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We investigate some formulae for the product of two Bernoulli and Euler polynomials arising from
the Euler and Bernoulli basis polynomials.

1. Introduction
As is well known, the Bernoulli polynomials are defined by the generating function as

follows:

t
et -1

[¢e) tn
et = Bt _ ZBH(’C); (1.1)
n=0 :

(see [1-21]), with the usual convention about replacing B"(x) by B,(x). In the special case,
x = 0, B,(0) = B, are called the nth Bernoulli numbers. The Euler polynomials are also
defined by the generating function as follows:

2
et +1

Q0 n
et = gEMt = ZEn(x); (1.2)
n=0 :
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(see [6-11]), with the usual convention about replacing E"(x) by E,(x). In the special case,
x =0, E;(0) = E, are called the nth Euler numbers. From (1.1) and (1.2), we can derive the
following recurrence relations for the Bernoulli and Euler numbers:

By =1, B,(1) = B, = 614, Ey=1, E,(1) + E,, =260, (1.3)

where 0k ,, is the Kronecker symbol. By (1.1) and (1.2), we get

B,(x) = ix"*" <Z> By, E.(x) = ix"*‘—’ <Z> E,. (1.4)
£=0 2=0

From (1.4), we can derive

LB = nBur (), () = nEu (). (L5)

By (1.4) and (1.5), we get

le( )dx = Son _ g JlE( ydx = —p Lt (1.6)
0 A 0 nX) X =TT ’

It is easy to show that

1 te(x+1)t text 1& n
o (— - = ) ==%(B, 1) - B, —. 1.7
e t<et_1 7 ) = B D =B (17)
Thus, we have
, 1 &L/n+1
x" = n+1§)< ¢ >Bg(x) (1.8)

(see [11-18]). By the definition of the Euler polynomials, we get

tx

1 28(x+1)t 2ext
2\ et +1 - et+1

>: %i(En(x+1)+En(x));—r:. (1.9)
n=0 ’

From (1.9), we have

. 1n—1 n
x" = E,(x) + §Z<g> E¢(x) (1.10)

=0

(see [1-18]). By (1.8) and (1.10), we see that the set { Eo(x), ..., E,(x)} and {By(x), ..., Bo(x)}
are the basis for the space of polynomials of degree less than or equal to n with coefficients in

Q (see [1-21]).
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From m,n € Z, = N{J{0}, let I;, , = fé B,,,(x)x"dx. Then, we note that

1 1

1

Iopn = J‘ x"dx = , Ip = j By (x)dx = 60,m-
0 n+1 0

Let us assume that m,n > 1. Then, we have

B n B n

= -—1 1= -1 B
"+l m+1 ! m+1+( )(m+1)(m+2) 2
n(n-1)
1) ——— T, 2.
+( ) (m+1)(m+2) m+2,n-2

Continuing this process, we get

n-1 j—1 j
-1y n-0+1\,
Im’"_.zln—j+1 I1 mve )Pm

j =1

nn-1)---2 !
(m+1)---(m+n-1) ),

_1)j—1<n]+_1>

n (
) j=1 (”+1)(mr::i)

+ (_1)n—l Biin- (x)x dx

m+j-

Let Jon = J'S E,.(x)x"dx for m,n € Z,. Then, we have

! 1 ! 2
Jon = f x"dx = ——, Jmo = f En(x)dx = ———E;111.

0 n+1l 0 m+1

Assume that m, n > 1. Then, we get

1 1
]m,n = f Em(x)xn dx = - Eunt - n f E,.1 (x)x”‘l dx

0 m+1 m+1),
1 n
= —m m+1 — m]m+l,n—1
Epni 2 n 2 n(n-1)
- p— " L Y S
mr1 YV s nman it Y s s 2 S

(1.11)

(1.12)

(1.13)

(1.14)

(1.15)
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Continuing this process, we get

e | I n-¢+1
— _1yJ )
]m,n ]gl( 1) n_]-+1 H m+ e Em+]

(m+m+1)("m)”

(")

o=1
_ nn-1)---2
—1)1 S (1.16)
P D) Aoy e
1
Em+n 2 2Em-*—n+1
m+n-1,1 = Eppin- == -1 .
J v ,[0 1(x)xdx m+n+( ) (m+n)(m+n+1)
By (1.16), we get
n+l
e () (=)™ Epsmii
]m,n = m]z:;(—l)]—Em+] +2 (117)

From the properties of the Bernoulli and Euler basis for the space of the polynomials of degree
less than or equal to n with coefficients in , we derive some identities for the product of two
Bernoulli and Euler polynomials.

2. Some Identities for the Bernoulli and Euler Numbers

Let us consider the polynomial p(x) = 37 _, Bk (x)x"*, with n € N. Then, we have

(n(7_1 Z ?L,ZBe—k(x)xn_e (k=0,1,2,...,n). (2.1)
o=k

p® (x) =

From the properties of the Bernoulli basis for the space of polynomials of degree less than or
equal to n with coefficients in Q, p(x) is given by

p(x) = > axBi(x). (2.2)
k=0
Thus, by (2.2), we get
1 n 1 n n-1
ag = f p(t)dt = Zf Bi()x"*dt = > Tinic = Ion+ D Ten-k + Ino
0 k=00 k=0 k=1
1 (2.3)
1 n-1n-k (—1)] 1( ;-H—l)

= + Byti + 00 5-
n+1 léjgl(n—k+1)<k;i> k+j T O0n
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By (2.1) and (2.2), we get

(=D 1y (k1) _ ()& B n-e
Ak = <P 1)-p (0)> " Kmn—k+2)! +2)!€=Z,<_1{Bé—k+1(1) By 410 }
24
( n+2) n-1 ( )
= k- Z Bo ki +1).
n+2 \ 5
Therefore, by (2.3) and (2.4), we obtain the following theorem.
Theorem 2.1. For n € N, one has
-1 ( n-¢+1
n 1 n-1n-¢ (—1)] ( i >
Br(x)x" k= — + ——— 7 By,
kZ:O n+l ;]’;(Tl—€+1)(€+]> !
¢ (2.5)

1 n 1’l+2>< n-1 >
+ Bo_gs1 +1 ) Bi(x).

From the properties of the Euler basis for the space of polynomials of degree less than
or equal to n with coefficients in Q, p(x) is given by

p(x) = ibkEk(x)- (2.6)
k=0
By (2.1) and (2.6), we get

b= 5 (P (1) + P9 0)

= LM S n-¢
~ 2k! (n—k+1)!;c{B€—k(1) + By_x0 }
n+l n
= ( ; ) <;{ng +1—06,+ Bnk) (2.7)

(") [ .
5 ZBg,k +1+ B,k if k#mn,
l=k

n+1 if k =n.

Therefore, by (2.6) and (2.7), we obtain the following theorem.

Theorem 2.2. For n € Z,, one has

Juy

n—

in(x)xn—k — % <n+1>{iB€—k+1+Bn—k}Ek(x) + (11+1)E-,1(x). (28)
k=0

k=0 k o=k
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Let us take polynomial p(x) with p(x) = >/, Ex(x)x"*. Then, we have

ﬂilfg_k(x)x"_e (k=0,1,2,...,7n). (2.9)

(k) —
pr(x) = (n-k+Dl&

By the basis set {By(x),...,B,(x)} for the space of polynomials of degree less than or equal
to n with coefficients in QQ, we see that p(x) is given by

p(x) = En:akBk(x)- (2.10)

k=0

From (2.10), we note that

1 [t n
ay = f p(t)dt = Zf Ee()x"“dt = > Jon-e
0 =070

=0
n-1 1 n-1 2
= + o+ = + - ——E
]0,n ;]&n 4 ]n,O n+1 %]@,n ¢ n+l n+1

= Z( 1)7<n+1> 2D
P4 n+ 1 n+1 (2.11)

n-1 <n 2+1> 2( 1)71 2+1 2
1) i~ 7 _F ——~En1 p ——=Eus
+e:1{121:( (n- €+1)<e+7> “ +( n+1)(3) n+1 "
n - <n7lf+1> n—é+1
= ! Eg. ( 1) n+
0{21 (n—e+1)<€;f> “ +1)(e)E '
Note that
(GO (n-o)er ¢ ¢
=—»»Bn-¢+1,6+1)(-1
Z(n+1)(g) Z (n+1)l % (n=+1,¢+1)(=1) (212)
1+ (=D)"
TR
where B(a, p) is the beta function.
From (2.11) and (2.12), we have
n n-¢ (—1)] n-é+1 _1)y*t1
a=y (" > Epoi+ 20D " p (2.13)

————— " Epyj t ———
e:0j=1(n—€+1)<";7> ' om+2
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Fork=1,2,...,n,by (2.9) and (2.10), we get

p 1)(0)> _ntl) Z {Ee ke1(1) Ee—k+10"4}

1 (k-1)
1
a= 5 (P - Ki(n-k+2)! &2,
(2.14)
1 n+2 1
_n+2< . >{—€§155—k+1 +2—En—k+1}-

Therefore, by (2.13) and (2.14), we obtain the following theorem.

Theorem 2.3. For n € Z,, one has

n=ln=€ (_1)/(n-¢+1 4(—1)"1
E) L s,

S Ec(x)x" = —E¢.j
k=0 k=01 (n—€+1) ( ‘?) n+2 015
- > Eg ki1 +2—Ep ks ¢ Br(x).
n+ 2%( k Z:Zk—l

From the Euler basis {Ey(x), E1(x),...,E,(x)} for the space of polynomials of degree
less than or equal to n with coefficients in @, we note that p(x) can be written as follows

p(x) = ibkEk(x)' (2.16)
k=0

Thus, we have

n

b= g (7042 0) = g Sy 2 (Fea) + Fead™)
(2.17)

A ()

Therefore, by (2.16) and (2.17), we obtain the following theorem.

Theorem 2.4. For n € Z,, one has

n n-1 1 n-1
éEk(x)xn_k — %Z <n]-: > {—ZEg_k + Z}Ek(x) + (Tl + 1)En(x) (218)

k=0 =k
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Let us consider the polynomial p(x) = 3}_,(Be(x)x" %)/ (k!(n - k)!) = 3}_, axBi(x).
Then, we have

n-1

1
Iop-
o= [ pOd= 3 rlen e = lon s Sttt +

1 ndnt o /n+l
= (n+1)‘ (n+1) ezzl(—ly <€+]_>B€+]’.

InO

(2.19)

It is easy to show that

n
1 n—
p(k) (x) = Zk;;‘(mBg_k(x)x g. (220)
Fork=1,2,...,n, we have

S (@ -t 0)

zk—l n 1
@—k+1)(n-0)

ax =

(Be—k+1(1) - Be—k+10n_e)
kb4

2.21
2k ! { & Bk + O01,0-kn Byk+1 } (2.21)

A @-k+D)l(n-0)! (n—k+1)!

S Be-ki1 1
TR €§1(€—k+1)!(n—€)!+(n—k)! '

Therefore, by (2.19) and (2.21), we obtain the following theorem.

Theorem 2.5. For n € Z.., one has

L Bk (X) n-k _ 1 1 n-ln-¢ 1 n+1 .
DT RS RN RS PP Al (o)

2k By ki 1
+Z k! <Z @—k+1)(n-20) (n—k)!>B"(x)‘

¢=k-1

(2.22)

Remark 2.6. If p(x) = i, bxEx(x), by the same method, we get

Bi(x)x"k 152k By_k 1 B,
Zk'(n ! Z;T{Z “On-0)1 " (n—k-1)1 ' (n k)l}Ek(x) .

on
+ mEn(x)
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Let us consider the polynomial p(x) = 3}_,(Ex(x)x" )/ (k!(n — k)!) = 3}, akBk(x). Then,
we have

1
=] pOd= S

n n—¢ <"_§+1> 2( 1)11 £+1
=gz=: el(n— E)'{Z( N Fevi " +1)(,Z)E"Jrl

j (n-€+1)( %/
(V) (2.24)
n n-¢ — ]E . _\yn+l n
_ Z ( ) O+j + 2En+1( 1)' Z(—l)
SE @) (n+1-2-j) n+1! &
R Zf (-1)Ee; 4 2Ewn (D™
- oE @) (n+1-€-j)! (n+1)!
It is easy to show that
1
p® k n-e
(x) =2 Z NS é)!Eg_k(x)x . (2.25)
Fork=1,2,...,n, we have
1 ( (k=D (1) — plk= 1)(0)>
U =1 p
2k_1 < 1 n—-¢
?e:k_l ((Z—k+1)!(n—€)!<E‘q"k”(1) —E¢kn0 > (2.26)
2 E¢ ki1 . 2 ~ Engn
k! S @ -k+Dl(n-0)! (m-k+1)! (n-k+1)! '

Therefore, by (2.24) and (2.26), we obtain the following theorem.

Theorem 2.7. For n € Z,, one has

n 1 & n+1 n-k+1
+ B k-1 E,. (2.27)
;{ n+1€:Zk—1 < k ><€—k+1> o

2 n+1 2k-1 /n+1 E B
+(n+1) e G n—k+1 ( Bie(X).
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Let us consider the polynomial p(x) = 37_,(Ex(x)x" %)/ (k!(n — k)!) = 37_, brEx(x).
By the same method, we obtain the following identity:

Exx"™ 27 & Eek 2 E,
Zk'(n k! Z_!{_;((E—k)!(n—é)!-'-(n—k)!+( k)|}5k(x) (2.28)

k=0

Let us take p(x) = Zz;i (1/(k(n - k)))Bi(x)x""*. Then, the kth derivative of p(x) is given by

n-1

P () = C(x" % + By () + (n=1) -+ (n - k)‘;k;1 (B‘J_";)x()gx o (2.29)
where
c - Z}‘_l(n—l)---(n—jn+_13((n-j-1) o+ (n—k) (k=12...n-1), Cy=0. (230)
Note that
p™(x) = (p™ D (x))' = Cpy (x + By (x))' = 2C,1 = 2(n — 1)!H,,_q, (2.31)

where H,,_ = Z';:_ll(l/j).
By the properties of the Bernoulli basis for the space of polynomials of degree less than
or equal to n with coefficients in Q, p(x) is given by

p(x) = > axBi(x). (2.32)
k=0
Thus, by (2.32), we get

n-1 1 ) 1
ap = ém’[ Be(t)x""dt = Zﬂ(n —?) Ipn e

n-1 1 { n—¢ (—1)j_1 < n—](f+1 >Bg+]' }

(2.33)
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From (2.29), (2.31), and (2.32), we note that

a = 5 ("W -p )

Cr_
= % {Bn—k+1(1) - Bn—k+1} + {1 - 0n7k+1}
1’1
{ Be_s+1(1) = Bp_gs10™ ¢ }
Ck 1 ($) %S Bekat + 6101
= (51n ka1 + 1) + p” Zk(é—k+l)(n—€) (2.34)
_ Cka kS B 1
= kr Gkt )+ {Zk(e-k+1)(n—e) Tk
Cr (D[S Bk 1 .
= <k<mn-
)R T Zk(e ke )n-0) Tnok| Tlsksn-l
2Hua if k =n.
n
From (2.30), we have
Cea _ 1 E (n—1)!
kKIS m-k+1)(n-k)(n-j)
n! 1 2o
B <k!(n—k)!> (n(n k+1)>]_1n—j
(2.35)
k/nn-k+1) ]1] :1]
_ (%) B
= m(Hn—l Hy k).
Therefore, by (2.32), (2.34), and (2.35), we obtain the following theorem.
Theorem 2.8. For n € N, one has
n-1 1 n— 1n7£( 1)] 1( >Bg+] 1= 1/n
By (x)x"k = " + —
= k(n—k) )z;]z: (i3) S \k
H,_ Bo_ki1 1 (2.36)
. < n— k+l Z “k+)(n-0) n—k>

x By (x) + —ZH”‘;B n().
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We assume that p(x) = Zﬁj(l/k(n - k))Bk(x)x"* = 3!, bxEx(x). For k =
2,...,n—1,wehave

b= 573 (P9 1)+ 0))

= ZC—kk!{Bn_k(l) +1+ B, 0"}
(n=1)---(n-k) & 1 —
! 2K 21 C-R)(n-0) {Be-sV) + Be-i0) (237)

_(23 +1)+(n1) Z Bor 1 ifo<k<n-2
k1K “Kn-0) n-k-1 =h=nTe

— 0= k+1
Cn 1 3
=-H,_ fk=n-1.
2n-1)1 2 "' ifk=n
Finally,
1 4C,q 2Cn1  2H,.

_ L (,m (n) = 2ol Senl 20Tl 2.38

bn = 5 (P @) +p™" () 2! al n (2.38)

By the same method, we obtain the following identity:

= 1 B n-k
2K k(x)x
1n—2 (z) n-1 Bg,k 1
_Ekzo{ (Hn 1- nkl)(ZBnk+1)+< ><€%1 k)(n—€)+n—k—1>}
* Ex(x) + 5 HutEnt () + 20 E, (),
(2.39)
Let us take p(x) = ZZ;%(l/k(n — k))Ex(x)x"*. Then, for k =0,1,2,...,n -1, we have
(k) -Cc.(E 1 k = E€ k(x)x 2.40
PO = Cel Bk + ) + (=) -B) 3, GE5a—y, 40

where Cx = (S5, (n—1)--- (n-j+1)(n-j—-1)--- (n-k))/(n—k).
Note that

P @) = (P00) = (Cor(E1(x) %) =2C, =201 DiH,r.  (241)



Abstract and Applied Analysis 13

By the properties of the Bernoulli basis for the space of polynomials of degree less than or
equal to n with coefficients in Q, p(x) can be written as

p(x) = > arBi(x). (2.42)
k=0
Thus, by (2.42), we get

1
e 1
ao—f p(t)d L, 7 f Eo(t)t ‘*dt—Z T

/=1

(2.43)
n-1n- €( 1)] ( ]+é> 2(_1)n+1 n-1 (_1)€
n(n2 Z Eeuj# n(n? - 1)En+1 n2y"
2:1; f e=1\¢-1
It is easy to show that
n-1 n-1
(-1° ¢
(-1)°B(¢,n-2)
20 (i) " &
(2.44)
3 4 B 2(n-1) E
S\t D +2)  w2m+1)?) "
Fork=1,2,...,n,o0ne has
1
(k=1) (k=1)
a = (P -p ()
Cr- _
= % <En—k+1 (1) +1-Eyg1— 0" k+1>
n-1)---(n-k+1)c 1 B et
+ T Z N — <E€—k+1(1) E¢ 10 > (2.45)

-1 k+1 Eo iy
_—Ckl( 2E, k41 +1) - (1) (n )Z kflk(ln 3

k!

_ (k)(Hp1 = Hyk)
T onn-k+1)

(_2En—k+1 +1

(H< E¢ ki1
n ;{(ﬂ—k+1)(n—€)'

Therefore, by (2.42), (2.44), and (2.45), we obtain the following theorem.
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Theorem 2.9. For n € N, one has

i Er(x)x"k

& k(n—k)
1 et (Y (E By gy 4 2m-1 0\,
T DEET () e D\nmr D) ey )
1< (™ ( Hur— Hux "\§_ Eekn
+ ;{§<k> (et ) a2 - <k>§<(€— K+ D= 0) }B"(x)‘

(2.46)

We may assume that p(x) = 37_,(1/(k(n - k)))Ex(x)x"* = 3}_, biEx(x). Then, we
note that
1

be= 55 (PP W +pP ) (k=0,1,2,...,n-1). (247)

Thus, we have

bk_2_k!

{En_k(l) +1+Epy+ o"-k}

+ (") "Z-l ! {Eé’—k(l) + Eefkon_e}
2 4 C-Rm-0)

_ Gk, (") T —Eex
2k T2 A - Rn-0)

(2.48)

Ce ()< E¢ i

2kl 2 A @-Kn-0)

2Cn—1 2Hn—1

1 1
_ 1w men) - L _ _
bn = <p M+p (0)> BT e R

By the same method, we obtain the following identity:

-1 -1 n-1 -1
g 1 wk_ o) 1" (") % E¢
k(n—k)Ek(x)x —g}{%<k>(Hn—1 - Hy k1) - > Z:Zkﬂ(e_k)(n_g)

} (2.49)
X Ek(x) + %Hn_lEn(x).
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