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Automatically extracting breast tumor boundaries in ultrasound images is a difficult task due to
the speckle noise, the low image contrast, the variance in shapes, and the local changes of image
intensity. In this paper, an improved edge-based active contour model in a variational level set
formulation is proposed for semi-automatically capturing ultrasonic breast tumor boundaries.
First, we apply the phase asymmetry approach to enhance the edges, and then we define a new
edge stopping function, which can increase the robustness to the intensity inhomogeneities. To
extend the capture range of the method and provide good convergence to boundary concavities,
we use the phase information to obtain an improved edge map, which can be used to calculate
the gradient vector flow (GVF). Combining the edge stopping term and the improved GVF in the
level set framework, the proposed method can robustly cope with noise, and it can extract the low
contrast and/or concave boundaries well. Experiments on breast ultrasound images show that the
proposed method outperforms the state-of-art methods.

1. Introduction

Breast cancer is one of the major causes of death among women [1]. The early detection
is necessary and helpful to the diagnosis and treatment of breast cancer [2]. Both X-ray
mammography and ultrasonic examination can be used for this purpose. The advantages
of ultrasonic examination over mammography are its inexpensive, noninvasive, and cost-
effect nature. Segmentation of breast ultrasound (US) images is essential for quantitative
measurement of tumor characteristics. Manual segmentation is time consuming and it
increases inter- and intraobserver variability. Fully automatic segmentation of US image is
still a challenging task for two main reasons [3, 4]. First, US images have speckle noise, low
contrast, and local changes of intensity [3]. Second, breast tumors have a great variation
of their shapes, sizes and locations [4]. Particularly, when the tumors are malignant, they
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generally have acute concave shapes. Therefore, developing a semiautomatic algorithm for
segmentation of breast tumor in US images becomes urgent in clinical application.

Active contour models (also called snakes) have been proved to be very useful
for image segmentation [5–19]. The desirable advantage of this semiautomatic method
lies in its ability to facilitate the segmentation process with a priori knowledge and user
interaction. Active contour models can be divided into two major classes: parametric [5–10]
and geometric [11–19].

Parametric active contour models use parametric equation to explicitly represent
the evolving curve. The problems of the traditional parametric active contour model are
its limited capture range and its inability to handle concave boundaries. Xu and Prince
[6, 7] proposed a gradient vector flow (GVF) field model to increase capture range and
encourage convergence to boundary concavities. GVF snake has received a lot of attention
in US image segmentation [8–10]. For example, Rodtook and Makhanov [8] developed an
improved GVF approach based on the continuous force field analysis. They used the resulting
vector field to generate a modified edge map and then used it to calculate a novel gradient-
based source term. A comparison is made between their method and the conventional GVF
type methods by using the reference segmentation results outlined by expert physicians. In
their experiments, they claimed that their method can successfully solve the active contour
convergence problem. They also obtained more accurate tumor segmentation result.

Geometric active contour models implicitly represent evolving curve as the zero-level
set of a higher dimensional function, called level set function. Commonly, this function is
defined by computing the closest distances between pixels and a given closed curve in
an image domain. The points that have positive distances are inside the curve, and ones
that have negative distances are outside the curve [11]. The curve is evolved using the
partial differential equation [14] derived from the energy function. When the evolving curve
maintains a steady status, that is, the curve stops evolving, the segmentation result is obtained
as the zero-level set of the function. The partial differential equation [14], which sometimes
can be derived from the energy function [13], describes a curve smoothing process. When the
curve evolution stops, the zero-level set of the energy function refers to the segmentation
result. Compared to the parametric models, level set methods can represent contour of
complex topology and it can also deal naturally with topological changes by using the
evolution of the level set function rather than the parametric curves. These properties lend
themselves well in medical image segmentation where the anatomic structures split and
merge through the pixels. One can see that this is especially useful when segmenting the
breast tumors, which generally have complex and varying shapes. The level set method was
first introduced byOsher and Sethian [11] and successfully applied to image segmentation by
Malladi et al. [12] and Caselles et al. [13]. Caselles et al. developed the well-known geodesic
active contour (GAC) model in [13]. However, in these methods, reinitialization of the level
set function to a signed distance function is often required. Re-initialization is performed
by periodically solving a partial differential equation, which is a computationally expensive
operation. To address this problem, Li et al. [15] presented a variational level set method
to eliminate the need for reinitialization by incorporating a penalty term into the energy
functional. Unfortunately, this penalty term may cause an undesirable side effect on the level
set function in some circumstances, which may affect the numerical accuracy. Recently, Li et
al. [16] developed amore general variational level set formulation by incorporating a distance
regularization term into the energy functional. Particularly, they investigated a double-well
potential related to the distance regularization term to maintain a desired shape of the level
set function. Accordingly, the undesirable side effect produced by the penalty term can be
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completely avoided. They have demonstrated the capability of segmentation on artificial,
natural and real medical images.

Using an additional edge stopping function (ESF) allows the active contour to stop
at the edges [11–16]. In these models, ESF is related to a convolution of the intensity image
with a Gaussian filter. However, the traditional ESF has at least two disadvantages. The first
one is that the ESF is never equal to zero, and boundary leakage may occur, that is, the
active contour may cross the object’s boundaries. The second one is that the edge detection
based on gradient is not appropriate for speckle noise, although it is generally effective
for additive noise. In breast US images corrupted by multiplicative noise, using only the
gradient information may detect false contours caused by noise, and consequently too many
trivial contours may be obtained. An alternative approach to circumvent these problems
is to use a stopping term based on the coefficient of variation [17]. This stopping term
equals to zero at the edges and accommodates the speckle noise. An important advantage of
using this stopping term is the capability of preventing the active contour from crossing the
object’s boundaries. Alternatively, Chan and Vese [18] proposed a method called C-V model,
where their stopping term is based on a particular image segmentation result obtained by
Mumford–Shah technique [19] rather than the image gradients. This segmentation model
uses the intensity information of different region to minimize the energy function rather
than using the edge information. Liu et al. [4] also proposed a model that considers the
differences between the actual probability densities of the intensities in different regions and
the corresponding estimated probability densities. Their model shows advantages over the
C-V model [18] on breast US images with weak boundaries and low contrast.

In this paper, a novel segmentation method of ultrasonic breast tumor is proposed
within the level set framework. First, we present a novel ESF, which is independent of the
intensity gradient of image, as most of the active contour models do, but instead is related
to local phase information obtained by using the phase asymmetry approach. The use of
this ESF is more robust than the traditional gradient magnitude-based ESF because local
phase is theoretically invariant to intensity magnitude. Subsequently, in order to increase
the capture range of the method and its ability to move into acute concave boundaries, the
improved gradient vector flow (GVF) field is adopted as external force and it is added to the
proposed model. The results show that the proposed method can obtain better segmentation
performance in comparison with some state-of-art methods [11, 16].

The rest of this paper is organized as follows. In Section 2, we first describe the
traditional level set methods and the distance regularized level set method. Section 3 details
the proposed method. Section 4 shows qualitative and quantitative experimental results on
clinical breast US images. Section 5 summarizes our work.

2. Background

2.1. Traditional Level Set Methods

The basic idea of the level set methods is to implicitly represent a closed curve C(t) at time t
by the zero-level set of function φ, that is,

C(t) =
{(

x, y
) | φ(x, y, t) = 0

}
, with φ

(
x, y, 0

)
= C0, (2.1)

where C0 is the initial curve.
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In the level set framework, the general evolution equation of the level set function φ is

∂φ

∂t
+ F
∣
∣∇φ
∣
∣ = 0, (2.2)

where F is the speed function. For image segmentation, F is the external force which is
dependent on some image information, such as image gradient and image intensity. This
external force F attracts the curves toward the edges. F is commonly defined as follows:

F = Fimage + Fgeometry. (2.3)

The first term Fimage is the image force generated from image information. The second term
Fgeometry is the geometry force to smooth the curve.

2.2. Distance Regularized Level Set Method

In most of the traditional level set methods, reinitialization is used as a numerical remedy
for keeping sound curve evolution and guaranteeing reliable results. The main problem with
this procedure is its high computational cost. To avoid this problem, Li et al. [15] proposed
a level set method without reinitialization by integrating a penalty term into the energy
functional. However, this penalty term leads to undesirable side effect. More recently, by
adding a distance regularization term into energy functional, Li et al. [16] presented a novel
distance regularized level set evolution method, that is, DRLSE model. This model can not
only completely eliminate the need for reinitialization but also avoid the undesirable side
effect.

LetΩ ⊂ R2 be a bounded Lipschitz image domain. The energy functionalE(·) is written
as

E
(
φ
)
= μRp

(
φ
)
+ Eext

(
φ
)
, (2.4)

where φ is a level set function, μ > 0 is a constant, and Rp(φ) is the distance regularization
term defined by

Rp

(
φ
)
=
∫

Ω
p
(∣∣∇φ

∣∣)dx, (2.5)

where p is the potential function for Rp(φ) [16], that is,

p(s) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1

(2π)2
(1 − cos(2πs)) if s ≤ 1,

1
2
(s − 1)2 if s ≥ 1.

(2.6)
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In (2.4), Eext(φ) is the external energy, which is borrowed from the GAC model [13], that is,

Eext
(
φ
)
= λLg

(
φ
)
+ αAg

(
φ
)
= λ

∫

Ω
gδ
(
φ
)∣∣∇φ

∣∣dx + α

∫

Ω
gH
(−φ)dx, (2.7)

where λ and α are constants, Lg(φ) is the length of the interface,Ag(φ) is the area of the region
that the zero-level curve encloses, δ(·) is the Dirac delta function, and H(·) is the Heaviside
function. g is an ESF such that limt→∞ g(t) = 0,

g =
1

1 + |∇Gσ ∗ I|2
, (2.8)

whereGσ is a Gaussian function with the standard deviation σ, I is a given 2D image, symbol
∗ represents convolution, ∇ is the gradient operator, and | · | is the modulus of the smoothed
image gradients.

As can be seen, the level set function φ will stop moving when g approaches zero. In
other words, the resulting final contour will halt at where the image gray gradient is large
enough to make g → 0. A small value of σ may make the proposed method sensitive to
noise, and the evolution will not be stable. On the other hand, a large value of σ may lead
to boundary leakage, and the extracted boundary may not be accurate. The choice of σ is a
dilemma, especially when the images have speckle noise andweak boundaries. This property
makes the traditional ESF in (2.8) inappropriate for US images.

The associated Euler-Lagrange equations, obtained by minimizing function equation
(2.4) with respect to φ, is

∂φ

∂t
= μdiv

(
dp

(∣∣∇φ
∣∣)∇φ

)
+ λδ

(
φ
)
div

(

g
∇φ
∣∣∇φ
∣∣

)

+ agδε
(
φ
)
,

φ
(
x, y, 0

)
= φ0

(
x, y
)
,

(2.9)

where div(·) is the divergence operator and dp is a function given by

dp(s) =
p′(s)
s

, (2.10)

that satisfies |dp(s)| < 1, for all s ∈ (o,∞) and lims→ 0 dp(s) = lims→∞ dp(s) = 1.
In (2.9), the initial level set function φ0 being a binary step function is given by

φ0
(
x, y
)
=

{
−d if

(
x, y
) ∈ Ω0,

d, otherwise,
(2.11)

where d > 0 is a constant and Ω0 is a subset in the image domain Ω.
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Figure 1: The Dirac function with different epsilon values.

In practice, the Dirac delta function δ(·) in (2.9) is replaced by the following function
δε(·):

δε(x) =

⎧
⎨

⎩

1
2ε

(
1 + cos

πx

ε

)
, |x| ≤ ε,

0, |x| > ε,
(2.12)

where ε is a positive constant. As shown in Figure 1, if ε is too small, the values of δε(·) are
prone to approximately zero tomake its effective range small, hence the energy functional can
be easily trapped into a local minimum. On the contrary, if ε is large, the final contour location
may be inaccurate, even if δε(·) tends to achieve a global minimum. For all experiments in
this paper, the parameter ε is set to 1.5.

3. Proposed Method

The goal of our method is to extract a breast tumor from a given US image. This method
consists of three stages: ESF definition, improved GVF construction, and model generation.
Figure 2 shows the block diagram of the proposed method. In the first stage, we first apply
phase asymmetry approach to enhance the image edges and then define a novel phase-based
ESF. At the second stage, we generate an edge map and use it to compute the GVF. At the last
stage, we construct the model first by using a phase-based ESF and then by incorporating the
improved GVF.
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Figure 2: Block diagram of the proposed method for breast tumor segmentation.

3.1. Design of the ESF

The sine and cosine functions with specific amplitudes (energies) can represent any discrete
signal. In the time domain, these functions cause a set of scaled waves, synthesizing the
original signal. Morrone and Owens [20] gave a general definition of how to describe and
detect signal features using the phase of the Fourier components.

Kovesi [21] proposed a low-level feature detector, named phase congruency model
[20], in terms of the Fourier analysis. The phase congruency model is based on the
assumption that features are perceived at points in an image where the Fourier components
are maximally in phase, rather than assume a feature is a point of maximal intensity gradient.
In other words, the phase of the sinusoidal components varies and a low phase congruency
is achieved at all other nonfeature points. In practical applications, the local frequency,
particularly, the phase information, is estimated via a bank of Cauchy filter tuned to various
spatial frequencies (scales) rather than Log-Gabor filter. The main reason for this is that Log-
Gabor filters are likely not a good choice in the event of feature detection [22, 23].

The measure of phase congruency provides inaccurate localization, noise sensitivity,
and high computational cost. Motivated by the properties of the phase congruency, Kovesi
considered that symmetries and asymmetries cause special phase patterns in the values of the
image intensity [21]. At symmetric points, all Fourier series should have either maximum or
minimum value. Kovesi proposed a modified measure to detect symmetry and asymmetry.
The symmetric measure is

PS[n] =
∑

s

⌊
As[n]

[∣∣cos
(
φs[n]

)∣∣ − ∣∣sin(φs[n]
)∣∣] − Ts

⌋

∑
s As[n] + ε

=
∑

s�[|evens[n]| − |odds[n]|] − Ts�∑
s As[n] + ε

,

(3.1)

and the asymmetric one is

PA[n] =
∑

s�[|odds[n]| − |evens[n]|] − Ts�∑
s As[n] + ε

, (3.2)

where evens and odds are the responses of the even-symmetric (cosine) and odd-symmetric
(sine) filters at scale s. At a point of symmetry, the absolute value of evens is large while that
of odds is small. At a point of asymmetry, the opposite is true.As[n] represents themagnitude
of the responses of each quadrature pair of filters at a given scale s and point n in the image,

that is, As[n] =
√
(odds[n])

2 + (evens[n])
2. Symbol �·� denotes zeroing of negative values, ε

is a positive constant to avoid division by zero, and Ts is the scale specific noise threshold.
Extension to two-dimensional (2D) images uses the 1D analysis over several

orientations and then combines the results to offer a single measure of the feature significance
[24]. For a given breast US image, we first convolve a breast US image with a bank of
Cauchy kernel filter in order to calculate the 2D phase asymmetry. In this paper, we yield
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Figure 3: Comparison between gradient-based ESF and phase-based ESF of the US image. (a) Speckled
homogeneous image; (b) and (c) are the gradient-based ESF and phase-based ESF of (a); (d) Speckled
image with contour; (e) and (f) are the gradient-based ESF and phase-based ESF of (d).

the asymmetric measures over six orientations and four/five scales at each pixel. The values
of PA range from 0 to 1, close to one in homogeneous region and close to zero in the vicinity
of boundaries. Clearly, PA is a dimensionless quantity.

Based on the analysis mentioned above, one can see that PA ∈ [0, 1] is the feature
asymmetry measure defined by (3.2) and can offer a better control on the edge detection
quality. Themain difference between this edge detection and the traditional edge detections is
that it is invariant to the changes in image intensity or contrast. According to our knowledge
of the breast US images, they are often intensity inhomogeneous and have high amounts of
speckle noise. Thus, we apply PA to define ESF with sufficient robustness and accuracy in
this paper. Since ESF is also an inverse edge indicator function, an appropriate definition of
ESF is given by

g =
1

1 + (PA)α
, (3.3)

where α ∈ [0, 1] is a hyperparameter. The g takes values in [0, 1], close to zero in the vicinity
of boundaries and close to one in homogeneous regions. Particular advantage of this ESF over
the gradient-based ESF (e.g., (2.8)) is its insensitivity to intensity inhomogeneity and speckle
noise. Figure 3 illustrates this statement.

As can be seen from Figure 3, two situations are described. The first case, where there
exits a single homogeneous region, is shown in Figure 3(a), and the second case, where
two distinct homogeneous regions are separated by a sharp edge, is shown in Figure 3(d).
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The gradient-based ESF and phase-based ESF are calculated on these two speckled images.
Figures 3(b) and 3(e) show that the variance of the gradient-based ESF increases with the
intensity in homogeneous regions. The multiplicative nature of speckle noise leads to this
expected behavior. In contrast, the phase-based ESF has more homogeneous values, as shown
in Figures 3(c) and 3(f). Consequently, the detected edges obtained using the phase-based
ESF are better than those obtained using the gradient-based one. The very low values of ESF
easily make curve stop at spurious edges which are caused by the speckle noise. Aiming at
precise segmentation of US images, our proposed model prefers to use the phase-based ESF
than the conventional gradient-based one.

3.2. Improved GVF Construction

Xu and Prince [6, 7] introduced the GVF as a bidirectional external force to capture the
object’s boundary from either sides and to deal with concave boundary. The construction
of the GVF can be divided into two stages: the generation of edge map f from the image and
the computation of the GVF from the edge map f . Clearly, the quality of edge map f is a
crucial factor in the construction of GVF field. A classical choice is defined as

f = |∇Gσ ∗ I|2. (3.4)

An obvious problem with this edge map is that the traditional GVF could be attracted
to strong edges which are caused by noises in an inhomogeneous region with high gray
values.

In order to eliminate this shortcoming, we define an edge map as

f
(
x, y
)
= g
(
x, y
)
, (3.5)

where g is given in (3.3).
The GVF field is defined by the vector field

VGGVF
(
x, y
)
=
(
u
(
x, y
)
, v
(
x, y
))
, (3.6)

that minimizes the following objective function [6, 7]:

EGGVF(u, v) =
1
2

∫∫
h1
(∣∣∇f

∣∣)
(
u2
x + u2

y + v2
x + v2

y

)
+ h2
(∣∣∇f

∣∣)∣∣(u, v) − ∇f
∣∣2dx dy, (3.7)

where ux, uy, vx, vy are the first derivatives of the vector field, h1(·) and h2(·) are the weight
functions depending on the gradient of the edge map ∇f , and they are defined as

h1
(∣∣∇f

∣∣) = exp

(

−
(∣∣∇f

∣∣

K

))

h2
(∣∣∇f

∣∣) = 1 − h1
(∣∣∇f

∣∣),

, (3.8)
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(a) (b) (c)

Figure 4:Comparison between original GVF field (Niter = 10) and improved GVF (Niter = 10) of the breast
US image. (b) and (c) are zoomed-in views of the original GVF and improved GVF in square window
marked in (a). As shown by the arrows, more gradient vectors in the improved GVF field point to the true
boundaries.

whereK is a nonnegative parameter which is used to control the smoothness of the resulting
vector field VGGVF. h1(·) and h2(·) should be monotonically decreasing and increasing
functions of |∇f |, respectively.

The force vector field VGGVF(x, y) can be solved from the following Euler equations:

h1∇2u − h2
(
u − fx

)
= 0,

h1∇2v − h2
(
v − fy

)
= 0,

(3.9)

where fx and fy are the derivatives of f with respect to x and y.
For an example of breast US image, Figures 4(b) and 4(c) show the detailed original

GVF field and improved GVF field of the window marked in Figure 4(a). It can be seen that
more gradient vectors point to the true boundary obviously in the improved GVF field, with
compared to the original GVF field.

The major difference between the traditional GVF and the improved GVF is that the
former edge map is dependent on gradient magnitude while the latter is dependent on phase
congruency. The advantage of the latter over the former is that it makes use of the phase
information in the cure convolution and, thus, achieves better edge detection results for
objects with intensity inhomogeneities or speckle noise.

3.3. Model Generation

Although most of the traditional level set methods require reinitialization, Li’s method [16]
does not require reinitialization and provides stable level set evolution. Therefore, based on
the model in (2.9) presented by Li et al. [16], we propose an improved edge-based level
set model in this paper. The main difference of the proposed model from the DRLSE model
in (2.9) is that it uses the phased-based ESF previously constructed and simultaneously
integrates the improved GVF.
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The proposed model yields a level set evolution, called phase- and GVF-based level
set evolution (PGBLSE). The PGBLSE model can be described by the following differential
equations:

∂φ

∂t
= μdiv

(
dp

(∣∣∇φ
∣
∣)∇φ

)
+ agδε

(
φ
)
+ λδε

(
φ
)
div

(

g
∇φ
∣
∣∇φ
∣
∣ · [û, v̂]

)

, (3.10)

where μ > 0, a ∈ R, λ ∈ R are the constants as the weights of the distance regularization
term, the area term, and the length term, dp(·) is a function defined in (2.10), δε(·) is the Dirac
delta function in (2.12), g is the ESF defined in (3.3), φ is the level set function, t represents
time variable, div(·) is the divergence operator, and ∇ is the gradient operator. [û, v̂] is the
normalized GVF field where û = u/

√
u2 + v2 and v̂ = v/

√
u2 + v2. The field normalization

is responsible for obviating the dependency on the absolute value of the image intensity and
providing sufficient information to guide the curve evolution.

Now assuming that ∇φ is negative inside the zero-level set and positive outside,
the inward normal vector to the curve can be expressed as N = −∇φ/|∇φ|. The curve
motion (shrinkage/expansion) is governed by the two vectors. This curve is expanded if
the curve’s normal aligns with the normalized GVF, or it is shrunk if the curve’s normal
and the normalized GVF are in the opposite directions and is not deformed if the curve’s
normal is orthogonal to the normalized GVF. Obviously, this flow increases the shrinking
and expanding capability of curve evolution. This property is useful in concave boundaries.

4. Results and Discussions

4.1. Data Acquisition

This work was approved by Shanghai Sixth People’s Hospital in China. Our method was
developed using MATLAB and evaluated using 20 US images of breast tumors. Among these
images, 10 were malignant tumors and 10 were benign tumors. The patients’ ages are in the
range from 18 and 75 years old. The images were collected by using three kinds of scanners
with the linear transducers (7–14MHz). The ultrasonic subimage of region of interest (ROI)
was chosen by an expert radiologist. This area only was then used for image segmentation.
An example of an extracted ROI subimage is illustrated in Figure 5.

4.2. Quantitative Measure

To evaluate the accuracy of the segmentation algorithms, we compared them with the
gold standard, which was manually produced by an experienced radiologist. In addition
to the golden standard segmentation, an error measure is required for evaluating object
segmentation algorithms. Measures can be divided into region-based measures and
boundary-based ones.

Region-based error measures are made by comparing the regions inside the contours.
The overlapping area error [4] is represented by the three parameters including true positive
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Figure 5:On the left is an US image captured from the sonographic scanner having a malignant tumor. On
the right is the ROI subimage.

(TP), false positive (FP), and Jaccard similarity (JS). For a given image, let Sa and Sm be the
obtained segmentation and golden standard, respectively. These three metrics are defined as

TP =
|Sm ∩ Sa|

|Sm| ,

FP =
|Sm ∪ Sa − Sm|

|Sm| ,

JS =
|Sm ∩ Sa|
|Sm ∪ Sa| ,

(4.1)

where ∪ is the set union operator, ∩ is the set intersection operator, and | · | represents the
number of pixels in the corresponding pixel set. The higher the TP value is, the more actual
tumor regions the segmented tumor regions cover. The lower the FP value is, the fewer
normal tissue regions the segmented tumor regions cover. The JS value ranges from 0 to 1.
The closer the JS value is to 1, the better the segmentation is.

The Dice similarity coefficient [25] has also been widely used for comparing existing
methods:

DSC =
2JS

1 + JS
=

2|Sm ∩ Sa|
|Sm| + |Sa| . (4.2)

The closer the value of DSC is to 1, the better the segmentation is.
Boundary-based error measures evaluate segmentations based on the distance

between two contours. The boundary error is defined as the average or max distance between
two contours. We denote the golden standard boundary byA = {a1, . . . , am} and the obtained
boundary as B = {b1, . . . , bn}, where each element of A or B is a point on the corresponding



Journal of Applied Mathematics 13

contour. For every point ai on boundary A, a distance to boundary B, denoted as MD (ai, B),
can be defined as the minimum distance of point ai to all points in B:

MD(ai, B) = min
j∈{1,...,n}

∥
∥ai − bj

∥
∥, (4.3)

where || · || denotes the Euclidean distance.
The average minimum Euclidean distance (AMED) [26] is the average distance

between two contours:

AMED(A,B) =
∑m

i=1 MD(ai, B)
2m

+

∑n
j=1 MD

(
bj ,A

)

2n
. (4.4)

The Hausdorff distance (HD) [26], on the other hand, measures the max distance
between two contours:

HD(A,B) = max
{

max
i∈{1,...,m}

MD(ai, B), max
j∈{1,...,n}

MD
(
bj ,A

)
}
. (4.5)

For a perfect segmentation, the distances HD and AMED are equal to zero.

4.3. Comparison with Previous Methods

We compare our method, PGBLSE model (3.10), with two edge-based active contour models:
GAC model [11] and DRLSE model [16]. The level set evolution in GAC model is

∂φ

∂t
= g
∣∣∇φ
∣∣div

(
∇φ
∣∣∇φ
∣∣

)

+ ag
∣∣∇φ
∣∣ +∇g · ∇φ, (4.6)

where a is a constant, which plays the similar role as in the PGBLSE model (3.10) and g is the
ESF defined by (2.8).

The same initial contours are used in these methods. We use the following default
setting of the parameters in our method: μ = 0.2, a = −1.1, λ = 0.2. The parameters α and s are
not set to the same values in all experiments. If we have to detect tumors of weak boundaries
or concave shapes, then parameters α and s should be small. Conversely, if we have to detect
tumors of strong boundaries and regular shapes, then parameters α and s should be large.
For the GAC and DRLSE models, we tuned the parameters for the best segmentation results
for all images. Experiments 1–5 illustrate the comparison results on five US images of breast
tumors.

Experiment 1 applies these three models to an US image which contains a malignant
breast tumor with obvious intensity inhomogeneity and highly concave boundary as shown
in Figure 6(a). The golden standard image was shown in Figure 6(b). The results obtained
with the GAC [11], DRLSE [16], and the proposed PGBLSE models are illustrated in Figures
6(c), 6(d) and 6(e), respectively. The GAC model fails in concave region since there is no
force that can pull the contour towards the concave portion of the tumor boundary. Although
the DRLSE model produces a smoother contour, it also fails in a similar fashion. Obviously,
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(a) (b) (c)

(d) (e)

Figure 6: Segmentation of a malignant breast tumor with intensity inhomogeneity and highly concave
boundary. (a)Original image. (b)Golden standard. Segmentation results of (c)GAC [11], (d)DRLSE [16],
and (e) the proposed PGBLSE models.

(a) (b) (c)

(d) (e)

Figure 7: Segmentation of amalignant breast tumor having intensity inhomogeneity andweak boundaries.
(a) Original image. (b) Golden standard. Segmentation results of (c) GAC [11], (d) DRLSE [16], and (e)
the proposed PGBLSE models.

without gradient diffusion, the ability to capture concave boundary is limited. With the help
of diffusion process, the proposed PGBLS method (α = 0.1, s = 4) successfully extracts
the concave part of the tumor. In addition, gradient diffusion is capable of removing the
boundary effect of weak edges. This is the reason why some parts of the contours from the
GAC and DRLSE models leak past weak boundary gradients while the PGBLSE model does
not. This also supports the efficiency of the improved GVF.

In experiment 2, these threemodels are applied to an US image of themalignant tumor
in Figure 7(a). This image is extremely challenging for edge-based active contour methods
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(a) (b) (c)

(d) (e)

Figure 8: Segmentation of a malignant breast tumor intensity inhomogeneity and low contrast. (a)Original
image. (b) Golden standard. Segmentation results of (c) GAC [11], (d) DRLSE [16], and (e) the proposed
PGBLSE models.

since it contains a complex-shaped tumor. Besides, the boundaries between the tumor region
and the surrounding normal tissue region are very weak, and the contrast is also low. The
results of the GAC model [11], DRLSE model [16], and the proposed method are illustrated
in Figures 7(c), 7(d), and 7(e), respectively. The GAC and DRLSE models capture the entire
tumor when parts of the normal tissues are also identified as tumor. Since tumor region
is surrounded by normal tissue regions with similar intensities and has local changes of
intensity, the gradient-based stopping terms of GAC and DRLSE models are heavily affected
and can be easily trapped into unsuitable local minima. In contrast, the proposed PGBLSE
model (α = 0.1, s = 4) uses a novel phase-based edge term; therefore, it can handle intensity
inhomogeneity well. In addition, due to the efficiency of the improved GVF mentioned
before (the ability to converge the concave boundaries is increased with sufficient gradient
diffusion), the PGBLSE model can prevent the leakage through weak edges and extract the
concave boundaries of tumor.

In experiment 3, Figure 8 illustrates the results using the GAC [11], DRLSE [16], and
PGBLSE models in the segmentation of malignant breast tumor in an US image. The GAC
model fails to segment the tumor in that the surrounding normal tissues of the tumor are
included as shown in Figure 8(c). It is also difficult to use the DRLSE model to successfully
extract the tumor; Figure 8(d) illustrates that some parts of the contour leak past weak
boundary gradients while other parts are confined inside the tumor. The PGBLSE model
(α = 0.5, s = 5) separates the real tumor from normal tissue regions, as illustrated in
Figure 8(e). That is, a successful segmentation is obtained.

Experiment 4 applies these three methods on an US image of a benign breast tumor,
as shown in Figure 9(a). It can be seen that the tumor image has gradually changing intensity
and the boundaries between the tumor region and its surrounding normal tissue are very
weak. The GAC model cannot deal with weak boundary, and the resulting contour leaks at
where there are relatively weak boundary gradients, as depicted in Figure 9(c). The DRLSE
model also cannot handle weak boundaries well, and the contour leaks into the surrounding
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(a) (b) (c)

(d) (e)

Figure 9: Segmentation of a benign breast tumor having low contrast and weak boundaries. (a) Original
image. (b) Golden standard. Segmentation results of (c) GAC [11], (d) DRLSE [16], and (e) the proposed
PGBLSE models.

(a) (b) (c)

(d) (e)

Figure 10: Segmentation of a benign breast tumor with low contrast and high speckle noise. (a) Original
image. (b) Golden standard. Segmentation results of (c) GAC [11], (d) DRLSE [16], and (e) the proposed
PGBLSE models.

normal tissues, as shown in Figure 9(d). In contrast, the proposed model (α = 0.1, s = 4) uses
the edge map based on phase information to calculate the gradients, which helps to prevent
the contour from leaking into normal tissues. Therefore, the proposed model is more immune
to leaking effect and the generated tumor contour is very close to the golden standard, as
shown in Figure 9(e).

Experiment 5 illustrates the application of the proposed method to a relatively smooth
benign breast tumor as shown in Figure 10(a). We analyze the GAC and DRLSE models. The
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US image suffers from speckle noise. The classical GAC model cannot yield smooth contour
even for the round shape, as shown in Figure 10(c). In addition, the GAC contour is confined
inside by small clusters of noise with large intensity magnitudes. Even though the DRLSE
model generates smoother contour, the resulting contour is still confined inside the tumor
region as illustrated in Figure 10(d). On the contrary, Figure 10(e) shows that the proposed
PGBLSE model (α = 0.5, s = 5) is the most accurate among these three methods.

Clearly, the GAC and DRLSE models are sensitive to the noise which seriously affects
the gradient-based stopping terms. Therefore, these two models yield many comparatively
strong gradients throughout the whole image including the homogeneous regions, which
distracts the evolution contours from the real boundaries. This problem can be solved by
using the phase-based stopping term because this term is theoretically intensity invariant.

Experiments 1–5 illustrate the comparison results on five US images of breast tumors
in comparison with the GAC model [11], the DRLSE model [16], and the golden standard.
The results suggest that the tumor contours extracted from our proposed PGBLSE model are
better than those from the other two models [11, 16], and they are very close to the golden
standard. This conclusion is also supported by the details shown in Figure 11.

Figure 11 shows that the proposed PGBLSE model obtains better accuracy than the
GAC and DRLSE models in terms of the JS and DSC measures. Moreover, the PGBLSE
model is superior to the GAC and DRLSE models in terms of the AMED and HD measures.
Particularly, the PGBLSE model is almost 2 times better than the GAC model in terms of the
HD measure.

Figures 6–10 demonstrate that the proposed model is the most accurate comparing
with the other models in the study. Finally, we evaluated our approach on the dataset of 20
US images of breast tumors. For these studied images, Figure 12 shows six box plot graphics
using the TP, FP, JS, DSC, AMED, and HD measures for the three segmentation models.

From Figure 12(a), a phenomenon is observed that the GAC model and the DRLSE
model performed slightly better than the proposed PGBLSE model in terms of the TP
measure. This advantage has been visualized in the box plot showing the large median values
of the TP. However, their segmentation results are not accurate, and the higher values of FP
also imply this. As shown in Figure 12(b), the median FP values of the GAC and DRLSE
models are very high (17.74% and 19.74%, resp.). On the contrary, the proposed PGBLSE
model obtains a much lower median value of FP (4.19%), which demonstrates that there are
fewer normal tissue regions mistakenly included in tumor regions and thus the segmentation
is more reliable. Like the cases in Figures 7 and 9, although the GAC and DRLSE models
approximately include the entire real tumor regions, they simultaneously cover a lot of
unsatisfied normal tissue regions. Figure 12(c) illustrates that the median values of JS for
these models are, respectively, 79.73%, 80.08%, and 86.30%. It is observed that the proposed
PGBLSE model presents the best median value, while the GAC and DRLSE models have
lower median values, which suggests worst segmentation performance. The GAC model
(from 81.63% to 85.1%) and the DRLSE model (from 81.51% to 85.95%) have the upper
quartile in a lower position when compared to the position of the same quartile of the
proposed PGBLSE model (from 87.74% to 90.04%), which suggests a lower performance of
the GAC and DRLSE models. This is also verified by the DSC measure (Figure 12(d)).

As can be seen from Figure 12(f), the median value of HD for our PGBLSE model is
around 7 pixels, whereas the median values for the GAC and DRLSE models are all above
16 pixels. High HD value means high disagreement between the segmented contour and
the golden standard. Besides, it is observed that our model offers a smaller dispersion range
while the GAC and DRLSE models provide large dispersion ranges. Although the median
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Figure 11: Bar plots of segmentation errors among the GAC, DRLSE, and PGBLSE models. (a) JS error. (b)
DSC error. (c) AMES error. (d) HD error. The x-axis represents five images in Figures 6(a)–10(a) in the
same order.

values of AD for the three models are not very different from each other, the GAC and
DRLSE models have more outliers and larger dispersion range of values as illustrated in
Figure 12(e).

As can be seen from Figure 13, the results are then assessed on 20 clinical US images
of breast tumors using the tumor areas that tumor contour enclosed. They are displayed in
Bland-Altman [27] plots. The x-axis is golden standard area and the y-axis represents the
tumor area difference between the three segmentation models and golden standard. For the
20 breast US images, using the GAC and DRLSE models, 95% of the point pairs (19 images)
are with ±2SD (95% confidence intervals). Using the proposed PGBLSE model, 100% of the
point pairs (20 images) are with ±2SD (100% confidence intervals). The mean differences are
568, 369, and −202.4 pixels for the GAC, DRLSE, and proposed PGBLSE models, respectively.
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Figure 12: Box plots of segmentation errors among the GAC, DRLSE, and PGBLSE models on 20 clinical
US images of breast tumors. (a)TP, (b) FP, (c) JS, (d) DSC, (e) AMED, and (f) HD.

The goal of this particular experiment is twofold. On the one hand, we demonstrate
that tumor areas of the GAC and DRLSE models are larger than those of the proposed
PGBLSE model, and, therefore, large values of TP are obtained. On the other hand, some
nontumor regions are also incorrectly covered by the GAC and DRLSE models, and,
therefore, large values of FP are achieved.

In our experiments, all figures (i.e., Figures 6–13) show, among the three models, that
the best agreement is between the proposed PGBLSE model and the golden standard.
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Figure 13: Bland-Altman plots for the comparison of the tumor areas on clinical US images of breast
tumors, assessed by three segmentation models and by the golden standard: (a) GAC [11], (b) DRLSE
[16], and (c) the proposed PGBLSE models.

5. Conclusions

We have presented in this paper a new approach for the segmentation of the ultrasonic breast
tumors. For the first time, phase asymmetry approach, which can enhance the boundaries, is
used to segment the ultrasonic breast tumors. In a level set framework, we integrate the use of
a novel ESF and the improved GVF, both constructed using the output of phase asymmetry.
This model shows significant improvements, particularly, in robustness against the speckle
noise, as well as in handling intensity inhomogeneities and capturing concave boundaries.

The performance of the proposed PGBLSE model is demonstrated on clinical US
images of breast tumors. Qualitative and quantitative results show that the PGBLSE model
outperforms the classical intensity-based GAC and DRLSE models. The further work will
focus on developing a hybrid level set active contour model by investigating the addition of
a region-based term, in order to improve the performance of the method.
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