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This paper discusses the monotone variational inequality over the solution set of the variational
inequality problem and the fixed point set of a nonexpansive mapping. The strong convergence
theorem for the proposed algorithm to the solution is guaranteed under some suitable
assumptions.

1. Introduction

Let C be a closed convex subset of a real Hilbert space H with the inner product (-,-) and
the norm || - ||. We denote weak convergence and strong convergence by notations — and —,
respectively.

A mapping A : H — H is said to be monotone if (Ax - Ay,x-y) >0, Vx,y € H. A
is said to be a-strongly monotone if there exists & > 0 such that (Ax - Ay, x —y) > a|x -
yl? V¥x,y € H. A is said to be p-inverse-strongly monotone if there exists § > 0 such that
(Ax — Ay,x - y) > B||Ax - Ay|]?, Vx,y € H. A is said to be L-Lipschitz continuous if there
exists L > 0 such that |Ax — Ay|| < L||x — y||, Vx,y € H. A linear bounded operator A is said
to be strongly positive on H if there exists ¥ > 0 with the property (Ax, x) > y||x||*>, Vx € H.

Let f : C — Cbe a p-contraction if there exists p € [0,1) such that

17 = fWl <plx-yl, vxyec (1.1)
Let T : C — C be nonexpansive such that
|[Tx-Ty| <||lx-y|, VYxyeC (1.2)
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A point x € C is a fixed point of T provided Tx = x. Denote by F(T) the set of fixed points of
T; thatis, F(T) = {x € C : Tx = x}. If C is bounded closed convex and T is a nonexpansive
mapping of C into itself, then F(T) is nonempty (see [1]). Let A be a nonlinear mapping. The
Hartmann-Stampacchia variational inequality [2] is to finding x € C such that

(Ax,y—x) >0, VyeC. (1.3)

The set of solutions of (1.3) is denoted by VI(C, A). The variational inequality has been
extensively studied in the literature [3, 4].

We discuss the following variational inequality problem over the fixed point set of a
nonexpansive mapping (see [5-12]), which is called the hierarchical problem. Let a monotone,
continuous mapping A : H — H and a nonexpansive mapping T : H — H.

Find x € VI(F(T), A) = {x e F(T) : (Ax,y —x) >0, Yy € F(T)}, F(T)#0. (1.4)

This solution set is denoted by =.

We introduce the following variational inequality problem over solution set of
variational inequality problem and the fixed point set of a nonexpansive mapping (see
[13-16]), which is called the triple hierarchical problem (or the triple hierarchical constrained
optimization problem (see also [13])). Let an inverse-strongly monotone A : H — H, a
strongly monotone and Lipschitz continuous B : H — H, and a nonexpansive mapping
T:H — H.

Find x € VI(Z,B) = {x € 2: (Bx,y - x) >0, Yy € £}, (1.5)

where = := VI(F(T), A) #0.

In 2009, Iiduka [13] introduced an iterative algorithm for the following triple
hierarchical constrained optimization problem, the sequence {x,} defined by the iterative method
below, with the initial guess x; € H is chosen arbitrarily,

Yn = T(xn - )lnAlxn)l
(1.6)
Xn+l = Yn — oy AslYn, Yn >0,

where a,, € (0,1] and A, € (0,2a] satisfies certain conditions. Let A; : H — H be an inverse-
strongly monotone, A, : H — H be a strongly monotone and Lipschitz continuous, and
T : H — H be a nonexpansive mapping, then the sequence converges to strong analysis on
(1.6).

In 2011, Ceng et al. [17] studied the new following algorithms. For xo € C is chosen
arbitrarily, they defined a sequence {x,} iterative by

X1 = Pe[dny(anf (xn) + (1 = an)Sxp) + (I = AyuF)Tx,], VYn >0, (1.7)

where the mapping S,T are nonexpansive mappings with F(T)#0. Let F : C — H be a
Lipschitzian and strongly monotone operator and f : C — H be a contraction mapping
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satisfied some conditions. They proved that the proposed algorithms strongly converge to
the minimum norm fixed point of T.

Very recently, Yao et al. [18] studied the following algorithms. For xy € C is chosen
arbitrarily, let the sequence {x,} be generated iteratively by

Xni1 = Puxn + (1= ) TP[I = an(A-yf)]xn, Yn>0, (1.8)

where the sequences {a,} and {f,} are two sequences in [0, 1]. Then {x,} converges strongly
to the unique solution of the variational inequality as follows. Find a point x* € F(T) such
that

((A-yf)x*,x—-x*) >0, VxeF(T), (1.9)

where A : C — H is a strongly positive linear bounded operator, f : C — H is a p-
contraction, and T : C — C is a nonexpansive mapping satisfied some suitable conditions.
The solution (1.9) is denoted by Y := VI(F(T), A-yf) = {x* € F(T) : ((A-yf)x*, x —x*) >
0,Vx € F(T)}.

In this paper, we introduce a new iterative algorithm for solving the triple hierarchical
problem, which contain algorithms (1.6) and (1.8) as follows:

Yn =TPc[I = 6,(A~vf)]xn,

(1.10)
X1 = Al + Py + [(1 = Bu)] — anptFly,, VYn>0.

The strong convergence for the proposed algorithms to the solution is solved under some
assumptions. Our results generalize and improve the results of Ceng et al. [17], liduka [13],
Yao et al. [18], and some authors.

2. Preliminaries

Let H be a real Hilbert space and C be a nonempty closed convex subset of H. The metric (or
nearest point) projection from H onto C is the mapping Pc : H — C which assigns to each
point x € C the unique point in Pcx € C satisfying the property

|lx = Pcx|| :;re%”x—y” = d(x,C). (2.1)

The following properties of projection are useful and pertinent to our purposes.
Lemma 2.1. Given x € H and z € C,

(@Qu=Pcze(u-z,v-u) >0, Voe_C,

(b) u=Pez & |lz-ul’ <|z-o|? - llv-ul?, YveC,
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(c) Pc is a firmly nonexpansive mapping of H onto C and satisfies

| Pex = Pey||* < (Pex - Py, x —y), Vx,y € H. (2.2)

Consequently, Pc is nonexpansive and monotone.

Lemma 2.2. There holds the following inequality in an inner product space H
I+ y[|* < Ixl* +2(y, x +y), Vx,y € H. (23)

Lemma 2.3 (see [19]). Let C be a closed convex subset of a real Hilbert space H and let T : C — C
be a nonexpansive mapping. Then I — T is demiclosed at zero, that is,

Xy, — X, Xp—Tx, — 0 (2.4)

implies x = Tx.
Lemma 2.4 (see [20]). Each Hilbert space H satisfies Opial’s condition, that is, for any sequence

{xn} C H with x, — x, the inequality

lim inf|x, - x[| < lim inf[|x, - y|| (2.5)

hold for each y € H with y # x.

Lemma 2.5 (see [21]). Let {x,} and {y,} be bounded sequences in a Banach space X and let {f,,} be
a sequence in [0,1] with 0 < liminf, _, B, < limsup, B, < 1. Suppose xps1 = (1= Pn)Yn + PnXn
forall integers n > 0 and limsup,, _, _ ([Yn+1 = Ynll = [[Xn1 = x4l]) < 0. Then, lim, _, ||y, — x4l = 0.

Lemma 2.6 (see [10]). Let B : H — H be p-strongly monotone and L-Lipschitz continuous and
let p € (0,2/L% ). For A € [0,1], define T\ : H — H by Ty\(x) := x — AuB(x) for all x € H. Then,
forallx,y € H,

ITa(x) - Ta(w)|| < (1= A7) ||x -y (2.6)

hold, where T := 1 —4/1 — u(2p — uL?) € (0,1].

Lemma 2.7 (see [22]). Assume {a,} is a sequence of nonnegative real numbers such that

ap+1 < (1 - Yn)an +6, VYn>0, (27)
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where {y,} C (0,1) and {6,} is a sequence in R such that

(i) 251 ¥n = oo,
(ii) im sup, _ (64/yn) <00r 3521 64| < o0.

Then lim,, _, ,a,, = 0.

Remark 2.8. If A : C — H is a strongly positive linear bounded operator and f : C — H is
a p-contraction, then for 0 < y < y/p, the mapping A — y f is strongly monotone. In fact, we
have

(A-yf)x=(A-v )y, x-y) =(Alx~y),x~y) - y{f(x) - f(y), x - y)

>Fllx-y|* - yrellx - | 2.8)
0.

v

3. Main Results

In this section, we introduce a new iterative algorithm for solving monotone variational
inequality problem (where A : C — H is a strongly positive linear bounded operator,
f : C — H is a p-contraction) over solution set of variational inequality problem over the
fixed point set of a nonexpansive mapping.

Theorem 3.1. Let C be a nonempty closed and convex subset of a real Hilbert space H. Let A : C —
H be a strongly positive linear bounded operator, f : C — H be a p-contraction, and y be a positive
real number such that (y —1)/p < y < y/p. Let F : C — C be x-Lipschitzian and r-strongly
monotone operators with constant x and n > 0, respectively. Let T : C — C be a nonexpansive

mapping with F(T)#@. Let 0 < p < 2n/x*> and 0 < y < 7, where T = 1 — /1 — u(2n — px?).
Assume that VI(Y, F) #0, where Y := VI(F(T), A — yf). Suppose {x,} is a sequence generated by
the following algorithm xq € C arbitrarily and

Yn=TPc[I=6,(A=yf)]xn,

3.1)
Xni1 = Onlh + Py + [(1 = pu)] — ayuFly,, VYn >0,

where {a,}, {Pn}, {64} C (0,1) satisfy the following conditions:
(Cl)ay, < k6, and P, < 6,5
(C2) 332 letnsr — a| < o0;
(C3) X1 1Pt = Pl < oo
(CHUMy - 565, =0, D2 On = 00 and 3771 |6ns1 — O < 0.

Then the sequence {x,} converges strongly to x* € Y, which is the unique solution of another
variational inequality

((I-pF)x*,x—x*)>0, VYxeY. (3.2)



6 Abstract and Applied Analysis

Proof. We will divide the proof into four steps.
Step 1. We will show {x,} is bounded. For any x* € F(T), we have
[y =l = ITPC[I = 6, (A = yf)] 20 = TPex"
ST = 6u(A =y f)]xn —x"]|
< Gullyf(xn) =y F)|| + Gullyf(x) = Ax"[| + T = B Allllxu = x"Il - (3.3)
< Buypllxn = x| + 6ally F(x7) = Ax|| + (1= 627) s — x°]
= [1= (7 =yP)bulllxtn = x"Il + 6ul|y £ (x7) = Ax”].

From (3.1), we deduce that

e 21 = et + o + [ ) 1 ey |
< ap||u— pFx*|| + Ballen = x*|| + [(1 = Bu) I = anpuF] ||y — x*|| (3.4)

< ap||u— pFx*|| + Bullxn = x| + (1 = B = au7) ||y = x7||.
Substituting (3.3) into (3.4), we obtain

ll2¢ns1 — x|
< ap||u— uFx*|| + Bullxn — x*|| + (1 = pu — ant)
x{[1=(y = yp)6n]llxn = x7|| + 6a |y f (x*) - Ax"|}
= aty||u— pFx*|| + Bullcn — 2" + (1 = Bu — @) [L = (¥ = yp) 6] llxn — X7
+ (1= fn = ant)On |y f (x") - Ax"|| (3.5)
+[1= (1= B — a7) 6, (¥ = yp) ] llxn = x"||
+ (1= pu—ant)balyf () - Adl|
< k6|t = pFx*|| + [1 = (1= Pu = auT) 6 (¥ = vp)] llxn — x7||
+ (1= fu = ant) 6|y f (x") - Ax"|.

< ay||u— pFx*

By induction, it follows that

126 = x|

1 1
<maxq ||xo—x*||+ = yf(x")-Ax*||+ —
{ Y‘YP” | (1-Bu—ant) (Y-7P)

e||u—pFx*|| }, n>0.
(3.6)

Therefore, {x,} is bounded and so are {y,}, {Ax,}, {f(x,)}, and {F(x,)}.
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Step 2. We will show that limy, —, o || xy+1=24 || = 0, 1imy, - o0 || yn—2x || = 0, and limy, ., oo || 75—
Tyl = 0. From (3.1), we have

[y = yull = I TPe [T = Guia (A =y )] %1 = TPC[I = 8a(A =y f)] x|

< IPe [T = n (A =y f)]ne1 = Pe[I = 6a(A =y f)] 2]
ST = Gner (A =y )]s = [T = 6 (A =y f)] 2]
= [16we1 (r f (ena) = ¥ (n)) + (B = En)y f ()

+ (I = 6p1A) (Xns1 = xu) + (60 — 6n+1)Axn”
< Gpa¥ || f (en1) = fFx)|| + (1 = Epa¥) 1 Xns1 = xall

+ 1641 = Ol ([[ v f (en) || + | Axal])

< S ¥Pllxni = xull + (1 = 6par ) 1%ns1 = Xl + 16011 = Sul ([|y £ Cen) || + [ Axnll)

= [1 - (?_ YP)5n+1] llxn+1 = xnll + [6n41 = 6n|(”Yf(xn)|| + ||Axn||)-
(3.7)

It follows that

X042 = X1l = ||@nrte + Brerxner + [(1 = Bra1) I — a1 ffF | Y
—antt = Puxn = [(1= Pu) I = anpF]ya||
< a1 = anll[ull + Busi [%ne1 = Xl + |Brsr = Bl %]l
+ [ [ = Pra) ] = @ pF]ymar = [(1 = Bt ) T = awa pF |
+ 1[0 = Buia) T = awiapF ]y = [(1 = Pu) T = aupuFlyn|
< lanst = anlllull + Brst |Xns1 = Xl + | Brst = Bullxall
+ (1= But = ana ™) [Yner = Yl + (1= Bt = anaptF =1+ P + @t F) [|yn||
< lansr — an|llull + Pusllxns — xall + |:6n+1 —ﬂn|||xn||
+ (1= Pt = ana1 ) [|Yner = Yull + [Brsr = Bul [y || + lanir — |||y
= |1 — an|(||”|| + T”yn”) + Bt || Xne1 — x| + |ﬂn+1 —ﬂn|(||xn|| + ”yn”)
+ (1= Pt = w1 7) || yner = vl
<lanar = an| ([l + 7|[ynll) + Brsallni = xall + |Brsr = Bal (1%all + ||yn])
+ (1= Pt = awa ) {[1 = (¥ = vp) Sne] %01 = xall
641 = Gl (|lyf Cen) || + | Axall) }
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< letwer = aal (uall + 7|y |]) + Brsil%nsa = xall + [ Brsr = Bu| (el + [yl
+ (1= a1 — ana7) [1 = (F = yp) 6n ] 1Xns1 — 2|
+[6n1 = Bl ([l f Cen) || + [ Axall)
< [1= (1= Pt = 01 7) (¥ = ¥P) Snt ] 121 = Xl
+ st = anl ([l + 7[lyall) + [Brer = Bal (l2all + || yal])
+16n1 = Bl ([lyf Cen) || + 1Al
<[1= (1= Buer = @na™) (¥ = vP) Ona] 1 xns1 = xall
+ (|ane1 — an| + | Brs1 = Bu| + |61 — 6ul) M3,

(3.8)
where M3 is a constant such that
sup{ (ll + #llyall), (el + lyll) (U Gen | + 1A} < M. (3.9)
n
By the conditions (C2)—(C4) allow us to apply Lemma 2.7, we get
nliilgo”xnﬂ - xu|| = 0. (3.10)
On the other hand, we note that
[y = Tacu|| = [|TPc [T = 64 (A =y f)] 2 = T2
= |TPc[I - 64(A =y f)]xtn = TPcxu| )
<L =6n(A=yf)]xn— 2|
< S| (A=vf)xull,
by (C4), it follows that
lim ||y, — Tx,|| = 0. (3.12)

From (3.7), we observe that
||]/n+1 - yn|| < [1 - (?_ Yp)6n+1] llxn+1 = xnll + [6ns1 = 6n|(”Yf(xn)” + ”Axn”) (3.13)
It follows that

| vne1 = V|| = l1%ne1 = Xll < (F = ) Onet 1Xns1 = Xull + 16ns1 = Sl (|| Y f (xa) || + 1| Axnl])-
(3.14)
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From the conditions (C1)-(C4) and the boundedness of {x,}, {f(x,)}, and {Ax,}, which
implies that

limsup (|| yns1 = Y| = llne1 = xall) <0. (3.15)

n—oo

Hence, by Lemma 2.5, we have

Tim [y, = xa| = 0. (3.16)
From (3.12) and (3.16), we obtain
Jim [l = Toxu]| = 0. (3.17)

Step 3. We will show that limsup, __(u, — x*,yf(x*) — Ax*) < 0 is proven. Choose a
subsequence {x,,} of {x,} such that

lim sup(x, — x%, yf (x*) - Ax*) = ilL%<xni - X", yf(x*) - Ax*). (3.18)

n—oo

The boundedness of {x,,} implies the existences of a subsequence {x"fz‘ } of {x,,} and a point
X € H such that {xnij } converges weakly to X. We may assume without loss of generality that
lim; o (xp, w) = (X, w), w € H. Assume X # T (X). Since limy, _, o ||y — Txy|| = 0 with F(T) #0
guarantee that

liminf||x,, — X|| < liminf||x,, - T(X)||
= liminfl|x,, - T(x,) + T(xn) = T(®)|
(3.19)
= lim inf[|T (x,) - T(X)|l

< lim inf”xni - J?”1
1— 0

which has a contradiction. Therefore, x € F(T). Since x* € VI(Y,F), then x* € Y :=
VI(F(T), A-yf), it follows that

limsup(x, — x*, yf(x*) — Ax*) = lim (x,, — x*, y f (x*) - Ax*)
=(x-x",yf(x*) - Ax™) (3.20)
<0.

Setting u, = [I — 6,(A - yf)]x, and by (C4), we notice that

1ty = x|l < Gu||(A=yf)|| — 0, asn— oo. (3.21)
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Hence, we get

lim sup(u, — x*, yf(x*) — Ax*) <0. (3.22)

n—oo

Next we will show that limsup,, _, _ (x,+1—x*, x*—uFx*) < 0is proven. Choose a subsequence
{x,,} of {x,} such that

lim sup (x4 — x*, x* — uFx*) = kliir;o(xnk+l - x*, x* = uFx*). (3.23)

n—oo

The boundedness of {x,, } implies the existences of a subsequence {xy, } of {x,, } and a point
X € H such that {x,, } converges weakly to x. We may assume without loss of generality that
limy oo Xy, w) = (X, w), w € H. Assume X # T (x). By lim,, _, o, ||x,, — Tx,|| = 0 with F(T) #0
guarantee that

h]fn infl|x,, —Xx|| < lilzninf”x,,k -T)||
= hl{r_l)lol;lf”xnk - T(xnk) + T(xnk) - T(E)”
(3.24)
= Uminf|[T (x,) - Tl
< lilgn inf||x,, — x|,

which has a contradiction. Therefore, x € F(T). From x* € VI(Y, F) := VI(VI(F(T), A-yf), F),
we compute

lim sup(x, — x*, yx* — puFx*) = klim (%p, — x*, x* — pFx*)

= (x - x*,x* — uFx*) (325)
<0.
Using (3.10), we get
lim sup(xn1 - x*, x* = pFx") < 0. (3.26)

n—oo
Step 4. Finally, we prove x,.1 — x*. We observe that

ot =21 < [t = 71|+ G| (A = ) x| (3.27)



Abstract and Applied Analysis 11

From (3.1), we compute

st = 21 = i + Bt + [~ Ba)] - angeFlya —
e = %) + @ (5~ HER) + B = ) + [(1 = o) = ] (3 — 3
<l = x%) + Bun = %) + a (2" = pFx) |* 4+ [1 = = 7] [l yn = x°|°
< a2llu—x*|* + B3|y — x*|* + 20, {x" = pFx", Xpe1 — x*)
+[1 = B — 7] [t — x*|?
< e =27 + Pullxn = x| + 2 (x* ~ pFx*, xp - x*)
+ (1= P = ] |60 (y f () = Ax*) + (T = 6,4) (2w = x) |
< k8l = X*|* + Bullxn — x*|)* + 266, (x* — pFx*, Xpe1 — x*)
4 [1= B = 7] [(1 = 6,7) 2l = I + 26, (y f () = Ax", 1y = x|
< &6, ||lu - x*|* + 2K6,(x* — PFx*, Xy — x*)
+[1-26,7(1 = B = @) |10 — x*|* + 8272 (1 = B — anT) |20 — x*|?
— T X, — X*||* + 26,(yf (xn) =y fx*, up — x*) + 26, (y fx* = AX*, uy — x*)
< &6, ||lu— x*|* + 2K6,(x* — PFX*, xpi1 — x*)
+ [1= 2647 llxw = 21 + 6377 (1 = B = ) 2 = °|*
+26,ypllxn — X |||[tn — x*|| + 264y fx* — AxX*, 1, — X*)
< [1-26,(F = yp) 12 = %" |17 + 637 (1 = fn = ) |2 = 7|
+26%ypl|2n — X*I|| (A =y ) x| +26n(y f* — Ax*, 11y — X*) + 68y || — x|
+ 216, (X" — PFX*, X1 — x*).

(3.28)

Since {x,}, {Ax,}, {f(x,)}, and {Fx,} are all bounded, we can choose a constant M4 > 0 such
that

1 { (1= Pn - an7)y?
sup = 5

[l = x*|| + yplloen = x| (A =y f) x| } < My. (3.29)
>0 Y —YP

It follows that

o1 = %71 < [L=2(F = ¥p)6u] 120 = X7 +2(F = yp) Gun, (3.30)
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where

2

K
&n =6 My + = x* = Ax*,uy — Xy + = |l — x*|
4 - <Yf ") F-1p |
(3.31)
+ . p(x* — UFx*, xp1 — x*).
By the conditions (C1), (C4), (3.22), and (3.26), we get
limsup ¢, <0. (3.32)

n— oo

Now, applying Lemma 2.7 and (3.30), we conclude that x,, — x*. This completes the proof.
O

Next, the following example shows that all conditions of Theorem 3.1 are satisfied.
Example 3.2. For instance, let a, = n/(n?>+1), Ppn = 1/2n and 6, = 1/n. Then, clearly the

sequences {ay,}, (B}, {64} satisfy the following condition (C1):

(3.33)

S

<K ! <
n’ 2n
We will show that the condition (C2) is achieved. Indeed, we have

n+1 n
(n+1)*+1 n*+1

Z|“n+l anl = Z

n=1

(n+1)(n*+1) —n(n®>+2n+2)

n2+2n+2)(n2+1) (3:34)

1-n-n?

+2m3 +3n2+2n+2|

The sequence {a,} satisfies the condition (C2) by p-series. Next, we will show that the
condition (C3) is achieved. We compute

1
2(n +1) " 2n

Zlﬂrﬁl - ﬂn i

1 1

(3.35)
2.3 2.4l

1
< | —
121 2.2

1

22723

1“1 1
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The sequence {f,} satisfies the condition (C3). Finally, we will show that the condition (C4)
is achieved. We compute

lim 6, = lim — =0,
n— oo n—owomn
[ee] [ee] 1
26,, = Z— = oo,
n=1 nzln
- | 1 1 (3.36)
R
n=1 n=1
1 B 1 1 B 1 N 1 B 1 .
-1 2 2 3
=1.

The sequence {6, } satisfies the condition (C4).

Corollary 3.3. Let C be a nonempty closed and convex subset of a real Hilbert space H. Let A :
C — H be a strongly positive linear bounded operator, f : C — H be a p-contraction, and y be a
positive real number such that (y —1)/p <y <y/p. Let T : C — C be a nonexpansive mapping
with F(T) # (. Assume that Y := VI(F(T), A—-yf) #0. Suppose {x,} is a sequence generated by the
following algorithm xy € C arbitrarily and

Yn = TPc[I = 6,(A~yf)]xn,

Xn+1 = Ay + ﬂnxn + (1 - ,ﬁn - “n)yn/

(3.37)

where {a,}, {Pn}, {6n} C (0,1) satisfy the following conditions (C1)-(C4). Then the sequence {x,}
converges strongly to x* € F(T), which is the unique solution of variational inequality

((A-yf)x*,x—x*)>0, VxeF(T). (3.38)
Proof. Putting 4 = 2 and F = I/2 in Theorem 3.1, we can obtain desired conclusion
immediately. O

Corollary 3.4. Let C be a nonempty closed and convex subset of a real Hilbert space H. Let T : C —
C be a nonexpansive mapping with F(T) # 0. Suppose {x,} is a sequence generated by the following
algorithm xy € C arbitrarily and

Yn = TPC(l - 6n)xnr
(3.39)
X1 = Oqh + PuXy + (1= Pu— an)yn, Yn >0,

where {a,}, {Pn}, {6n} C (0,1) satisfy the following conditions (C1)-(C4). Then the sequence {x,}
converges strongly to x* € F(T).
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Proof. Putting f = 0 and A = I in Corollary 3.3, we can obtain desired conclusion
immediately. O

Remark 3.5. Our results generalize and improve the recent results of liduka [13] and Yao et
al. [18].

Acknowledgment

The authors were supported by the Higher Education Research Promotion and National
Research University Project of Thailand, Office of the Higher Education Commission (under
Project NRU-CSEC no. 55000613) for financial support during the preparation of this paper.

References

[1] W. A. Kirk, “A fixed point theorem for mappings which do not increase distances,” The American
Mathematical Monthly, vol. 72, pp. 1004-1006, 1965.

[2] P.Hartman and G. Stampacchia, “On some non-linear elliptic differential-functional equations,” Acta
Mathematica, vol. 115, pp. 271-310, 1966.

[3] E Cianciaruso, G. Marino, L. Muglia, and Y. Yao, “On a two-step algorithm for hierarchical fixed
point problems and variational inequalities,” Journal of Inequalities and Applications, vol. 2009, Article
ID 208692, 13 pages, 2009.

[4] J.-C. Yao and O. Chadli, “Pseudomonotone complementarity problems and variational inequalities,”
in Handbook of Generalized Convexity and Generalized Monotonicity, vol. 76, pp. 501-558, Springer, New
York, NY, USA, 2005.

[5] P. L. Combettes, “A block-iterative surrogate constraint splitting method for quadratic signal
recovery,” IEEE Transactions on Signal Processing, vol. 51, no. 7, pp. 1771-1782, 2003.

[6] S. A. Hirstoaga, “Iterative selection methods for common fixed point problems,” Journal of
Mathematical Analysis and Applications, vol. 324, no. 2, pp. 1020-1035, 2006.

[7] H. liduka and I. Yamada, “A subgradient-type method for the equilibrium problem over the fixed
point set and its applications,” Optimization, vol. 58, no. 2, pp. 251-261, 2009.

[8] K. Slavakis and I. Yamada, “Robust wideband beamforming by the hybrid steepest descent method,”
IEEE Transactions on Signal Processing, vol. 55, no. 9, pp. 4511-4522, 2007.

[9] K. Slavakis, I. Yamada, and K. Sakaniwa, “Computation of symmetric positive definite Toeplitz
matrices by the hybrid steepest descent method,” Signal Processing, vol. 83, no. 5, pp. 1135-1140, 2003.

[10] I. Yamada, “The hybrid steepest descent method for the variational inequality problem over the
intersection of fixed point sets of nonexpansive mappings,” in Inherently Parallel Algorithms in
Feasibility and Optimization and Their Applications, vol. 8, pp. 473-504, North-Holland, Amsterdam,
The Netherlands, 2001.

[11] I. Yamada, N. Ogura, and N. Shirakawa, “A numerically robust hybrid steepest descent method
for the convexly constrained generalized inverse problems,” in Inverse Problems, Image Analysis, and
Medical Imaging, vol. 313, pp. 269-305, American Mathematical Society, Providence, RI, USA, 2002.

[12] 1. Yamada and N. Ogura, “Hybrid steepest descent method for variational inequality problem over
the fixed point set of certain quasi-nonexpansive mappings,” Numerical Functional Analysis and
Optimization, vol. 25, no. 7-8, pp. 619-655, 2004.

[13] H. Iiduka, “Strong convergence for an iterative method for the triple-hierarchical constrained
optimization problem,” Nonlinear Analysis. Theory, Methods & Applications, vol. 71, no. 12, pp. €1292—
€1297, 2009.

[14] H. Iiduka, “Iterative algorithm for solving triple-hierarchical constrained optimization problem,”
Journal of Optimization Theory and Applications, vol. 148, no. 3, pp. 580-592, 2011.

[15] T.Jitpeera and P. Kumam, “A new explicit triple hierarchical problem over the set of fixed points and
generalized mixed equilibrium problems,” Journal of Inequalities and Applications, vol. 2012, article 82,
2012.

[16] N. Wairojjana and P. Kumam, “General iterative algorithms for hierarchical fixed points approach to
variational inequalities,” Journal of Applied Mathematics. Volume 2012, Article ID 174318, 20 pages.



Abstract and Applied Analysis 15

[17] L.-C. Ceng, Q. H. Ansari, and J.-C. Yao, “Iterative methods for triple hierarchical variational
inequalities in Hilbert spaces,” Journal of Optimization Theory and Applications, vol. 151, no. 3, pp. 489—
512,2011.

[18] Y. Yao, Y.-C. Liou, and S. M. Kang, “Algorithms construction for variational inequalities,” Fixed Point
Theory and Applications, vol. 2011, Article ID 794203, 12 pages, 2011.

[19] F. E. Browder, “Nonlinear operators and nonlinear equations of evolution in Banach spaces,”
Proceedings of Symposia in Pure Mathematics, vol. 18, pp. 78-81, 1976.

[20] Z. Opial, “Weak convergence of the sequence of successive approximations for nonexpansive
mappings,” Bulletin of the American Mathematical Society, vol. 73, pp. 591-597, 1967.

[21] T. Suzuki, “Strong convergence of Krasnoselskii and Mann'’s type sequences for one-parameter non-
expansive semigroups without Bochner integrals,” Journal of Mathematical Analysis and Applications,
vol. 305, no. 1, pp. 227-239, 2005.

[22] H.-K. Xu, “Iterative algorithms for nonlinear operators,” Journal of the London Mathematical Society,
vol. 66, no. 1, pp. 240-256, 2002.



