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We investigate the dynamics of a differential-algebraic bioeconomic model with two time delays.
Regarding time delay as a bifurcation parameter, we show that a sequence of Hopf bifurcations
occur at the positive equilibrium as the delay increases. Using the theories of normal form and
center manifold, we also give the explicit algorithm for determining the direction of the Hopf
bifurcations and the stability of the bifurcating periodic solutions. Numerical tests are provided to
verify our theoretical analysis.

1. Introduction

Predator-prey systems with delay play an important role in population dynamics since Vito
Volterra and James Lotka proposed the seminal models of predator-prey in the mid of 1920s.
In recent years, predator-prey systems with delay have been studied extensively due to their
theoretical and practical significance.

In 1973, May [1] first proposed the delayed predator-prey system

ẋ = x
(
r1 − a11x(t − τ) − a12y

)
,

ẏ = y
(−r2 + a21x − a22y

)
,

(1.1)

where x and y can be interpreted as the population densities of prey and predator at time t,
respectively. τ > 0 is the feedback time delay of prey species to the growth of species itself.
r1 > 0 denotes intrinsic growth rate of prey, and r2 > 0 denotes the death rate of predator. The
parameters aij (i, j = 1, 2) are all positive constants.
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Recently, Song and Wei [2] further considered the existence of local Hopf bifurcations
of system (1.1). They regarded the feedback time delay τ as a bifurcation parameter
and investigated the stability and the direction of periodic solutions bifurcating from
Hopf bifurcations, by applying the normal form theory and the center manifold reduction
developed by Hassard et al. [3].

Considering the feedback time delay of predator species to the growth of species
itself and also with the delay τ , Yan and Li [4] studied Hopf bifurcation and global periodic
solutions of the following modified delayed predator-prey system:

ẋ = x
(
r1 − a11x(t − τ) − a12y

)
,

ẏ = y
(−r2 + a21x − a22y(t − τ)

)
.

(1.2)

They established the global existence results of periodic solutions bifurcating from
Hopf bifurcations using a global Hopf bifurcation result due to Wu [5], which was different
from that used in Song and Wei [2]. In [6], Yuan and Zhang also investigated the stability of
the positive equilibrium and existence of Hopf bifurcation of the model (1.2).

Noting that, in real situations, the feedback time delay of the prey to the growth of the
species itself and the feedback time delay of the predator to the growth of the species itself
are different. If the time delay of the predator to the growth of the species itself is zero, (1.2)
becomes (1.1). Meanwhile, if the time delay of the prey to the growth of the species itself is
zero, (1.2) is simplified as

ẋ = x(t)
(
r1 − a11x(t) − a12y(t)

)
,

ẏ = y(t)
(−r2 + a21x(t) − a22y(t − τ)

)
.

(1.3)

In 1954, Gordon [7] studied the effect of harvest effort on ecosystem from an economic
perspective and proposed the following economic theory:

Net Economic Revenue (NER) = Total Revenue (TR) − Total Cost (TC). (1.4)

This provides theoretical fundament for the establishment of bioeconomic systems by
differential-algebraic equations (DAEs).

Let E and y represent the harvest effort and the density of harvested population,
respectively. Then TC = cE and TR = αEy, where α is unit price of harvested population
and c is the cost of harvest effort. Considering the economic interest m of the harvest effort
on the predator, we can establish the following algebraic equation:

E
(
αy − c

)
= m. (1.5)

Recently, a class of differential-algebraic bioeconomic models were proposed and
analyzed in [8–14]. For example, [8] discussed the problems of chaos and chaotic control for a
differential-algebraic system. The existence and stability of equilibrium points, the sufficient
conditions of existence for various bifurcations (transcritical bifurcation, singular induced
bifurcation, and Hopf bifurcation) are invested in [9–14]. However, the stability and the
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direction of periodic solutions bifurcating from Hopf bifurcations have not been discussed
there. Very recently, Zhang et al. [15] analyzed the stability and the Hopf bifurcation of
a differential-algebraic bioeconomic system with a single time delay and Holling II type
functional response and first investigated the direction of Hopf bifurcation and the stability
of the bifurcating periodic solutions.

Based on the above economic theory and system (1.3), in this paper, we study the Hopf
bifurcation of the following differential-algebraic bioeconomic system:

ẋ = x
(
r1 − a11x(t) − a12y

)
,

ẏ = y
(−r2 + a21x − a22y(t − τ)

) − Ey,

0 = E
(
αy − c

) −m.

(1.6)

The rest of this paper is organized as follows. In Section 2, regarding time delay τ as
bifurcation parameter, first, we study the stability of the equilibrium point of system based
on the new normal form approach proposed by Chen et al. [16]. Then, following the normal
form approach theory and the center manifold theory introduced by Hassard et al. [3], we
compute the normal form for the Hopf bifurcation of system (1.6) and analyze the direction
and stability of the bifurcating periodic orbits of the system. Numerical examples are given
in Section 3 to illustrate our theoretical results.

2. Hopf Bifurcation

In this section, we analyze the stability and the Hopf bifurcation of the differential-algebraic
bioeconomic system (1.6). Furthermore, we will derive the formula for determining the
properties of the Hopf bifurcation.

2.1. Existence of Hopf Bifurcation

For m > 0, the system (1.6) has positive equipment point P∗ = (x∗, y∗, E∗), where x∗ = (r1 −
a12y∗)/a11, E∗ = m/(αy∗ − c) and y∗ is the positive root of the following equation:

α(a11a22 + a12a21)y2 − (ca11a22 + ca12a21 + αr1a21 − αa11r2)y

+ (ma11 + cr1a21 − ca11r2) = 0.
(2.1)

In order to guarantee the existence of the positive equipment point P∗, some restric-
tions must be satisfied also:

c

α
< y∗ <

r1
a12

, ca11a22 + ca12a21 + αr1a21 > αa11r2, (2.2)

and ma11 + cr1a21 − ca11r2 < 0.
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In order to analyze the local stability of the positive equilibrium point, we first use the
linear transformation (x, y, E)T = Q · (u, v, E)T , where

Q =

⎡

⎢
⎢
⎣

1 0 0
0 1 0

0 − αE∗
αy∗ − c

1

⎤

⎥
⎥
⎦. (2.3)

Then the system (1.6) yields

u̇ = u(r1 − a11u − a12v),

v̇ = v(−r2 + a21u − a22v(t − τ)) − Ev +
αE∗v2

αy∗ − c
,

0 =
(
E − αE∗v

αy∗ − c

)
(αv − c) −m.

(2.4)

According to the literature [16], considering the local parametrization of the third
equation of the system (2.4), and we can obtain the following parametric system of it:

ẋ1 = (x1 + u∗)(r1 − a11(x1 + u∗) − a12(x2 + v∗)),

ẋ2 = (x2 + v∗)(−r2 + a21(x1 + u∗) − a22(x2(t − τ) + v∗)) −
(
E∗ + h

)
(x2 + v∗) +

αE∗(x2 + v∗)2

αy∗ − c
,

(2.5)

where

u = u∗ + x1, v = v∗ + x2, E = E∗ + h(x1, x2), (2.6)

h : R2 → R is a smooth mapping, and (u∗, v∗, E∗)
T satisfies

(
x∗, y∗, E∗

)T = Q ·
(
u∗, v∗, E∗

)T
. (2.7)

Thus the linearized system of parametric system (2.5) at (0,0) is given as below:

ẋ1 = −a11x∗x1 − a12x∗x2,

ẋ2 = a21y∗x1 +
αE∗y∗
αy∗ − c

x2 − a22y∗x2(t − τ).
(2.8)

The characteristic equation of the linearized system of parametric system (2.8) at (0,0)
is given by

λ2 + pλ + r +
(
sλ + q

)
e−λτ = 0, (2.9)

where p = a11x∗ − αy∗E∗/(αy∗ − c), r = x∗y∗(a21a12 − αa11E∗/(αy∗ − c)), s = a22y∗, and
q = a11a22x∗y∗.
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The second-degree transcendental polynomial equation (2.9) has been extensively
studied and applied by many researchers [2, 17–20].

Let

(H1) r1 > αy∗E∗/(αy∗ − c);

(H2) a12a21 + a11a22 > αa11E∗/(αy∗ − c);

(H3) either 2x∗y∗a21a12 + a2
22y

2
∗ < a2

11x
2
∗ + (y∗E∗α/(αy∗ − c))2 and (a21a12 − a11E∗α/(αy∗ −

c))2 > (a11a22)
2 or

(

2x∗y∗a21a12 + a2
22y

2
∗ − a2

11x
2
∗ −

(
y∗E∗α
αy∗ − c

)2
)2

< 4x2
∗y

2
∗

((
a21a12 − a11E∗α

αy∗ − c

)2

− a2
11a

2
22

)

;

(2.10)

(H4) either (a21a12 − a11E∗α/(αy∗ − c))2 < (a11a22)
2 or 2x∗y∗a21a12 + a2

22y
2
∗ > a2

11x
2
∗ +

(y∗E∗α/(αy∗ − c))2, and

(

2x∗y∗a21a12 + a2
22y

2
∗ − a2

11x
2
∗ −

(
y∗E∗α
αy∗ − c

)2
)2

= 4x2
∗y

2
∗

((
a21a12 − a11E∗α

αy∗ − c

)2

− a2
11a

2
22

)

;

(2.11)

(H5) (a21a12 −a11E∗α/(αy∗ − c))2 > (a11a22)
2, 2x∗y∗a21a12 +a2

22y
2
∗ > a2

11x
2
∗ +(y∗E∗α/(αy∗ −

c))2, and

(

2x∗y∗a21a12 + a2
22y

2
∗ − a2

11x
2
∗ −

(
y∗E∗α
αy∗ − c

)2
)2

> 4x2
∗y

2
∗

((
a21a12 − a11E∗α

αy∗ − c

)2

− a2
11a

2
22

)

.

(2.12)

From Lemma 2.1 in [2], we easily obtain the following results about the stability of the
positive equilibrium and the Hopf bifurcation of (1.6).

Theorem 2.1. For system (1.6). One has the following.
(i) If (H1)–(H3) hold, then the equilibrium E∗ of the system (1.6) is asymptotically stable for

all τ ≥ 0.
(ii) If (H1), (H2), and (H4) hold, then the equilibrium E∗ of the system (1.6) is asymptotically

stable when 0 ≤ τ < τ+0 and unstable when τ > τ+0 . System (1.6) undergoes a Hopf bifurcation at E∗
when τ = τ+j .

(iii) If (H1), (H2), and (H5) hold, then there is a positive integer k, such that the equilibrium
E∗ switches k times from stability to instability to stability; that is, E∗ is asymptotically stable when

τ ∈ [
0, τ+0

) ∪ (
τ−0 , τ

+
1

) ∪ · · · ∪ (
τ−k−1, τ

+
k

)
(2.13)

and unstable when

τ ∈ (
τ+0 , τ

−
0

) ∪ (
τ+1 , τ

−
1

) ∪ · · · ∪ (
τ+k−1, τ

−
k−1

) ∪ (
τ+k−1,+∞

)
. (2.14)
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Here,

ω± =
√
2
2

⎡

⎢
⎢
⎢
⎢
⎣
2x∗y∗a21a12 + a2

22y
2
∗ − a2

11x
2
∗ −

(
y∗E∗α
αy∗ − c

)2

±

√√
√
√
√
√
√
√
√

(

2x∗y∗a21a12 + a2
22y

2
∗ − a2

11x
2
∗ −

(
y∗E∗α
αy∗ − c

)2
)2

+4x2
∗y

2
∗

((
a21a12 − a11E∗α

αy∗ − c

)2

− (a11a22)2
)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

1/2

,

τ±j =
1
ω±

arccos

(
a22

(
E∗α/

(
αy∗ − c

))
ω2

± − a11a22x
2
∗
(
a21a12 − a11E∗α/

(
αy∗ − c

))

a2
22

(
ω2

± + a2
11x

2∗
)

)

+
2jπ
ω±

,

j = 0, 1, 2, . . . .
(2.15)

Denote λj(τ) = αj(τ) + iωj(τ), j = 0, 1, 2, . . .; then the following transversality
conditions hold:

d

dτ
Reλj

(
τ+j

)
> 0,

d

dτ
Reλj

(
τ−j

)
< 0. (2.16)

2.2. Direction and Stability of the Hopf Bifurcation

In the previous section, we obtain the conditions for Hopf bifurcations at the positive
equilibrium P∗ when τ = τ±n , n = 0, 1, 2, . . .. In this section, we will derive the formulaes
determining the direction, stability, and period of these periodic solutions bifurcating from
P∗ at τ . The basic techniques used here are the normal form and the center manifold theory
developed by Hassard et al. [3].

Assuming the system (1.6) undergoes Hopf bifurcations at the positive equilibrium P∗
at τ = τn, we let iω be the corresponding purely imaginary root of the characteristic equation
at the positive equilibrium. In order to investigate the direction of Hopf bifurcation and the
stability of the bifurcating periodic solutions of system (1.6), we consider the parametric
system (2.5) of system (2.4).

Let t = tτ, τ = τn + μ; then the parametric system (2.5) is equivalent to the following
functional differential equation system:

ż1 =
(
τn + μ

)
(−a11x∗z1 − a12x∗z2),

ż2 =
(
τn + μ

)
(
a21y∗z1 +

αE∗y∗
αy∗ − c

z2 − a22y∗z2(t − 1)
)
,

(2.17)

where z1 = x1(tτ), z2 = x2(tτ).



Journal of Applied Mathematics 7

For Φ ∈ C([−1, 0], R2), define a family of operators

LμΦ :=
(
τn + μ

)
⎡

⎣
−a11x∗ −a12x∗

a21y∗
αE∗y∗
αy∗ − c

⎤

⎦Φ(0) +
(
τn + μ

)
[
0 0
0 −a22y∗

]
Φ(−1),

f
(
μ,Φ

)
:=

(
τn + μ

) ×

⎡

⎢
⎣

−a11Φ2
1(0) − a12Φ1(0)Φ2(0) + · · ·

a21Φ1(0)Φ2(0) − a22Φ2(0)Φ2(−1) − αE∗c
(
αy∗ − c

)2Φ
2
2(0) + · · ·

⎤

⎥
⎦,

(2.18)

where Φ = (Φ1,Φ2) ∈ C. By the Riesz representation theorem, there exists a function of
bounded variation for θ ∈ [−1, 0], such that

LμΦ =
∫0

−1
dη

(
θ, μ

)
Ψ(θ), Ψ ∈ C. (2.19)

In fact, we can choose

η
(
θ, μ

)
=

(
τn + μ

)
⎡

⎣
−a11x∗ −a12x∗

a21y∗
αE∗y∗
αy∗ − c

⎤

⎦δ(θ) +
(
τn + μ

)
[
0 0
0 a22y∗

]
δ(θ + 1). (2.20)

For Φ ∈ C, define

A
(
μ
)
Φ :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dΦ(θ)
dθ

, θ ∈ [−1, 0),
∫0

−1
dη

(
t, μ

)
Φ, θ = 0,

R
(
μ
)
:=

⎧
⎪⎨

⎪⎩

0, θ ∈ [−1, 0),
f(t,Φ), θ = 0.

(2.21)

Hence system (2.17) can be rewritten as

Żt = A
(
μ
)
Zt + R

(
μ
)
Zt. (2.22)

For Ψ ∈ C([−1, 0], (R2)∗), define

A∗Ψ(s) :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dΨ(s)
ds

, s ∈ [−1, 0),
∫0

−1
dηT (s, 0)Ψ(−s), s = 0,

(2.23)
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and a bilinear inner product

〈Ψ,Φ〉 = Ψ
T
(0)Φ(0) −

∫0

−1

∫θ

0
Ψ

T
(ξ − θ)dη(θ)Φ(ξ)dξ, (2.24)

where η(θ) = η(θ, 0). ThenA∗ andA(0) are adjoint operators. By the discussion in Section 2.1,
we know that ±iω are eigenvalues ofA(0). Thus they are also eigenvalues ofA∗. Suppose that
q(θ) = (1, q1)

Teiωτθ and q∗(s) = D(q∗1, 1)e
iωτs are eigenvectors of A(0) and A∗ corresponding

to iωτ and −iωτ , respectively. It is easy to obtain

q1 = − iω + a11x∗
a12x∗

,

q∗1 =
iω − a22y∗eiωτ

a12x∗
,

D =
(
q1 + q∗1 + τq1a22y∗e−iωτ

)−1
.

(2.25)

Moreover, 〈q∗(s), q(θ)〉 = 1, 〈q∗(s), q(θ)〉 = 0.
Now, we calculate the coordinates to describe the center manifold C0 at μ = 0. Using

the same notations as in [3], we define

z =
〈
q∗, Zt

〉
, W(t, θ) = Zt(θ) − 2Re

{
zq(θ)

}
. (2.26)

On the center manifold C0, we have W(t, θ) = W(z, z, θ), where

W(z, z, θ) = W20(θ)
z2

2
+W11(θ)zz +W02(θ)

z2

2
+ · · · , (2.27)

and z and z are local coordinates for C0 in the direction of q∗ and q∗. Note that W is real if Zt

is real; we only consider real solutions. For Zt ∈ C0, we have

ż = iωτz + q∗(0)f0(z, z) := iωτz + g(z, z), (2.28)

where

g(z, z) = q∗(0)f0(z, z) = q∗(0)f(0, Zt) = g20(θ)
z2

2
+ g11(θ)zz + g02(θ)

z2

2
+ · · · . (2.29)
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Moreover, we have

g20 = 2Dτ

(

a21q1 − a11q
∗
1 − a12q

∗
1q1 −

αE∗c
(
αy∗ − c

)2 q
2
1 − a22q

2
1e

−iωτθ

)

,

g11 = 2Dτ

(

a21 Re
(
q1

) − a11q
∗
1 − a12q

∗
1 Re

(
q1

) − a22 Re
(
q1q1e

iωτθ
)
− αE∗c

(
αy∗ − c

)2 q1q1

)

,

g02 = 2Dτ

(

a21q1 − a11q
∗
1 − a12q

∗
1q1 −

αE∗c
(
αy∗ − c

)2 q
2
1 − a22q

2
1e

iωτθ

)

,

g21 = 2Dτ

(
(
a21q1 − 2a11q

∗
1 − a12q

∗
1q1

)
W

(1)
11 (0)

+
1
2
(
a21q1 − a12q

∗
1q1 − 2a11q

∗
1

)
W

(1)
20 (0)

+

(

a21 − a22q1e
−iωτθ − a12q

∗
1 − 2

αE∗c
(
αy∗ − c

)2 q1

)

W
(2)
11 (0)

+
1
2

(

a21 − a22q1e
iωτθ − a12q

∗
1 − 2

αE∗c
(
αy∗ − c

)2 q1

)

W
(2)
20 (0)

−a22q1W
(2)
11 (−1) −

1
2
a22q1W

(2)
20 (−1)

)
.

(2.30)

Next, we will calculate W11(θ) andW20(θ). From (2.22) and (2.28), we have

Ẇ = Żt − żq − żq =

{
AW − 2Re

{
q∗(0)f(z, z)q(θ)

}
, θ ∈ [−1, 0),

AW − 2Re
{
q∗(0)f(z, z)q(θ)

}
+ f, θ = 0,

:= AW +H(z, z, θ),

(2.31)

where H(z, z, θ) = H20(θ)(z2/2) +H11(θ)zz +H02(θ)(z
2/2) + · · · .

For θ ∈ [−1, 0), we can get

(A − 2iωτ)W20(θ) = −H20(θ), AW11(θ) = −H11(θ). (2.32)

On the other hand, H(z, z, θ) = AW − 2Re{q ∗ (0)f(z, z)q(θ)}; hence we can obtain

H20(θ) = −g20q(θ) − g02q(θ), H11(θ) = −g11q(θ) − g11q(θ). (2.33)
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It follows from (2.32) that

Ẇ20(θ) = 2iωW20(θ) + g20q(θ) + g02q(θ),

Ẇ11(θ) = g11q(θ) + g11q(θ).
(2.34)

Solving it, we have

W20(θ) =
ig20
ωτ

q(0)eiωτθ +
ig02

3ωτ
q(0)e−iωτθ +Me2iωτθ,

W11(θ) = − ig11
ωτ

q(0)eiωτθ +
ig11

ωτ
q(0)e−iωτθ +N.

(2.35)

Now we will seek appropriate M and N. From (2.29) and (2.31), we have

H20(θ) = −g20q(0) − g02q(0) + 2τH1,

H11(θ) = −g11q(0) − g11q(0) + 2τH2,
(2.36)

where

H1 =

⎡

⎢⎢⎢
⎣

−a11 − a12q1

a21q1 − αE∗c
(
αy∗ − c

)2 q
2
1 − a22q

2
1e

−iωτθ

⎤

⎥⎥⎥
⎦
,

H2 =

⎡

⎢⎢⎢
⎣

−a11 − a12 Re
(
q1

)

a21 Re
(
q1

) − a22 Re
(
q1q1e

iωτθ
) − αE∗c

(
αy∗ − c

)2 q1q1

⎤

⎥⎥⎥
⎦
.

(2.37)

Noting that

(

iωτI −
∫0

−1
eiωτθdη(θ)

)

q(0) = 0,

(

−iωτI −
∫0

−1
e−iωτθdη(θ)

)

q(0) = 0,

(2.38)
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we have the following linear equations:

⎡

⎣
2iω + a11x∗ a12x∗

−a21y∗ 2iω − a22y∗ −
αE∗y∗
αy∗ − c

⎤

⎦M = 2H1,

⎡

⎣
a11x∗ a12x∗

−a21y∗ −a22y∗ −
αE∗y∗
αy∗ − c

⎤

⎦N = 2H2.

(2.39)

It is easy to get M and N. Furthermore, we can get the following values:

C1(0) =
i

2ωτ

(

g11g20 − 2
∣
∣g11

∣
∣2 −

∣
∣g02

∣
∣2

3

)

+
g21
2

,

μ2 = −Re(C1(0))
Re(λ′(τ))

,

β2 = 2Re(C1(0)),

T2 = − Im(C1(0)) + μ2 Im(λ′(τ))
ωτ

.

(2.40)

It is well known that, at the critical value τ , the sign of μ2 determines the direction
of the Hopf bifurcation, β2 determines the stability of bifurcated periodic solutions, while
T2 determines the period of bifurcated periodic solutions, respectively. In fact, we have the
theorem as follows.

Theorem 2.2. (i) The Hopf bifurcation is supercritical if μ2 > 0 and subcritical if μ2 < 0.
(ii) The bifurcated periodic solutions are unstable if β2 > 0 and stable if β2 < 0.
(iii) The period of bifurcated periodic solutions increases if T2 > 0 and decreases if T2 < 0.

3. Numerical Examples

We now perform some simulations for better understanding of our analytical treatment.

Example 3.1. Consider the following differential-algebraic system:

ẋ = x
(
6 − 2x(t) − 1.5y

)
,

ẏ = y
(−0.5 + 2x − y(t − τ)

) − Ey,

0 = E
(
2y − 1

) − 1.5.

(3.1)

The only positive equilibrium point of the system (3.1) is P+ = (1.5, 2.0, 0.5). It is easy
to get p = 2.3333, q = 6, r = 7, s = 2.
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Figure 1: : Dynamic behavior of the differential-algebraic system (3.1) with τ = 0.55 < τ+0 , and the positive
equilibrium point P+ is stable.

When τ = 0, from (2.9), the characteristic equation of the linearized system of
parametric system of (3.1) at P+ is given by

λ2 +
(
p + s

)
λ + r + q = 0. (3.2)

By simple calculating, p + s = 4.3333 > 0, q + r = 13 > 0. According to Routh-Hurwitz stability
criterion, P+ is stable.

When τ > 0, we can further get r2 − q2 = 13 > 0, s2 − p2 + 2r = 12.5556 > 0, and
(s2−p2+2r)2−4(r2−q2) = 105.6420 > 0 which mean (H1), (H2), and (H5) hold. Furthermore,
we have ω− = 1.0671, ω+ = 3.3789, and hence τ+0 = 0.5638 < τ+1 = 2.4233 < τ−0 = 2.8880 <
τ+2 = 4.2829 < τ+3 = 6.1424 < τ−1 = 8.7762 < τ−2 = 14.6645 < τ−3 = 20.5527 < · · · . According to
conclusion (iii) of Theorem 2.1, the equilibrium point P+ is stable only for τ < τ+0 , unstable
for any τ > τ+0 , and the Hopf bifurcation occurs at τ = τ+0 .

By the aid of Mathematica, we can obtain the following values according to equalities
in (2.40):

C1(0) = 3.9725 − 4.7012i, λ′
(
τ+0

)
= 1.3427 − 2.9776i. (3.3)

So we have μ2 = −2.9586 < 0, β2 = 7.9451 > 0, and T2 = −2.1567 < 0. Thus from Theorem 2.2,
we can conclude that the Hopf bifurcation of system (3.1) is subcritical, the bifurcating
periodic solution exists when τ crosses τ+0 to the left, and the bifurcating periodic solution
is unstable and decreases.

Figure 1 shows the positive equilibrium point P+ of system (3.1) is locally
asymptotically stable when τ = 0.55 < τ+0 = 0.5638. The periodic solutions occur from P+
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Figure 2: Dynamic behavior of the differential-algebraic system (3.1) with τ = 0.563 < τ+0 , periodic
solutions bifurcating from the positive equilibrium point P+.
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Figure 3: Dynamic behavior of the differential-algebraic system (3.1) with τ = 0.57 > τ+0 , and the positive
equilibrium point P+ is unstable.
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when τ = 0.563 < τ+0 = 0.5638 as is illustrated in Figure 2. When τ = 0.57 > τ+0 = 0.5638, the
positive equilibrium point P+ becomes unstable as shown in Figure 3.
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