
5 o weakly in L*(Qr). (4.51)



16 Journal of Applied Mathematics

Lemma 4.6. As ¢ — 0, we have

ff dx dt — 0,
Qr

H |Vue - VuPPdxdt — 0, Q° = {(x,t) € Qr,u. > c,c >0}, (4.52)
Q¢

” Vi - VuPPdxdt — 0, Q.= {(x,t) € Qr,u>c,c>0).
QL‘

Proof. We may take ¢ = u?™ (12 - €2 — 1), in the integral equality satisfied by . Then it is

easy to see that

II E)us p(x) 2 —f-u )dxdt
QT

—IIQTuEWuEW(x)_ZVuEV[ A 2<u —&2—-u )]dxdt

J‘J‘ |Vt [PP17 p(x)- 2< —&2-u )dx dt

Qr

= —ff (p(x) -1) |Vug|”’(")uf(x)72 (ug - u2> dx dt (4.53)
Qr

* ngf (p(x) - 1)|Vu£|P(x)u§(x)—zdx at
Qr

- ff |V P2V, v (ug - u2>u€(x)_ldx dt
Qr

J‘J‘ |Vt P2V, up(x Vp(x) lnu6<u2 - -u )dxdt
Qr

Hence, by (4.43), we have

’U Ou f(x) 22— >dxdt
o Ot

< 52,” (p(x) = 1)V POul ™2 dxc at
Qr

(4.54)
- ff |V [P 2V, v (uz - u2>u€(x)_1dx dt
Qr

- ff |Vug|”(’C)_2Vugu€(x)71 Vp(x) Inu, (ug Y u2>dx dt.
Qr
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Notice that

f f IV P92V, v <u§ - uz)uz“‘*ldx dt
Qr

1 p(x)-1 -2
JI,G) Il
Qr 2

(4.55)

Vulv (u? - u2>dx dt.

So

p(x)-1
II Oue ul™” 2 -2 -u )dxdt+ If < > |Vu€
QT Qr

< 52{ f (p(x) = 1)|Vaue POl D 2 dx dt
Qr

peo Vu2V<u -u )dxdt

- ff |Vug|P(x)’2Vugu€(x)_1Vp(x) Inu, <u§ - - u2>dx dt.
Qr
(4.56)

Hence,

f a”fui’(") 2<u -2 —u >dxdt
Qr ot

oG >W[Wg
.G

- EZJf (P(x) - 1) |Vu€|P(X)u’€(x)—2dx it

p(x)-2

£

V2 - |Vu2 |p(X)_2Vu2] V(ug - u2>dx dt

5 |P(0)-2

Vu?V <u§ - u2>dx dt

Jf Vit PO 2Vl p(x)- 1Vp(x) lnug<u2 —&?-u >dxdt
Qr

p(x)-1
G Ie
Qr 2

e[ -
Qr

p(x)-2

Vu?v (u? - u2> dx dt

+ CJT |Vu5|p(x)_1u§(x) (ug -2 - u2>dx dt.
Qr

(4.57)
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By (4.43), (4.44), and (4.49), we see thatas ¢ — 0,

Vu2 — Vuz weakly in e (Qr),

f augup(x>2<u g_u>dxdte0,

or Ot ¢ (4.58)
Jf |Vug|p(x)_1u§(x) <u§ Y u2>dx dt—0, (¢—0).
Qr
Therefore,
JE— (x)-2 (x)-2
nm” “Vug v - v Vuz] V(2 - ) dx dt <0, (4.59)
e—0 Qr
By Lemma 2.5,
(x)-2 (x)-2 (x)
fj “Vug ! Vu? - 'Vu2 b VuZ] V(uz - u2>dx dt > JT |Vu§ - Vu2|p dx dt.
Qr Qr
(4.60)
Hence,
limff dx dat <0, (4.61)
e—0 Q
T
that is,
ff dx dt—0, (e—0). (4.62)
Qr

Applying (a + b)P < 2P(a? +bP), (a,b > 0), and 2u.V (u. — u) = V(12 - u?) — 2(ue — u)Vu, we
have

fj u’;(x)WuE — VulP®dx dt
o (4.63)
< ” |Vu§ - Vu2|pdx dt + H 2P|V, — VulP@|VulP® dx dt.
Qr Qr

Equation (4.50) and (1) imply that the right side tends to zero as ¢ — 0. Since u, > c in Q5,

(2) is proved. (3) is an immediate consequence of (2). O

Lemma 4.7. For any a € [0, 1), we have

H Vi PP uz*dx dt < C, (4.64)
Qr

where C is independent of €.
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Proof. From Lemmas 4.3 and 4.4, it is easily seen that

JL | Ve, [Pzt dx dt < C, (4.65)

f f |Vt [ = V0l
Qr

Using u, ,, u: > €, (4.66), and Proposition 4.5, we have

dxdt —0, (n=m —0). (4.66)

H ||Vug,,1|”(")u;g1 — | Vu [P uz*|dx dt
Qr

< ff ||Vu5,,1|P<x> — |Vu ™ U ydxdt + ff |V [P % - lugtu dx dt
Qr Qr
1 1
< _aJ‘J‘ ||Vus,q|p(x) - |Vug|p(x) dx dt + TJ‘I |Vu£|p(x) ugl;li _ u:x dx dt — 0.
£ QT £ 24 QT 7
(4.67)
The proof of Lemma 4.7 is completed by combining (4.67) with (4.65). O
Lemma 4.8. As ¢ — 0, we have
1 H ||Vu5|”(x) —|VulP®|dx dt — 0,
@ (4.68)

1| Vi P2V, — u|VulP O 2Vu|dx dt — 0.

@ ﬂQ

Proof. Let x, and y,, be the characteristic functions of {(x,t) € Qr;u(x,t) < p} and {(x,t) €
Qr; u:(x,t) < p}, respectively. Then

” |1V = 2
or

< H 19247 xp = V2P |t + H 172 (1= o) = [Vl (1= )| it
Qr Qr

dx dt

< H |VuteP®) yepdaxdt + ” |VulP™) y,dx dt + ” IVulP™ (yep — xp)dx dt
Qr Qr Qr

+ ff ||Vu5|p(x) | Vu®
Qr

=L+DL+Iz3+14.

(1= xep)dx dt

(4.69)

Taking a = 1/2 in Lemma 4.7, we %obtain that I; < Cp'/2. Since I, — 0 (p — 0), for any
6 > 0, we can choose p > 0 such that I + I, < 6/3. For fixed p > 0, x;p — X, (¢ — 0) ae.in
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Qr, so there exists €1 > 0 such that I3 < 6/3 as € < ;. By Lemma 4.6, I, — 0 (¢ — 0), so there
exists €2 € (0, €1) such that I < 6/3 as € € (0, &). Summing up, we have

H ||Vug|”’(x) —|VuPPldxdt <6, Ve<e, (4.70)
Qr

thus (1) holds. To prove (2), observe that

J‘f 'ug|Vug|]"(x)72Vu‘S - u|Vu|p(x)72Vu|dx dt
Qr
1 1
< —” IVuEI”(")’2|Vu§ - Vu2|dx dt + -” ||VuE|F’(">*2 - |Vu|r’<x>*2| |Vu2|dx dt
2 Qr 2 Qr

= %(LZ + Ib).
(4.71)

Using Hoder’s inequality and Lemma 4.7, we obtain that

Lo < [Vtely -2 /-0 | V2 = V12| —00. (472)

p(x)

By means of the inequality |a" — b"| < |a - b|"(r € [0,1],a,b > 0), Hoder’s inequality and (1),

we have
(p(x)-2)/p(x) (p(x)-2)/p(x)
Iy = ff <|Vuglp(x)> A (IVuI”(x)> e Vu2|dxdt
Qr
(p(x)-2)/p(x)
< CH 1927 = [wup@ |7 va|dx at (4.73)
Qr
< C||Vu€|’”(x) — |Vup® |Vu2
p(x)/2
Thus the proof of Theorem 4.1 is complete. O
Acknowledgment

This work is supported by the National Science Foundation of China (no. J1030101).

References

[1] R. Dal Passo and S. Luckhaus, “A degenerate diffusion problem not in divergence form,” Journal of
Differential Equations, vol. 69, no. 1, pp. 1-14, 1987.

[2] Q. Xin, C. Mu, and D. Liu, “Extinction and positivity of the solutions for a p-Laplacian equation with
absorption on graphs,” Journal of Applied Mathematics, vol. 2011, Article ID 937079, 12 pages, 2011.

[3] W. Zhou and Z. Wu, “Existence and nonuniqueness of weak solutions of the initial-boundary value
problem for u; = u"div(|Vu|”’2Vu),” Northeastern Mathematical Journal, vol. 21, no. 2, pp. 189-206,
2005.



Journal of Applied Mathematics 21

[4] W. Zhou and Z. Wu, “Some results on a class of degenerate parabolic equations not in divergence
form,” Nonlinear Analysis, vol. 60, no. 5, pp. 863-886, 2005.

[5] W. Zhou and Z. Wu, “Some results on a class of nonlinear degenerate parabolic equations not in
divergence form,” Northeastern Mathematical Journal, vol. 19, no. 4, pp. 291-294, 2003.

[6] E. Acerbi, G. Mingione, and G. A. Seregin, “Regularity results for parabolic systems related to a class
of non-Newtonian fluids,” Annales de I'Institut Henri Poincaré. Analyse Non Linéaire, vol. 21, no. 1, pp.
25-60, 2004.

[7] S. Antontsev and V. Zhikov, “Higher integrability for parabolic equations of p(x, t)-Laplacian type,”
Advances in Differential Equations, vol. 10, no. 9, pp. 1053-1080, 2005.

[8] S. Antontsev and S. Shmarev, “Parabolic equations with anisotropic nonstandard growth conditions,”
in Free boundary problems, vol. 154, pp. 33—44, Birkh&user, Basel, Switzerland, 2007.

[9] S. Antontsev and S. Shmarev, “Vanishing solutions of anisotropic parabolic equations with variable
nonlinearity,” Journal of Mathematical Analysis and Applications, vol. 361, no. 2, pp. 371-391, 2010.

[10] S. Antontsev and S. Shmarev, “Anisotropic parabolic equations with variable nonlinearity,”
Publicacions Matematiques, vol. 53, no. 2, pp. 355-399, 2009.

[11] M. Ruzi¢ka, Electrorheological Fluids: Modeling and Mathematical Theory, vol. 1748 of Lecture Notes in
Mathematics, Springer, Berlin, Germany, 2000.

[12] G. Zhi, Y. Guo, Y. Wang, and Q. Zhang, “Existence of solutions for a class of variable exponent
integrodifferential system boundary value problems,” Journal of Applied Mathematics, vol. 2011, Article
ID 814103, 40 pages, 2011.

[13] E. Acerbi and G. Mingione, “Regularity results for stationary electro-rheological fluids,” Archive for
Rational Mechanics and Analysis, vol. 164, no. 3, pp. 213-259, 2002.

[14] X. Fan, “Global C'* regularity for variable exponent elliptic equations in divergence form,” Journal of
Differential Equations, vol. 235, no. 2, pp. 397-417, 2007.

[15] X.-L. Fan and Q.-H. Zhang, “Existence of solutions for p(x)-Laplacian Dirichlet problem,” Nonlinear
Analysis, vol. 52, no. 8, pp. 1843-1852, 2003.

[16] V.V.Zhikov, “Passage to thelimit in nonlinear variational problems,” Matematicheskit Sbornik, vol. 183,
no. 8, pp. 47-84, 1992 (Russian).

[17] V. V. Zhikov, “Passage to the limit in nonlinear variational problems,” Russian Academy of Sciences.
Sbornik Mathematics, vol. 76, no. 2, pp. 427-459, 1993.

[18] X. Fan and D. Zhao, “On the spaces LF®™(Q) and W™?™)(Q),” Journal of Mathematical Analysis and
Applications, vol. 263, no. 2, pp. 424-446, 2001.

[19] O. A. Ladyzhenskaja, V. A. Ladyzhenskaja, and N. N. Ural’'ceva, Linear and Quasilinear Equations of
Parabolic Type, American Mathematical Society, Providence, RI, USA, 1968.



