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The problem considered is an investigation of the possible collapse of the roof between the pillar
next to be mined in secondary coal mining and the first line of pillar remnants called snooks. The
roof rock between the pillar, which is the working face, and the snook is modelled as an Euler-
Bernoulli beam acted on at each end by a horizontal force and by its weight per unit length. The
beam is clamped at the pillar and simply supported (hinged) at the snook. The dimensionless
differential equation for the beam and the boundary conditions depend on one dimensionless
number B. We consider the range of values of B before the displacement and curvature first become
singular at B = B1. The model predicts that for all practical purposes, the beam will break at the
clamped end at the pillar. The failure of the beam for values of B greater than B1 is investigated
computationally.

1. Introduction

We consider the challenge posed by coal mine pillar extraction [1, 2]. Secondary mining
involves revisiting a mine and extracting coal from the pillars. The mining of these pillars
commences from the area furthest away from the point of entry of the mine. This exercise
involves cutting the existing pillars into smaller pillars called snooks. As each section is
mined, the roof must collapse in a controlled manner in order to pose no safety risk to those
miners operating underground. We analyse the behaviour of the roof of the mine between
the pillar next to be mined and the first line of snooks. This is the work area and must be safe
for the miners.
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Figure 1: A mining panel showing the pillars before pillar extraction. Reproduced with permission from
N. van der Merwe.

2. Model

In Figure 1, a mining panel in shown prior to pillar extraction. The tunnels are excavated in
coal which are approximately 5 m to 7 m wide. They are excavated in a fixed pattern crossing
at right angles creating a checker board layout. The coal between the tunnels forms the pillars
which support the overburden rock. The width of the pillars is approximately 10 m to 20 m
wide and is a function of the depth of the mine. The height of the tunnels ranges from 3 m to
4 m. Secondary mining is carried out in two stages. In the initial stage, approximately 5 to 10
pillars are removed and the roof is left to collapse. This stage is modelled in [2]. Following
this, adjacent pillars are mined and smaller sections are left to collapse. The purpose of this
paper is to model the second stage in the extraction process. Figure 2 shows the snooks after
pillar extraction. The pillars are cut to leave four snooks, approximately 2 m, one at each
corner. The snooks have to be small enough to fail when the miners are a safe distance (about
the width of a pillar) from the working face but they have to be large enough to be stable
right next to the unmined pillars.

The roof consists of horizontal layers of rock of approximate thickness 0.5 m to 20 m, as
shown in Figure 3. The Euler-Bernoulli beam equation can be used to describe the horizontal
layers of rock in the roof. The use of the Euler-Bernoulli beam equation assumes that the roof
is thin compared with its horizontal extent and that only the horizontal direction is important.
The horizontal extent of the beam is the distance from the next pillar to be mined to the first
line of snooks which is the width of the tunnel and is approximately 6 m. The ratio of the
thickness of the beam to its length ranges from about 0.1 to about 3 and thus for the theory to
apply the thickness of the beam should not exceed 2 m. The width of the mining panel ranges
from about 130 m to 200 m. If we take the width of the mining panel as the width of the beam
then the ratio of the length of the beam to its width varies from about 0.05 to 0.03. Dependence
of the variables in the direction of the width of the beam can therefore be neglected. The use
of the Euler-Bernoulli beam is therefore justified for a beam of thickness less than about 2 m.

In this paper we will investigate if roof collapse can occur between the next pillar to
be mined and the first line of snooks when these snooks are stable and do not fail. In order to
achieve this, we consider the roof of the mine to be clamped at a pillar while at the adjacent
snook, the roof is simply supported or hinged. We consider the roof to be simply supported at
the snook since as secondary mining takes place, disturbances in the rock mass and also the
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Figure 2: A mining panel showing the snooks after pillar extraction. The pillar is replaced by four snooks,
one at each corner. Reproduced with permission from N. van der Merwe.
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Figure 3: A cross-section of the mine showing failed snooks and goaf, a stable snook, the next pillar to be
mined, and the overburden which consists of horizontal layers of rock. Reproduced with permission from
N. van der Merwe.

roof collapse due to the failure of the neighbouring snooks could change the roof structure
in the region where the snooks support the beam [3]. We model this by assuming that at the
snook the beam is no longer clamped and use instead that the beam is simply supported or
hinged at the snook. We also consider the behaviour of this small section of the roof when a
disturbance, such as a seismic event, causes a sudden increase in the horizontal force acting
at each end of the section of the roof.

An analysis of the problem where both ends of the beam are clamped is presented
in [2]. The beam number B, which occurred in the dimensionless Euler-Bernoulli beam
equation, was defined in [2] as follows:

B = L

[
P

EI

]1/2

, (2.1)

where P is the horizontal axial force applied to the ends of the beam, L is the length, E is the
Young’s modulus of the beam, and I is a second moment of the cross-sectional area of the
beam. The beam number was the only dimensionless parameter in the problem. This number
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Figure 4: Beam with end at x = 0 clamped and end x = L simply supported (hinged).

has arisen before in the literature, for example in [4], but no name was assigned to it. The
displacement became singular when B = 2nπ where n = 1, 2, 3 . . .. The magnitude of the
displacement was greatest at the centre of the beam for 0 < B < 2π due to the symmetry of
the problem. For 0 < B < 2π the magnitude of the curvature was greatest at the endpoints of
the beam and thus the beam collapsed at these points when the tensile strength of the beam
was exceeded. The problem of one end clamped and one simply supported is not symmetric.
Our task is to solve and analyse this problem and to compare it with the problem with both
ends clamped.

Previous work on roof failure due to the failure of snooks is reviewed in [5]. Useful
texts are [6–9].

3. Derivation of the Differential Equation

The combined beam and strut is shown in Figure 4. We will use the notation and conventions
of Segal and Handelman [10]. The coordinate axes are defined in terms of the undeformed
beam. The x1- and x2-axes are along the axes of principle moments of inertia of the cross-
section of the beam with the x1-axis vertically downwards. The x3-axis is horizontal and
passes through the centroid of each cross-section. The origin of the coordinate system is at the
centroid of the cross-section of the left end of the beam. Unit vectors, i, j, and k are directed
along each coordinate axis. For simplicity, we denote x3 by x.

An outline of the derivation of the differential equation for the Euler-Bernoulli beam
when both ends are clamped is given in [2, 10]. The potential energy V of an elastic beam of
length L and Young’s modulus E is given by the following:

V (w) =
∫L

0

⎡
⎣1

2
EI

(
d2w

dx2

)2

− 1
2
P

(
dw

dx

)2

− (q(x) + s(x)
)
w(x)

⎤
⎦dx, (3.1)

where w(x) is the displacement of the beam from the horizontal position x vertically
downwards in the direction of i, I is the second moment of area about the x2-axis, q(x) is
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the magnitude of the body force per unit length, s(x) is the magnitude of the applied surface
traction per unit length in the direction of i, and P is the horizontal force acting at each end
of the beam. We assume that the simple support or hinge can oppose an axial force thus
disallowing any axial motion. The nonlinear strain tensor is used in part of the derivation of
V (w) in [10].

The derivation of the beam equation depends on the boundary conditions. We show
that the boundary conditions for the present problem yield the same beam equation as in
[2] and thus the only difference between the two problems is their boundary conditions.
The boundary conditions with one end clamped and the other end simply supported are as
follows:

w(0) = 0,
dw

dx
(0) = 0, w(L) = 0,

d2w

dx2 (L) = 0. (3.2)

At equilibrium, the potential energy is at an extremum. In order to impose this
condition we let

w(x) = w0(x) + εw1(x), (3.3)

where ε is a constant parameter. Since w(x) satisfies boundary conditions (3.2) for all ε it
implies that w0(x) and w1(x) must separately satisfy (3.2). Thus we have,

d

dε
V (w0 + εw1)|ε=0 =

∫L

0

[
EI

d2w0

dx2

d2w1

dx2
− P

dw0

dx

dw1

dx
− (q(x) + s(x)

)
w1(x)

]
dx, (3.4)

giving that, at equilibrium,

0 =
∫L

0

[
EI

d2w0

dx2

d2w1

dx2
− P

dw0

dx

dw1

dx
− (q(x) + s(x)

)
w1(x)

]
dx. (3.5)

We use integration by parts and the boundary conditions to deduce the following
results:

∫L

0

d2w0

dx2

d2w1

dx2
dx =

∫L

0

d4w0

dx4
w1(x)dx,

∫L

0

dw0

dx

dw1

dx
dx = −

∫L

0

d2w0

dx2
w1(x) dx.

(3.6)

Using (3.6) we can rewrite (3.5) as

0 =
∫L

0

[
EI

d4w0

dx4
+ P

d2w0

dx2
− q(x) − s(x)

]
w1(x) dx. (3.7)
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Since (3.7) holds for arbitrary w1(x), we can deduce that

EI
d4w0

dx4
+ P

d2w0

dx2
= q(x) + s(x). (3.8)

In our model the roof is made of horizontal layers of rock each acting as a beam. The
horizontal force P acting on each end of the beam arises as a result of the compressive stresses
due to the rock mass above. The quantity q is the weight per unit length of the beam which we
assume is constant. The quantity s is the magnitude of the applied normal surface traction
per unit length due to the transfer of stresses from the adjoining layers. We assume that s
is constant. The displacement depends on the weight and on the applied normal surface
traction in the same way. We will therefore denote the combined forces, s and q, simply by q.
The above derivation and in [2] differ from that of Segal and Handelman [10] by the inclusion
of q(x) and s(x) in the analysis. Also, in [10], the boundary conditions were as follows:

w(0) = 0, w′′(0) = 0, w(1) = 0, w′′(1) = 0, (3.9)

while in [2], the boundary conditions were as follows:

w(0) = 0, w′(0) = 0, w(1) = 0, w′(1) = 0. (3.10)

We see that the Euler-Bernoulli beam equation remains valid for the boundary
conditions used in this paper. Equation (3.8) is now written in dimensionless form. Define
[2]:

x =
x

L
, w =

w

S
, S =

qL4

EI
, (3.11)

where S is the characteristic displacement. Equation (3.8) becomes

d4w

dx4
+ B2 d

2w

dx2
= 1, (3.12)

where the beam number B is defined by (2.1). The boundary conditions, (3.2), when
expressed in dimensionless variables become

w(0) = 0,
dw

dx
(0) = 0, w(1) = 0,

d2w

dx2 (1) = 0. (3.13)

The bending moment M is [10] as follows:

M = EI
d2w

dx2
, (3.14)
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where, since it is assumed that the displacement is sufficiently small that linear theory applies
[10],

d2w

dx2
= curvature of the neutral axis of the beam. (3.15)

Define [2]:

M =
M

qL2
. (3.16)

Then

M =
d2w

dx2
, (3.17)

and we will refer to M as both the bending moment and curvature of the beam. The overhead
bar will be suppressed in the rest of the paper to keep the notation simple.

4. Mathematical Solution

Consider the model of the roof rock between a pillar at x = 0 which is the working face and a
snook at x = 1 described by an Euler-Bernoulli beam with end x = 0 clamped and end x = 1
simply supported or hinged. The displacement w(x) satisfies the differential equation

d4w

dx4
+ B2 d

2w

dx2
= 1, (4.1)

subject to the boundary conditions

w(0) = 0,
dw

dx
(0) = 0, w(1) = 0,

d2w

dx2 (1) = 0. (4.2)

The solution for w(x) is

w(x) =
x2

2B2
− 1
B4(sinB − B cosB)

[[(
1 +

B2

2

)
sinB − B

]
(1 − cos(Bx))

+

[
1 −
(

1 +
B2

2

)
cosB

]
(Bx − sin(Bx))

]
,

(4.3)

provided that B does not satisfy

F(B) = sinB − B cosB = 0. (4.4)
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Figure 5: Graph of F(B) = sinB − B cosB against B for B in the range [0,10].
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Figure 6: Graph of y = tanB and y = B against B for B in the range [0,10].

We can rewrite (4.4) as follows:

tanB = B. (4.5)

Equations (4.4) and (4.5) are plotted in Figures 5 and 6. The first five roots of (4.4) and
(4.5) are

B0 = 0, B1 = 4.4934, B2 = 7.7253, B3 = 10.9041, B4 = 14.0662. (4.6)

At these values of B, the displacement becomes infinite. Since B = 4.4934 is the first
nonzero value of B for which the displacement becomes singular, our primary concern is
in the interval 0 < B < 4.4934. In the next section, we discuss the solution (4.3) for the
displacement and calculate the curvature of the beam which determines the location at which
the beam will break.

For a beam with both ends clamped [2], the displacement becomes singular for B =
2nπ where n = 1, 2, 3, . . .. Comparing the first points at which the displacement becomes
singular in the two models, we note that 4.4934 < 2π = 6.2832. Small displacements and
small derivatives are used in the derivation of the Euler-Bernoulli beam equation. The theory
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Figure 7: Graphs of the displacement w(x) for B = 0.5, 1.5, 2.5, 3.5, 4.

therefore breaks down in the neighbourhood of the points x = Bn where the curvature has
singular behaviour. A full nonlinear theory would need to be used in these regions. However,
the beam will break when its tensile strength is exceeded which could be well before the
singularities in the curvature are reached.

5. Analysis of the Results

Graphs of the displacement w(x) for values of the beam number, B, in the range 0 < B <
4.4934 are shown in Figure 7. The displacement has two stationary points which are located
at x = 0 and at an interior point.

Consider first the beam for small values of B. The asymptotic expansion of w(x) as
B → 0 is given by the following:

w(x) =
x2(1 − x)

48

[
3 − 2x +

B2

60

(
4x3 − 11x2 + 4x + 6

)
+O
(
B4
)]

. (5.1)

The displacement is nonzero when B = 0 because of the weight per unit length, q,
acting on the beam. Graphs of the displacement w(x) for small values of B are presented in
Figure 8. From the graphs, we can see that (5.1) is a good approximation for the displacement
for B ≤ 0.9.

Denote by x0 the point of maximum displacement of the beam. In order to estimate x0

for small B, consider, from (5.1),

dw

dx
=

x

48

[
8x2 − 15x + 6 − B2

20

(
8x4 − 25x3 + 20x2 + 2x − 4

)
+O
(
B4
)]

= 0, as B −→ 0.

(5.2)

The root of the quadratic equation

8x2 − 15x + 6 = 0 (5.3)
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in the range 0 < x < 1 is x = 0.578 and therefore,

x0 = 0.578 +O
(
B2
)
, as B −→ 0. (5.4)

The root of

8x4 − 25x3 + 20x2 + 2x − 4 = 0 (5.5)

in the range 0 < x < 1 is x = 0.594 which is only 2.77% larger than 0.578. The maximum
turning points of the curves in Figure 10 are all close to the zero order in B value. This shows
that (5.4) is a good approximation of x0 for small values of B. Substituting (5.4) into (5.1)
gives

w(x0) = 0.0054 +O
(
B2
)
, as B −→ 0, (5.6)

which from Figures 7 and 8 is a good approximation for B ≤ 0.5. In comparison, for a beam
with clamped ends, from symmetry, the magnitude of the deflection is a maximum at x0 = 0.5
for 0 < B < 2π .

In order to gain insight into the possible failure of the beam, we need to determine the
point at which the beam is under maximum stress. We assume that this is the point at which
the magnitude of the curvature is greatest. The dimensionless curvature of the beam is given
by the following:

d2w

dx2
=

1
B2

− 1
B2(sinB − B cosB)

[[(
1 +

B2

2

)
sinB − B

]
cos(Bx)

+

[
1 −
(

1 +
B2

2

)
cosB

]
sin(Bx)

]
.

(5.7)
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Graphs of the magnitude of the curvature for a range of values B < B1 are given in
Figure 9.

The curvature vanishes at x = 1 because the end x = 1 is simply supported. Denote
by x1 the position of the local maximum of the magnitude of the curvature when 0 < x < 1.
Since the sign of the curvature at x = 0 is opposite to that at x = x1, the curvature must vanish
at a point, say x2, where 0 < x2 < x1. We can deduce from Figure 9 that x2 does not change
significantly as B is increased. For the range of values used in Figure 9, the magnitude of the
curvature at x = 0 is greater than at x = x1. We will investigate later as to whether this is
always the case.

Consider first the curvature for small values of B. The asymptotic expansion of (5.7)
as B → 0 is given by the following:

d2w

dx2
=

1
8
(1 − x)

[
1 − 4x +

B2

30

(
10x3 − 15x2 + 1

)
+O
(
B4
)]

. (5.8)

To zero order in B, the zeros of the curvature occur at x = 1 and x = 1/4 and therefore,

x2 = 0.25 +O
(
B2
)
, as B −→ 0. (5.9)

The root of the cubic equation

10x3 − 15x2 + 1 = 0 (5.10)

in the range 0 < x < 1 is x = 0.287 which explains why x2 does not greatly depend on B. The
expansions are in good agreement with Figure 9.

We now consider the turning point x = x1 of the curvature. From (5.7),

d3w

dx3
=

1
B2(sinB − B cosB)

[[(
1 +

B2

2

)
sinB − B

]
sin(Bx)

−
[

1 −
(

1 +
B2

2

)
cosB

]
cos(Bx)

]
.

(5.11)
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which vanishes for x = x1, where

tan(Bx1) =
P(B)
Q(B)

,

P(B) = 1 −
(

1 +
B2

2

)
cosB,

Q(B) =

(
1 +

B2

2

)
sinB − B.

(5.12)

We now examine R, the absolute value of the ratio of the curvature at x = 0 to the
curvature at x = x1 as follows:

R(B) =
∣∣∣∣ w

′′(0)
w′′(x1)

∣∣∣∣. (5.13)

For the range of values of B considered in Figure 9, R(B) > 1. However, as B
approaches the first singular value B = B1 = 4.4934, the ratio R approaches and may exceed
unity. This is illustrated in Figure 10 where B = 4.4930. We now investigate analytically the
ratio R(B) for 0 ≤ B ≤ B1.

Consider first the asymptotic behaviour as B → 0. Now

P(B) =
5

24
B4 +O

(
B6
)
,

Q(B) =
1
3
B3 +O

(
B5
)
,

(5.14)
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and therefore, from (5.12)

x1 =
5
8
+O
(
B2
)
, as B −→ 0. (5.15)

The value x1 = 0.625 for small B is consistent with the graphs in Figure 9. Also, from
(5.8), as B → 0,

w′′(0) =
1
8

(
1 +O

(
B2
))

,

w′′(x1) = − 9
128

(
1 +O

(
B2
))

,

(5.16)

and therefore,

R(B) =
16
9

+O
(
B2
)
, as B −→ 0. (5.17)

A more detailed calculation yields the following result

R(B) =
16
9

[
1 − 47

2304
B2 +O

(
B4
)]

, (5.18)

so that R(B) decreases initially as B increases.
Consider next the limit as B → B1. The curvature w′′(x), given by (5.7), may be

expressed in terms of F(B), P(B), and Q(B) as follows:

d2w

dx2
=

1
B2F(B)

[F(B) −Q(B) cos(Bx) − P(B) sin(Bx)]. (5.19)

Then,

w′′(0) =
1

B2F(B)
[F(B) −Q(B)]. (5.20)

Also, since x1 is defined by (5.12),

cos(Bx1) =
Q(B)

(P 2(B) +Q2(B))1/2
, sin(Bx1) =

P(B)

(P 2(B) +Q2(B))1/2
, (5.21)

and therefore,

w′′(x1) =
1

B2F(B)

[
F(B) −

(
P 2(B) +Q2(B)

)1/2
]
. (5.22)
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Hence,

R(B) =
∣∣∣∣ w

′′(0)
w′′(x1)

∣∣∣∣ =
∣∣∣∣∣

F(B) −Q(B)

F(B) − (P 2(B) +Q2(B))1/2

∣∣∣∣∣. (5.23)

Now at B = B1, F(B1) = 0 and therefore, sinB1 = B1 cosB1. Thus,

Q(B1) = −B1P(B1), (5.24)

and hence

R(B1) =
B1(

1 + B2
1

)1/2
. (5.25)

Thus, R(B1) < 1. Also, using (5.12) and (5.24), we find that in the limit B = B1, x1 is
given by the following:

tan(B1x1) = − 1
B1

. (5.26)

Since B1 = 4.4934, it follows that

R(B1) = 0.9761, (5.27)

and that

x1(B1) = 0.66. (5.28)

The graph of R(B) against B for 0 ≤ B < B1 is presented in Figure 11. The analytical
results for B → 0 and B → B1 agree with the graph. In comparison when the two ends of
the beam are clamped, R(B) > 1 for 0 ≤ B < B1 and R(B1) = 1, where B1 = 2π .

6. Numerical Estimates

Consider first the beam number B defined by (2.1). The total horizontal force P acting on each
end section is given by [2, 9, 10] the following:

P = kρgHbh, (6.1)

where H is the depth of the mine below the surface of the earth, ρ is the average density of
the rock from the surface of the earth to the depth H, b is the breadth of the roof beam, h is
the thickness of the beam, and k is the lateral stress coefficient. The lateral stress coefficient is
a function of the rock properties. The value k = 0 corresponds to a material that is completely
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Figure 11: Graph of the ratio R(B) for 0 ≤ B ≤ B1, where B1 = 4.4934. The point of intersection of the two
curves is B = 4.4324.

solid while k = 1 corresponds to a fluid in which the pressure is isotropic. Some models can
predict values of k > 1 and that k decreases with depth [7]. For the shallow coal mines which
we will consider, we will take k = 2 [11]. The second moment of area about the x2-axis is [2]

I =
bh3

12
. (6.2)

The beam number (2.1) becomes

B = 3.46
L

h

[
kρgH

E

]1/2

. (6.3)

For a beam with one end clamped and the other end simply supported, the
displacement and curvature become infinite first at B = B1 = 4.4934. Thus we obtain the
upper limit Lc for the length that a beam can have without collapsing:

L < Lc = 1.2971h
[

E

kρgH

]1/2

. (6.4)

As the beam becomes more fractured with time the Young’s modulus E will decrease
and Lc will decrease.

When both ends of the beam are clamped, B1 = 2π and the ratio of the maximum
length Lc(2) when one end is clamped and one is simply supported, to the maximum length
Lc(1) when both ends are clamped is

Lc(2)
Lc(1)

=
B1(2)
B1(1)

= 0.7151. (6.5)

The critical length Lc(1) describes the initial stage of the process of pillar extraction when
several pillars are removed and the roof is left to collapse, while Lc(2) models the second
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Table 1: Critical length Lc.

h(m) H = 120 m
Lc(m)

H = 500 m
Lc(m)

0.1 9.26 4.54
0.2 18.53 9.08
0.3 27.80 13.62
0.4 37.06 18.16
0.5 46.33 22.7
0.6 55.60 27.23
0.7 64.86 31.77
0.8 74.12 36.31
0.9 83.39 40.85
1 92.65 45.39

stage when adjacent pillars are mined and smaller sections of the roof are left to collapse. We
see that Lc(2) < Lc(1) which is consistent with the two models.

We consider a beam made of sandstone. We use the following estimates:

E = 3 × 1010 Pa,

h = 0.1 m, 0.2 m, . . . , 1 m,

k = 2,

ρ = 2.5 × 103 kg/m3,

g = 9.8 m/s2,

H = 120 m, 500 m, 1000 m.

(6.6)

Table 1 summarizes numerical estimates for Lc for a beam with one end clamped and
the other simply supported. In a coal mine the distance between the pillars ranges from 5 m
and 7 m. When the bending moment or curvature exceeds the tensile strength of the beam the
roof will collapse. This may occur for beam lengths L less than Lc since Lc provides only an
upper limit on the length of the beam for collapse.

The axial force P may experience a sudden increase due to a seismic event which could
last for a short time. Using (2.1), the upper limit for the length, Lc, can be written as follows:

Lc = B1

[
EI

P

]1/2

. (6.7)

If Lc is reduced below about 6 m due to an increase in P then a roof collapse may occur.
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Figure 12: Graphs of the curvature w′′(0) at x = 0 plotted against B for a beam with: (1) x = 0 clamped and
x = 1 clamped, (2) x = 0 clamped and x = 1 simply supported.

We now compare the effect of hinged and clamped supports at the snook at x = 1 on
the curvature at the pillar at x = 0. When both ends of the beam are clamped [2],

w′′
1(0) =

1
B2

[
1 − B

2 tan(B/2)

]
,

w′′
1(0) =

1
12

+O
(
B2
)
, as B −→ 0.

(6.8)

When the end x = 0 is clamped and the end x = 1 is simply supported (hinged), from
(5.7) and (5.8),

w′′
2(0) =

1 − cosB − (1/2)B sinB

B(sinB − B cosB)
,

w′′
2(0) =

1
8
+O
(
B2
)
, as B −→ 0.

(6.9)

Thus,

w′′
2(0)

w′′
2(0)

|B=0 =
3
2
. (6.10)

In Figure 12 the graphs of w′′
1(0) and w′′

2(0) are plotted against B. We see that when
the end x = 1 is simply supported the curvature at x = 0 is greater for a given value of B
than when it is clamped. The tensile strength of the beam will be exceeded at the end x = 0
for lower values of B when the end x = 1 is simply supported than when it is clamped. The
simply supported boundary condition has the effect of increasing the bending moment at the
end x = 0 and causing the beam to break at x = 0 for lower values of B.
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7. Values of the Beam Number B Greater Than B1

A graph of the magnitude of the curvature of the beam at the end x = 0, plotted against B, is
given in Figure 13. It divides the values of B into the intervals,

I1 = [0, B1], I2 = [B1, B2], I3 = [B2, B3], . . . , In = [Bn−1, Bn], (7.1)

where B1, B2, B3,. . . are the values at which the displacement and curvature become infinite.
We have only considered the first interval I1. Since, from (2.1), we see that the beam number
B is proportional to L and P (1/2) the value of B would increase if either L or P were to increase.
The length of the beam increases by a finite amount when a snook fails. In the second stage
of the pillar extraction process, small sections of the mine collapse but if the snooks are too
strong they will support a longer section of the roof which will form a beam and collapse
when the snooks fail. Another way in which B could increase suddenly is due to a seismic
event which may produce a discontinuous increase in P which could last for a short period
of time.

Consider first the displacement. The displacement for values of B in the first interval,
I1, was considered in Figure 7. In Figure 14 graphs of the displacement for representative
values of B in the intervals, I1 to I6, are presented. We see that as B increases through the
intervals the number of turning points increases and that the displacement can take negative
values beyond interval I1. The amplitude of the displacement will depend on how close B is
to the singular end points of the interval.

Consider next the magnitude of the curvature. In Figure 9 graphs of the magnitude
of the curvature were plotted against x for values of B in the first interval I1. In Figure 15,
graphs of the magnitude of the curvature are plotted for the same representative values used
to plot the displacement in Figure 14. For the values of B and n considered, the number of
local maxima of the magnitude of the curvature in the nth interval In is n. The greatest local
maximum is not at the end x = 0 but at interior points. There may be several points for which
the magnitude of the curvature has the maximum value. If the bending moment exceeds the
tensile strength the beam will break at these interior points. The magnitude of the curvature
depends on how close B is to the singular endpoints of the interval. Since B is proportional
to the length of the beam L we see from Figure 13 that if the value of B is in the range outside
of B1 then a longer beam could be less susceptible to failure than a shorter beam. This could
be associated with the beam taking on a higher mode of bending. We see from Figure 14 that
the displacement can be negative. For this to be possible in practice the beam would have to
be detached sufficiently from the layers above.

8. Conclusions

We investigated the possible roof collapse between the next pillar to be mined and the first
line of snooks by modelling the roof as an Euler-Bernoulli beam. The beam was simply
supported (hinged) at the snook and clamped at the pillar which was the working face. The
model contained one dimensionless number—the beam number B.

Numerical estimates obtained for the critical length Lc are comparable to the expected
distance between pillars which in a coal mine is 5–7 m thus making the model credible. The
model also predicts that the roof may collapse at the clamped end at the pillar for 0 < B <
4.4324. For the range 4.4324 < B < B1 = 4.4934, the model predicts that the roof may collapse
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Figure 13: Graph of the magnitude of the curvature at the end x = 0 plotted against B.
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Figure 14: Graphs of the displacement for representative values of the beam number B in the intervals I1
to I6.

at an interior point closer to the snook than to the pillar where the magnitude of the curvature
attains its maximum value. However, this range contributes only 1.36 percent of the range
[0, B1] and since it is likely that the threshold of the stress would have been exceeded for
values of the beam number below B = 4.4324, for all practical purposes, the beam will break
at the clamped end if the threshold of its stress is exceeded. It will therefore break at the pillar
which is the working face. However, the model showed that it is not necessary for the beam
to break at the clamped end. The beam may break at interior points. In I1, the interior point
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Figure 15: Graphs of the magnitude of the curvature for representative values of the beam number B in
the intervals I1 to I6.

is unique for a given value of B. Other boundary conditions would need to be considered
and analyzed in order to determine whether the beam can collapse at an interior point for
practical values of B.

From Figure 12 we deduced that a beam which is simply supported (hinged) at the
snook produces a larger bending moment at the pillar (where it is clamped) than a beam
which is clamped at the snook. The beam will break at a lower value of the beam number
when it is hinged at the snook.

The displacement and curvature become infinite at the zeros of F(B) defined by (4.4)
which divides the value of B into intervals. We considered mainly the first interval 0 ≤ B ≤ B1.
However, as the snooks fail B can increase discontinuously by finite amounts and may take
values in the higher intervals. A preliminary computational investigation was undertaken
of the displacement and curvature for values of B in these intervals. It was found that the
displacement can take negative values. In the nth interval the magnitude of the curvature had
n local maxima. The maximum value of the magnitude of the curvature did not in general
occur at the pillar but occurred instead at interior points. If the tensile strength of the beam is
exceeded the beam could break at several interior points.

In practice, roof bolts are installed [12].
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