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We consider the perturbation analysis of the matrix equation X −∑m
i=1 A

∗
i XAi +

∑n
j=1 B

∗
j XBj = I.

Based on the matrix differentiation, we first give a precise perturbation bound for the positive
definite solution. A numerical example is presented to illustrate the sharpness of the perturbation
bound.

1. Introduction

In this paper, we consider the matrix equation

X −
m∑

i=1

A∗
i XAi +

n∑

j=1

B∗
j XBj = I, (1.1)

where A1, A2, . . . , Am, B1, B2, . . . , Bn are n × n complex matrices, I is an n × n identity matrix,
m, n are nonnegative integers and the positive definite solution X is practical interest.
Here, A∗

i and B∗
i denote the conjugate transpose of the matrices Ai and Bi, respectively.

Equation (1.1) arises in solving some nonlinear matrix equations with Newton method. See,
for example, the nonlinear matrix equation which appears in Sakhnovich [1]. Solving these
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nonlinear matrix equations gives rise to (1.1). On the other hand, (1.1) is the general case of
the generalized Lyapunov equation

MYS∗ + SYM∗ +
t∑

k=1

NkYN
∗
k + CC∗ = 0, (1.2)

whose positive definite solution is the controllability Gramian of the bilinear control system
(see [2, 3] for more details)

Mẋ(t) = Sx(t) +
t∑

k=1

Nkx(t)uk(t) + Cu(t). (1.3)

Set

E =
1√
2
(M − S + I), F =

1√
2
(M + S + I), G = S − I, Q = CC∗,

X = Q−1/2YQ−1/2, Ai = Q−1/2NiQ
1/2, i = 1, 2, . . . , t,

At+1 = Q−1/2FQ1/2, At+2 = Q−1/2GQ1/2,

B1 = Q−1/2EQ1/2, B2 = Q−1/2CQ1/2,

(1.4)

then (1.2) can be equivalently written as (1.1) withm = t + 2 and n = 2.
Some special cases of (1.1) have been studied. Based on the kronecker product and

fixed point theorem in partially ordered sets, Reurings [4] and Ran and Reurings [5, 6] gave
some sufficient conditions for the existence of a unique positive definite solution of the linear
matrix equations X −∑m

i=1 A
∗
i XAi = I and X +

∑n
j=1 B

∗
i XBi = I. And the expressions for these

unique positive definite solutions were also derived under some constraint conditions. For
the general linear matrix equation (1.1), Reurings [[4], Page 61] pointed out that it is hard to
find sufficient conditions for the existence of a positive definite solution, because the map

G(X) = I +
m∑

i=1

A∗
i XAi −

n∑

j=1

B∗
j XBj (1.5)

is not monotone and does not map the set of n × n positive definite matrices into itself.
Recently, Berzig [7] overcame these difficulties by making use of Bhaskar-Lakshmikantham
coupled fixed point theorem and gave a sufficient condition for (1.1) existing a unique
positive definite solution. An iterative method was constructed to compute the unique
positive definite solution, and the error estimation was given too.

Recently, the matrix equations of the form (1.1) have been studied by many authors
(see [8–14]). Some numerical methods for solving the well-known Lyapunov equation
X + ATXA = Q, such as Bartels-Stewart method and Hessenberg-Schur method, have been
proposed in [12]. Based on the fixed point theorem, the sufficient and necessary conditions for
the existence of a positive definite solution of the matrix equation Xs ±A∗X−tA = Q, s, t ∈ N
have been given in [8, 9]. The fixed point iterativemethod and inversion-free iterativemethod
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were developed for solving the matrix equations X ± A∗X−αA = Q, α > 0 in [13, 14]. By
making use of the fixed point theorem of mixed monotone operator, the matrix equation
X −∑m

i=1 A
∗
i X

δiAi = Q, 0 < |δi| < 1 was studied in [10], and derived a sufficient condition for
the existence of a positive definite solution. Assume that F maps positive definite matrices
either into positive definite matrices or into negative definite matrices, the general nonlinear
matrix equation X +A∗F(X)A = Q was studied in [11], and the fixed point iterative method
was constructed to compute the positive definite solution under some additional conditions.

Motivated by the works and applications in [2–6], we continue to study the matrix
equation (1.1). Based on a new mathematical tool (i.e., the matrix differentiation), we firstly
give a differential bound for the unique positive definite solution of (1.1), and then use it to
derive a precise perturbation bound for the unique positive definite solution. A numerical
example is used to show that the perturbation bound is very sharp.

Throughout this paper, we write B > 0 (B ≥ 0) if the matrix B is positive definite
(semidefinite). If B − C is positive definite (semidefinite), then we write B > C (B ≥ C). If
a positive definite matrix X satisfies B ≤ X ≤ C, we denote that X ∈ [B,C]. The symbols
λ1(B) and λn(B) denote the maximal and minimal eigenvalues of an n × n Hermitian matrix
B, respectively. The symbol Hn×n stands for the set of n × n Hermitian matrices. The symbol
‖B‖ denotes the spectral norm of the matrix B.

2. Perturbation Analysis for the Matrix Equation (1.1)

Based on thematrix differentiation, we firstly give a differential bound for the unique positive
definite solution XU of (1.1), and then use it to derive a precise perturbation bound for XU in
this section.

Definition 2.1 ([15], Definition 3.6). Let F = (fij)m×n, then the matrix differentiation of F is
dF = (dfij)m×n. For example, let

F =
(

s + t s2 − 2t
2s + t3 t2

)

. (2.1)

Then

dF =
(

ds + dt 2sds − 2dt
2ds + 3t2dt 2tdt

)

. (2.2)

Lemma 2.2 ([15], Theorem 3.2). The matrix differentiation has the following properties:

(1) d(F1 ± F2) = dF1 ± dF2;

(2) d(kF) = k(dF), where k is a complex number;

(3) d(F∗) = (dF)∗;

(4) d(F1F2F3) = (dF1)F2F3 + F1(dF2)F3 + F1F2(dF3);

(5) dF−1 = −F−1(dF)F−1;

(6) dF = 0, where F is a constant matrix.
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Lemma 2.3 ([7], Theorem 3.1). If

m∑

i=1

A∗
i Ai <

1
2
I,

n∑

j=1

B∗
j Bj <

1
2
I, (2.3)

then (1.1) has a unique positive definite solution XU and

XU ∈
⎡

⎣I − 2
n∑

j=1

B∗
j Bj , I + 2

m∑

i=1

A∗
i Ai

⎤

⎦. (2.4)

Theorem 2.4. If

m∑

i=1

‖Ai‖2 < 1
2
,

n∑

j=1

∥
∥Bj

∥
∥2 <

1
2
, (2.5)

then (1.1) has a unique positive definite solution XU, and it satisfies

‖dXU‖ ≤
2
(
1 + 2

∑m
i=1 ‖Ai‖2

)[∑m
i=1(‖Ai‖‖dAi‖) +

∑n
j=1
(∥
∥Bj

∥
∥
∥
∥dBj

∥
∥
)]

1 −∑m
i=1 ‖Ai‖2 −

∑n
j=1

∥
∥Bj

∥
∥2

. (2.6)

Proof. Since

λ1
(
A∗

i Ai

) ≤ ∥∥A∗
i Ai

∥
∥ ≤ ‖Ai‖2, i = 1, 2, . . . , m,

λ1
(
B∗
j Bj

)
≤
∥
∥
∥B∗

j Bj

∥
∥
∥ ≤ ∥∥Bj

∥
∥2, j = 1, 2, . . . , n,

(2.7)

then

A∗
i Ai ≤ λ1

(
A∗

i Ai

)
I ≤ ∥∥A∗

i Ai

∥
∥I ≤ ‖Ai‖2I, i = 1, 2, . . . , m,

B∗
j Bj ≤ λ1

(
B∗
j Bj

)
I ≤
∥
∥
∥B∗

j Bj

∥
∥
∥ ≤ ∥∥Bj

∥
∥2I, j = 1, 2, . . . , n,

(2.8)

consequently,

m∑

i=1

A∗
i Ai ≤

m∑

i=1

‖Ai‖2I,

n∑

j=1

B∗
j Bj ≤

n∑

j=1

∥
∥Bj

∥
∥2I.

(2.9)
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Combining (2.5)–(2.9)we have

m∑

i=1

A∗
i Ai ≤

m∑

i=1

‖Ai‖2I <
1
2
I,

n∑

j=1

B∗
j Bj ≤

n∑

j=1

∥
∥Bj

∥
∥2I <

1
2
I.

(2.10)

Then by Lemma 2.3 we obtain that (1.1) has a unique positive definite solution XU, which
satisfies

XU ∈
⎡

⎣I − 2
n∑

j=1

B∗
j Bj , I + 2

m∑

i=1

A∗
i Ai

⎤

⎦. (2.11)

Noting that XU is the unique positive definite solution of (1.1), then

XU −
m∑

i=1

A∗
i XUAi +

n∑

j=1

B∗
j XUBj = I. (2.12)

It is known that the elements of XU are differentiable functions of the elements of Ai and Bi.
Differentiating (2.12), and by Lemma 2.2, we have

dXU −
m∑

i=1

[(
dA∗

i

)
XUAi +A∗

i (dXU)Ai +A∗
i XU(dAi)

]

+
n∑

j=1

[(
dB∗

j

)
XUBj + B∗

j (dXU)Bj + B∗
j XU

(
dBj

)]
= 0,

(2.13)

which implies that

dXU −
m∑

i=1

A∗
i (dXU)Ai +

n∑

j=1

B∗
j (dXU)Bj

=
m∑

i=1

(
dA∗

i

)
XUAi +

m∑

i=1

A∗
i XU(dAi) −

n∑

j=1

(
dB∗

j

)
XUBj −

n∑

j=1

B∗
j XU

(
dBj

)
.

(2.14)
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By taking spectral norm for both sides of (2.14), we obtain that

∥
∥
∥
∥
∥
∥
dXU −

m∑

i=1

A∗
i (dXU)Ai +

n∑

j=1

B∗
j (dXU)Bj

∥
∥
∥
∥
∥
∥

=

∥
∥
∥
∥
∥
∥

m∑

i=1

(
dA∗

i

)
XUAi +

m∑

i=1

A∗
i XU(dAi) −

n∑

j=1

(
dB∗

j

)
XUBj −

n∑

j=1

B∗
j XU

(
dBj

)
∥
∥
∥
∥
∥
∥

≤
∥
∥
∥
∥
∥

m∑

i=1

(
dA∗

i

)
XUAi

∥
∥
∥
∥
∥
+

∥
∥
∥
∥
∥

m∑

i=1

A∗
i XU(dAi)

∥
∥
∥
∥
∥
+

∥
∥
∥
∥
∥
∥

n∑

j=1

(
dB∗

j

)
XUBj

∥
∥
∥
∥
∥
∥
+

∥
∥
∥
∥
∥
∥

n∑

j=1

B∗
j XU

(
dBj

)
∥
∥
∥
∥
∥
∥

≤
m∑

i=1

∥
∥
(
dA∗

i

)
XUAi

∥
∥ +

m∑

i=1

∥
∥A∗

i XU(dAi)
∥
∥ +

n∑

j=1

∥
∥
∥
(
dB∗

j

)
XUBj

∥
∥
∥ +

n∑

j=1

∥
∥
∥B∗

j XU

(
dBj

)∥∥
∥

≤
m∑

i=1

∥
∥dA∗

i

∥
∥‖XU‖‖Ai‖ +

m∑

i=1

∥
∥A∗

i

∥
∥‖XU‖‖dAi‖ +

n∑

j=1

∥
∥
∥dB∗

j

∥
∥
∥‖XU‖

∥
∥Bj

∥
∥ +

n∑

j=1

∥
∥
∥B∗

j

∥
∥
∥‖XU‖

∥
∥dBj

∥
∥

= 2
m∑

i=1

(‖Ai‖‖XU‖‖dAi‖) + 2
n∑

j=1

(∥
∥Bj

∥
∥‖XU‖

∥
∥dBj

∥
∥
)

= 2

⎡

⎣
m∑

i=1

(‖Ai‖‖dAi‖) +
n∑

j=1

(∥
∥Bj

∥
∥
∥
∥dBj

∥
∥
)
⎤

⎦‖XU‖,

(2.15)

and noting (2.11)we obtain that

‖XU‖ ≤
∥
∥
∥
∥
∥
I + 2

m∑

i=1

A∗
i Ai

∥
∥
∥
∥
∥
≤ 1 + 2

m∑

i=1

‖Ai‖2. (2.16)

Then

∥
∥
∥
∥
∥
∥
dXU −

m∑

i=1

A∗
i (dXU)Ai +

n∑

j=1

B∗
j (dXU)Bj

∥
∥
∥
∥
∥
∥

≤ 2

⎡

⎣
m∑

i=1

(‖Ai‖‖dAi‖) +
n∑

j=1

(∥
∥Bj

∥
∥
∥
∥dBj

∥
∥
)
⎤

⎦‖XU‖

≤ 2

(

1 + 2
m∑

i=1

‖Ai‖2
)⎡

⎣
m∑

i=1

(‖Ai‖‖dAi‖) +
n∑

j=1

(∥
∥Bj

∥
∥
∥
∥dBj

∥
∥
)
⎤

⎦,

(2.17)
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∥
∥
∥
∥
∥
∥
dXU −

m∑

i=1

A∗
i (dXU)Ai +

n∑

j=1

B∗
j (dXU)Bj

∥
∥
∥
∥
∥
∥

≥ ‖dXU‖ −
∥
∥
∥
∥
∥

m∑

i=1

A∗
i (dXU)Ai

∥
∥
∥
∥
∥
−
∥
∥
∥
∥
∥
∥

n∑

j=1

B∗
j (dXU)Bj

∥
∥
∥
∥
∥
∥

≥ ‖dXU‖ −
m∑

i=1

∥
∥A∗

i (dXU)Ai

∥
∥ −

n∑

j=1

∥
∥
∥B∗

j (dXU)Bj

∥
∥
∥

≥ ‖dXU‖ −
m∑

i=1

∥
∥A∗

i

∥
∥‖dXU‖‖Ai‖ −

n∑

j=1

∥
∥
∥B∗

j

∥
∥
∥‖dXU‖

∥
∥Bj

∥
∥

=

⎛

⎝1 −
m∑

i=1

‖Ai‖2 −
n∑

j=1

∥
∥Bj

∥
∥2

⎞

⎠‖dXU‖.

(2.18)

Due to (2.5) we have

1 −
m∑

i=1

‖Ai‖2 −
n∑

j=1

∥
∥Bj

∥
∥2 > 0. (2.19)

Combining (2.17), (2.18) and noting (2.19), we have

⎛

⎝1 −
m∑

i=1

‖Ai‖2 −
n∑

j=1

∥
∥Bj

∥
∥2

⎞

⎠‖dXU‖

≤
∥
∥
∥
∥
∥
∥
dXU −

m∑

i=1

A∗
i (dXU)Ai +

n∑

j=1

B∗
j (dXU)Bj

∥
∥
∥
∥
∥
∥

≤ 2

(

1 + 2
m∑

i=1

‖Ai‖2
)⎡

⎣
m∑

i=1

(‖Ai‖‖dAi‖) +
n∑

j=1

(∥
∥Bj

∥
∥
∥
∥dBj

∥
∥
)
⎤

⎦,

(2.20)

which implies that

‖dXU‖ ≤
2
(
1 + 2

∑m
i=1 ‖Ai‖2

)[∑m
i=1(‖Ai‖‖dAi‖) +

∑n
j=1
(∥
∥Bj

∥
∥
∥
∥dBj

∥
∥
)]

1 −∑m
i=1 ‖Ai‖2 −

∑n
j=1

∥
∥Bj

∥
∥2

. (2.21)
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Theorem 2.5. Let Ã1, Ã2, . . . , Ãm, B̃1, B̃2, . . . , B̃n be perturbed matrices of A1, A2, . . . , Am,
B1, B2, . . . , Bn in (1.1) and Δi = Ãi −Ai, i = 1, 2, . . . , m, Δj = B̃j − Bj, j = 1, 2, . . . , n. If

m∑

i=1

‖Ai‖2 < 1
2
,

n∑

j=1

∥
∥Bj

∥
∥2 <

1
2
, (2.22)

2
m∑

i=1

(‖Ai‖‖Δi‖) +
m∑

i=1

‖Ai‖2 < 1
2
−

m∑

i=1

‖Ai‖2, (2.23)

2
n∑

j=1

(∥
∥Bj

∥
∥
∥
∥Δj

∥
∥
)
+

n∑

j=1

∥
∥Δj

∥
∥2 <

1
2
−

n∑

j=1

∥
∥Bj

∥
∥2, (2.24)

then (1.1) and its perturbed equation

X̃ −
m∑

i=1

Ã∗
i X̃Ãi +

n∑

j=1

B̃∗
j X̃B̃j = I (2.25)

have unique positive definite solutions XU and X̃U, respectively, which satisfy

∥
∥
∥X̃U −XU

∥
∥
∥ ≤ Serr, (2.26)

where

Serr =
2
[
1 + 2

∑m
i=1 (‖Ai‖ + ‖Δi‖)2

][∑m
i=1 (‖Ai‖ + ‖Δi‖)2‖Δi‖ +

∑n
j=1
(∥
∥Bj

∥
∥ +
∥
∥Δj

∥
∥
)2∥∥Δj

∥
∥
]

1 −∑m
i=1 (‖Ai‖ + ‖Δi‖)2 −

∑n
j=1
(∥
∥Bj

∥
∥ +
∥
∥Δj

∥
∥
)2 .

(2.27)

Proof. By (2.22) and Theorem 2.4, we know that (1.1) has a unique positive definite solution
XU. And by (2.23)we have

m∑

i=1

∥
∥
∥Ãi

∥
∥
∥
2
=

m∑

i=1

‖Ai + Δi‖2 ≤
m∑

i=1

(‖Ai‖ + ‖Δi‖)2

=
m∑

i=1

(
‖Ai‖2 + 2‖Ai‖‖Δi‖ + ‖Δi‖2

)

=
m∑

i=1

‖Ai‖2 + 2
m∑

i=1

(‖Ai‖‖Δi‖) +
m∑

i=1

‖Δi‖2

<
m∑

i=1

‖Ai‖2 + 1
2
−

m∑

i=1

‖Ai‖2 = 1
2
,

(2.28)
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similarly, by (2.24) we have

n∑

j=1

∥
∥
∥B̃j

∥
∥
∥
2
<

1
2
. (2.29)

By (2.28), (2.29), and Theorem 2.4 we obtain that the perturbed equation (2.25) has a unique
positive definite solution X̃U.

Set

Ai(t) = Ai + tΔi, Bj(t) = Bj + tΔj , t ∈ [0, 1], (2.30)

then by (2.23) we have

m∑

i=1

‖Ai(t)‖2 =
m∑

i=1

‖Ai + tΔi‖2 ≤
m∑

i=1

(‖Ai‖ + t‖Δi‖)2

=
m∑

i=1

(
‖Ai‖2 + 2t‖Ai‖‖Δi‖ + t2‖Δi‖2

)

≤
m∑

i=1

(
‖Ai‖2 + 2‖Ai‖‖Δi‖ + ‖Δi‖2

)

=
m∑

i=1

‖Ai‖2 + 2
m∑

i=1

(‖Ai‖‖Δi‖) +
m∑

i=1

‖Δi‖2

<
m∑

i=1

‖Ai‖2 + 1
2
−

m∑

i=1

‖Ai‖2 = 1
2
,

(2.31)

similarly, by (2.24) we have

n∑

j=1

∥
∥Bj(t)

∥
∥2 =

m∑

i=1

∥
∥Bj + tΔj

∥
∥2 <

1
2
. (2.32)

Therefore, by (2.31), (2.32), and Theorem 2.4 we derive that for arbitrary t ∈ [0, 1], the
matrix equation

X −
m∑

i=1

A∗
i (t)XAi(t) +

n∑

j=1

B∗
j (t)XBj(t) = I (2.33)

has a unique positive definite solution XU(t), especially,

XU(0) = XU, XU(1) = X̃U. (2.34)
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From Theorem 2.4 it follows that

∥
∥
∥X̃U −XU

∥
∥
∥ = ‖XU(1) −XU(0)‖ =

∥
∥
∥
∥
∥

∫1

0
dXU(t)

∥
∥
∥
∥
∥
≤
∫1

0
‖dXU(t)‖

≤
∫1

0

2
(
1 + 2

∑m
i=1 ‖Ai(t)‖2

)[∑m
i=1(‖Ai(t)‖‖dAi(t)‖) +

∑n
j=1
(∥
∥Bj(t)

∥
∥
∥
∥dBj(t)

∥
∥
)]

1 −∑m
i=1 ‖Ai(t)‖2 −

∑n
j=1

∥
∥Bj(t)

∥
∥2

≤
∫1

0

2
(
1 + 2

∑m
i=1 ‖Ai(t)‖2

)[∑m
i=1(‖Ai(t)‖‖Δi‖dt) +

∑n
j=1
(∥
∥Bj(t)

∥
∥
∥
∥Δj

∥
∥dt
)]

1 −∑m
i=1 ‖Ai(t)‖2 −

∑n
j=1

∥
∥Bj(t)

∥
∥2

=
∫1

0

2
(
1 + 2

∑m
i=1 ‖Ai(t)‖2

)[∑m
i=1(‖Ai(t)‖‖Δi‖) +

∑n
j=1
(∥
∥Bj(t)

∥
∥
∥
∥Δj

∥
∥
)]

1 −∑m
i=1 ‖Ai(t)‖2 −

∑n
j=1

∥
∥Bj(t)

∥
∥2

dt.

(2.35)

Noting that

‖Ai(t)‖ = ‖Ai + tΔi‖ ≤ ‖Ai‖ + t‖Δi‖, i = 1, 2, . . . , m,
∥
∥Bj(t)

∥
∥ =
∥
∥Bj + tΔi

∥
∥ ≤ ∥∥Bj

∥
∥ + t‖Δi‖, j = 1, 2, . . . , n,

(2.36)

and combining Mean Value Theorem of Integration, we have

∥
∥
∥X̃U −XU

∥
∥
∥

≤
∫1

0

2
(
1 + 2

∑m
i=1 ‖Ai(t)‖2

)[∑m
i=1(‖Ai(t)‖‖Δi‖) +

∑n
j=1
(∥
∥Bj(t)

∥
∥
∥
∥Δj

∥
∥
)]

1 −∑m
i=1 ‖Ai(t)‖2 −

∑n
j=1

∥
∥Bj(t)

∥
∥2

dt

≤
∫1

0

2
[
1 + 2

∑m
i=1 (‖Ai‖ + t‖Δi‖)2

][∑m
i=1 (‖Ai‖ + t‖Δi‖)2‖Δi‖ +

∑n
j=1
(∥
∥Bj

∥
∥ + t

∥
∥Δj

∥
∥
)2∥∥Δj

∥
∥
]

1 −∑m
i=1 (‖Ai‖ + t‖Δi‖)2 −

∑n
j=1
(∥
∥Bj

∥
∥ + t

∥
∥Δj

∥
∥
)2 dt

=
2
[
1 + 2

∑m
i=1 (‖Ai‖ + ξ‖Δi‖)2

][∑m
i=1 (‖Ai‖ + ξ‖Δi‖)2‖Δi‖ +

∑n
j=1
(∥
∥Bj

∥
∥ + ξ

∥
∥Δj

∥
∥
)2∥∥Δj

∥
∥
]

1 −∑m
i=1 (‖Ai‖ + ξ‖Δi‖)2 −

∑n
j=1
(∥
∥Bj

∥
∥ + ξ

∥
∥Δj

∥
∥
)2

× (1 − 0), ξ ∈ [0, 1]

≤
2
[
1 + 2

∑m
i=1 (‖Ai‖ + ‖Δi‖)2

][∑m
i=1 (‖Ai‖ + ‖Δi‖)2‖Δi‖ +

∑n
j=1
(∥
∥Bj

∥
∥ +
∥
∥Δj

∥
∥
)2∥∥Δj

∥
∥
]

1 −∑m
i=1 (‖Ai‖ + ‖Δi‖)2 −

∑n
j=1
(∥
∥Bj

∥
∥ +
∥
∥Δj

∥
∥
)2 = Serr.

(2.37)
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3. Numerical Experiments

In this section, we use a numerical example to confirm the correctness of Theorem 2.5 and the
precision of the perturbation bound for the unique positive definite solution XU of (1.1).

Example 3.1. Consider the symmetric linear matrix equation

X −A∗
1XA1 −A∗

2XA2 + B∗
1XB1 + B∗

2XB2 = I, (3.1)

and its perturbed equation

X̃ − Ã∗
1X̃Ã1 − Ã∗

2X̃Ã2 + B̃∗
1X̃B̃1 + B̃∗

2X̃B̃2 = I, (3.2)

where

A1 =

⎛

⎝
0.02 −0.10 −0.02
0.08 −0.10 0.02
−0.06 −0.12 0.14

⎞

⎠, A2 =

⎛

⎝
0.08 −0.10 −0.02
0.08 −0.10 0.02
−0.06 −0.12 0.14

⎞

⎠,

B1 =

⎛

⎝
0.47 0.02 0.04
−0.10 0.36 −0.02
−0.04 0.01 0.47

⎞

⎠, B2 =

⎛

⎝
0.10 0.10 0.05
0.15 0.275 0.075
0.05 0.05 0.175

⎞

⎠,

Ã1 = A1 +

⎛

⎝
0.5 0.1 −0.2
−0.4 0.2 0.6
−0.2 0.1 −0.1

⎞

⎠ × 10−j , Ã2 = A2 +

⎛

⎝
−0.4 0.1 −0.2
0.5 0.7 −1.3
1.1 0.9 0.6

⎞

⎠ × 10−j ,

B̃1 = B1 +

⎛

⎝
0.8 0.2 0.05
−0.2 0.12 0.14
−0.25 −0.2 0.26

⎞

⎠ × 10−j , B̃2 = B2 +

⎛

⎝
0.2 0.2 0.1
−0.3 0.15 −0.15
0.1 −0.1 0.25

⎞

⎠ × 10−j , j ∈ N.

(3.3)

It is easy to verify that the conditions (2.22)–(2.24) are satisfied, then (3.1) and its
perturbed equation (3.2) have unique positive definite solutions XU and X̃U, respectively.
From Berzig [7] it follows that the sequences {Xk} and {Yk} generated by the iterativemethod

X0 = 0, Y0 = 2I,

Xk+1 = I +A∗
1XkA1 +A∗

2XkA2 − B∗
1YkB1 − B∗

2YkB2,

Yk+1 = I +A∗
1YkA1 +A∗

2YkA2 − B∗
1XkB1 − B∗

2XkB2, k = 0, 1, 2, . . .

(3.4)

both converge to XU. Choose τ = 1.0 × 10−15 as the termination scalar, that is,

R(X) =
∥
∥X −A∗

1XA1 −A∗
2XA2 + B∗

1XB1 + B∗
2XB2 − I

∥
∥ ≤ τ = 1.0 × 10−15. (3.5)

By using the iterative method (3.4) we can get the computed solution Xk of (3.1). Since
R(Xk) < 1.0 × 10−15, then the computed solution Xk has a very high precision. For simplicity,
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Table 1: Numerical results for the different values of j.

j 2 3 4 5 6

‖X̃U −XU‖/‖XU‖ 2.13 × 10−4 6.16 × 10−6 5.23 × 10−8 4.37 × 10−10 8.45 × 10−12

Serr/‖XU‖ 3.42 × 10−4 7.13 × 10−6 6.63 × 10−8 5.12 × 10−10 9.77 × 10−12

we write the computed solution as the unique positive definite solutionXU. Similarly, we can
also get the unique positive definite solution X̃U of the perturbed equation (3.2).

Some numerical results on the perturbation bounds for the unique positive definite
solution XU are listed in Table 1.

From Table 1, we see that Theorem 2.5 gives a precise perturbation bound for the
unique positive definite solution of (3.1).

4. Conclusion

In this paper, we study the matrix equation (1.1) which arises in solving some nonlinear
matrix equations and the bilinear control system. A new method of perturbation analysis
is developed for the matrix equation (1.1). By making use of the matrix differentiation
and its elegant properties, we derive a precise perturbation bound for the unique positive
definite solution of (1.1). A numerical example is presented to illustrate the sharpness of the
perturbation bound.
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