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We study the solvability of Dirichlet and Neumann problems for different classes of nonlinear
elliptic systems depending on parameters and with nonmonotone operators, using existence
theorems related to a general system of variational equations in a reflexive Banach space. We also

point out some regularity properties and the sign of the found solutions components. We often
prove the existence of at least two different solutions with positive components.

1. Introduction

In this paper, we present some significant applications of the results got in [1] to Dirichlet
problems (Section 2) of the type:

—div(A;(x,u1, ..., uy, Vg, ..., Vuy))
= )L,-b,-|ui|”72u,- + d,-(x,ul, oo, Uy, Vul, ey Vun) + fi in Q, (11)

u;=0 on o0Q asi=1,...,n,

and to Neumann problems (Section 3) of the type:

—div(Ai(x,u1, ..., uy, Vug, ..., Viy))

) .
= Mibi|wilP ™ ui + di(x, ua, .. Uy, Vg, ..., V) + fi in Q,
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Ai(x,uq,. .., uy, Vuy,...,Vuy,) v

- = ~ N ]
= uibiluilP“u; + di(x,u, ..., U, Vg, ..., Vuy) + fi on 0Q asi=1,...,n,

(1.2)

wheren > 1, A, p; are real parameters, Q is a bounded connected open set of RN with regular
boundary 0€2, and v is the outward orthogonal unitary vector to 0€2.

The study deals with the solvability of the problems, the existence of multiple solutions
with all the components not identically equal to zero and, in the homogeneous case, the
existence of solutions with positive components, bounded and locally Holderian with their
first derivatives. It is suitable to recall the problem studied in [1] with some notations and

hypotheses.
Let Wy,..., W, real reflexive Banach spaces (n > 1). Let W be the product space
Xy We. Let || - || be the norm on W, |||, the norm on W* (dual space of W), and

(/)¢ (resp. ({-,-))) the duality between W (dual space of W,) and W, (resp. W* and W).
Let us denote by “0” Fréchet differential operator and by “0,,” Fréchet differential operator
with respect to up. Let AZ0 and D;#0 (j = 1,...,m;m > 1) be real functionals defined in

W, B; and B, (¢ =1,...,n) real functionals defined in W, satisfying the conditions:

(i11) A is lower weakly semicontinuous in W and C*(W \ {0}),

B and By are weakly continuous in Wy and Cl(Wy),

dp>1: A(tv) = tPA(v) for all t > 0 and for all v € W, B, (tve) = t"B,(vy)
and Bg(tvg) = tpgg(‘()g) for all t >0 and for all v, € Wy;

(i12) D; is weakly continuous in W and C*(W \ {0}), 3g;, > 1:
D;(tv) =t¥Dj(v) for all t >0and for all v e W,1 < q1 <--- < gp if m> 1.

Let F = (Fy,...,F,) with F, € W,", Ay and pyy € R; let us consider the following
problem.

Problem (P). Find u = (uy,...,u,) € W\ {0} such that

0y, A(1),vi); = Li(0B;(1;), vi); (0B (w),v; ) mau,-D' /i), + (Fi, 0i);
(B A), v1),; = Li(OB; (1), v7), + i <”>”>l+§1< o) Fo

ViE{l,...,Tl}, Vv, € W;.

Obviously Problem (P) means to find the critical points u € W \ {0} of the Euler functional:

E(v) = A(v) - i[)teBe(W) + ﬂeEe(ve)] - iDj(v) - ((Fv)) Yo=(vq,...,0,) €W,
= =1

(1.4)

where ((F,v)) = >;_; (Fo,v¢),.
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Let us set

n

Hyu(v) = A©) = 3 [1eBe(ve) + preBe(ve)|
=1

VZ}:(Ul,...,Un)EI/V, VJ\Z()Ll,...,)Ln), ‘uz([/ll,...,‘un)ERn,
Sy={veW:Hy() =1}, Vi, = {veW:Hy(v) <0}, asm=1,...,m

V*(Du,, .., D) = {UEW: iDj(vpo}, (1.5)

j=m

S*(Dy,...,Dy,) = {UG W . iDj(v) = 1},

=1
S(Dj) = {ve W :Dj(v) =-1}, V*(F) = {veW:((Fv))>0}.

About Problem (P), using Lagrange multipliers and the “fibering method,” different
existence theorems have been proved in [1]. They base on one of the following hypotheses:

(i13) Ic(A, ) > 0 : ||o]]P < c(X, p)Hy,(v) for all v e W;
(i1a) Fe(A, p) > 0 |[o||” < (A, ) Hyy(v) for all v € VFH(Dy) (if V(D) #0);
(iis) Im € {1,...,m} : V)L‘H N S(Dyy,) is not empty and bounded in W.

Remark 1.1. In this paper, we use some existence theorems ([1], Theorems 2.1, 2.2, 3.1, and
3.2), in which as n > 1, in relation to a set § C S,,, we suppose

(ii‘é) for each v = (vy,...,v, ) € § with v, = 0, there exist v, € W), \ {0} and the
real functions ¢1,...,¢, such that ¢, € C°([0,1]) n C([0,1[) and ¢u(1) = O,
$e € CY[0,1]) and ¢ (1) =1as€#h,v(s) = (P1(s)v1, ..., Pn(8)Oh, ..., Pu(s)vn) €T
for all s € [s9,1] (0 < s9 < 1),lim] _, 1-(d/ds)Dj(v(s)) < +oo for all j €

{1,..., m},limg _, 1-(d/ds)D;(v(s)) = —co for some j € {1,...,m}.

The condition (ii‘é) assures that for the solutions u = (u1, ..., u,) of Problem (P), found
with the method used in the recalled theorems, we have uy, #0 if Fj, = 0.

Before showing Dirichlet problems (including the problem studied in [2] by Drabek
and Pohozaev when n = 1 and m = 1) we give Propositions 2.2-2.6 which show some cases in
which hypotheses (i13)—(i15) hold. These propositions are based on the comparison between
the parameters \; with suitable eigenvalues connected to p-Laplacian. About Neumann
problems (including the one studied in [3] by Pohozaev and Véron when n = 1) the same
question is solved by Propositions 3.1-3.5 in which the parameters \; and y; have compared
with zero. Finally, the results in Appendix are very useful: Propositions A.1 and A.2 in order
to get condition (i’.), Propositions A.3 and A4 to get qualitative properties of the solutions
and the positive sign of the components of the found solutions.

2. Dirichlet Problems

Let @ C RN be an open, bounded, connected and C*># set with 0 < f# < 1. Let |- |y the
Lebesgue measure on RN, 1 <p < oo, p = Np/(N -p) if N >p, p = co otherwise.



4 Abstract and Applied Analysis

Let us assume

n Up
W= <W3’p(£z)> (n>1) with ||v| = <Z Lz |Vve|”dx> Vo= (vy,...,04) EW,
=1

Be(vy) = p‘lj‘ belvelPdx Vv € W;’p(Q) where by € L*(Q) \ {0}, by >0, B, =0.
Q
(2.1)
Moreover we consider the functionals A (as in (i11)) such that
IE>0: A(w) > pleol|f Yoe W. (2.2)
Let us use the notation H), (S, and VA‘ ,resp.) instead of H At (S A and VA‘#, resp.).
As € = 1,...,n let \; and uj, respectively, the first eigenvalue and the first
eigenfunction of the problem:
Lp e 5 p-2 — p-2 ;
ug € Wy (Q) : —¢ d1V<|Vug| Vug> = 0bo|uel’ "up, in Q. (2.3)

Let us remember that [4]
uy € CH7(Q) with 0 < ap < 1, > 0in Q;
Xy = Ef, IVuylPdx/ [ belujPdx = min{€ [, [VoelPdx/ [, belvelPdx : [, belvelPdx >
0};
A} is simple, that is, each eigenfunction of (2.3) related to .} is of the type c,uj, with
ce € R\ {0};
A} is isolate, that is, there exists a > 0 such that A} is the only eigenvalue of (2.3)
belonging to ]0, al.

Remark 2.1. About the results related to problem (2.3), it is sufficient to suppose by € L*(£2)
and b; = max{bg,0} #0as € =1,...,n. This holds also for the results of this section if we limit
to consider only the parameters 1Ay, ..., A, nonnegative.

Let us start by presenting some sufficient conditions such that (i13), (i14), and (i15) hold.
Using the variational characterization of 1j it is easy to verify the following
proposition.

Proposition 2.2. If Ay, < A}, for all € € {1,...,n}, then (iy3) holds. Consequently, (i14) holds when
V*(Dm) #0.

When A, > A for some € € {1,...,n}, it is possible to fulfil (i14) with an additional
condition on D,,. Let I = {1,...,n}. Forany I* C I let

V' ={v=(v1,...,0,) EW:v,=0if £ €I\ I

2.4
vy = couy, if € € I" with ¢, € R and ¢, #0 for some E}, 24)

and let us suppose

(ip1) There exists I* C I : D,,(v) <0 for all v € V*.
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Proposition 2.3. Let (iz1) holds with I* # 1. Let V*(Dy,) #0. If we fix the parameters set (X¢) gep 1
with Xg < X}, then there exists 6* > 0 such that (i14) also holds for any (X¢) ge € Xeer-[Ay, Ay +67[.

Proof. Arguing by contradiction, for any k € N there exist (%) e € Xeer[Ay, Ay + k7![ and
= (oF,...,vk) € V*(Dy,) such that

P
< -p Z )Lgf belvelPdx —p 12)&[ be|vz| dx <k~ ” ” . (2.5)
Cel\I* Cel* Q
Set wk = ||[ok|| " vk, we have
Dy (w*) >0,
J‘ |Vwe| dx— Z MJ‘ bg|w’e‘|pdx+EZ f |Vw’e<|pdx Z)ka bg|we| dx<pk™, 1
ZeI\I* Cel\I* Q Zel+ 7 Q lel*
(2.6)
moreover, since ||w*|| = 1, there exists w € W such that (within a subsequence)
wk — w weakly in W, wk — w strongly in (LP(Q))". (2.7)
Taking into account that D,, is weakly continuous in W, from (2.6) as k — +oo we get
Dyu(w) >0, (2.8)
[ I |[Vwe|Pdx - )Lgf bg|’(1)g|pdx] [ J |[Vwe|Pdx — A I bg|wg|pdx] <0.
Cel\I* el
(2.9)
Since
we#0) = EJ‘ |[Vw,|Pdx - )LgJ‘ be|lw,|Pdx > 0,
Q Q (2.10)
EI |Vw,|Pdx - A;J be|lw,|Pdx >0,
Q Q
from (2.9), we deduce that
we=0 Veel\I", V¢eldc, € R:wy=ceut,. (2.11)

Let us add that ¢, #0 for some ¢ € I*, since if ¢, = 0 for all £ € I* we have the contradiction
€ = Elimy_ o ||wk||” = 0. Then w € V*, and consequently D,,(w) < 0 from (iz). This last
inequality contradicts (2.8). O

In the same way the following propositions can be proved.
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Proposition 2.4. Let (iy1) holds with I* = I. Let V*(D,,) # 8. Then, there exists 6* > 0 such that
(ir4) also holds for any (A¢)e; € Xeer[Ay, Ay +67[.

Let us pass to (i15) and suppose

(iz2) there exist I* C I and my; € {1,...,m} such that D,,(v) < 0 and A(v) =
ept Sper Jo |VvelPdx for any v € V*.

Proposition 2.5. If (iy;) holds with I* #1, then

ViNS(Dm) #0 Y(Xe)gey with (Ae)ger € e}eg* [Ao +oo[\ {(A}) per }- (2.12)

Moreover, if we fix the parameters set (Ae) pep\;- With X < X}, then there exists 6" > 0 such that

Vi NS(D,y,) is bounded in W Y(A¢) pep € €§I* (A5, Ay +6 [\ { (X)) er- ) (2.13)

Proof. Let us prove (2.12). Let v € V* with v, = uj if £ € I*, then Dy, (v) < 0. Let w =
|Dy, (0)] 19" 0, we have
Dy (w) = Dy (0)] ' Doy (0) = -1,

H)L(w) = p71 Z [E,[g |ng|”dx - )lg IQ bg|ZUg|pdx] <0.

el

(2.14)

Let us prove (2.13). Arguing by contradiction, for any k € N there exist (.A,Ié) cerr €
Xeer [A}, Ay + k~'[ with (/\’tf)eep # (A5 and (0F"),y C Vi N S(Dy,), where )t’g = g if
¢ € I\ I, such that

)«?eI*

sup |vk'h|| = +00, (2.15)

heN
Relation (2.15) implies that there exists (hx) <y € N strictly increasing such that

Ok = ”vk'hk — +00 as k — +oo. (2.16)

Let wk = 6lzlvk'hk, we have

+
el

Z [EJ‘ )Vw’;r’dx—lgf bg)w’grdx
Cel\I* Q Q

EI |Vw’e‘|pdx—)tlgj‘ bg|wk|pdx] <0,
Q Q

Dy, <wk> = —6;% ,

Jw € W : (within a subsequence) wk —w weakly in W, w* — w strongly in (LP(Q))".
(2.17)
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Then, as k — +oo we get
> [E I |Vl dx — Ae f bg|wg|de] +) [EI |Vewe|Pdx - X, I bg|wg|”dx] <0,
Cel\I* Q Q el Q Q
(2.18)
Dy, (w) = 0. (2.19)
From (2.18), we get that w € V*. Then since (i) inequality D, (w) < 0 holds, which

contradicts (2.19). O

Proposition 2.6. If (i) holds with I* = I, then

ViNS(Dw)#0 YA = (he)er € X [N, +00[\ {(A7) et}
36" > 0: VN S(Dy,) is bounded in W YA = (Ae)ges € X [N, 4;+ 6" [\ { (A7) et )-
€
(2.20)

The proof as in Proposition 2.5.

Remark 2.7. The applications we now show, except the first one, deal with systems with n > 1
equations. We consider the functionals A with ¢ = 1, and we suppose b, € L*(Q)\ {0}, b, > 0.

Application 2.8. Let n = 1. Let us consider the problem

—div(|Vu|P-ZVu) = Mbiuf2u+ Y dju"?u inQ, u=0 on dQ, 2.21)
j=1

where
p<qi<p, dr1eLlL®(Q)\{0} ifm=1,
P<qi<-<gm<p, d;i€eL®(Q)\{0} asj=1,...,m, (2.22)
di<0 asj=1,....m-1 ifm>1
Evidently

A(v) =p! L VoPdx, Dj(v)=gq;' fg djlo|lidx YoeW. (2.23)

Let us advance the conditions:
du#0 (= V'(Dw) #0), (2.24)

j (1) dx <0 (= Dp(ciu?) <0 Ver € R\ {0)). (2.25)
Q
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Let us note that (Propositions 2.2, 2.4, and 2.6)

(2.24) = ((i14) holds if Ay < 1?),
(2.24) and (2.25) = (35} > 0 : (i14) holds if A, < A +57), (2.26)
(2.25) = (365 > 0 : (i15) holds if A, € |A7, A% + 65]).

Proposition 2.9 (see [1], Theorems 2.1, 2.2, 4.1, and 4.2; Remarks 2.1, 2.3, 4.1, and 4.4;
Proposition A.3; [5, 6]). Under assumptions (2.22) we have:

(i) When (2.24) holds, with Ay < A [resp. (2.24) and (2.25) hold, with A1 < A] + O3] problem
(2.21) has at least two weak solutions u® and —u® (u° = t°0°,7° = const. > 0,7° €
Sy, NVH(Dyy)), and it results in u® € L®(Q) N C;f:(Q),uo > 0;

(ii) When (2.25) holds, with Ay €]}, A} + 65 problem (2.21) has at least two weak solutions
uand —u (u=7v,T =const. >0, v € Vin S(Dyy)), and it results in u € L*(Q) N

C(Q),u>0.

loc

Consequently, when (2.24) and (2.25) hold, with Ay €]}, A7 + min{67, 63} [ problem (2.21)
has at least four different weak solutions.

Remark 2.10. Our results include the ones of Dréabek and Pohozaev [2] when m = 1.

Application 2.11. Let us consider the system:

n=2 s 4
e
<ngug> di - di|lui|""u; in Q, (227)

- div<|Vui|p_2Vui> = )Libi|ui|p_2ui +
=1

n
ngug
=1

u;=0 on o0Q asi=1,...,n,

where
l<q<p, q#p, dede€L®(Q), dede >0. (2.28)

System (2.27) is included among Problem (P) with:

A(v) =p-1zj Vooldx,
0=17Q
ngvg
/=1

. ) (2.29)
dx—Zf Jg|vg|q1dx:| Vo = (vy,...,0,) € W.
=17 Q

Di(v) = q;" UQ
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Let us advance the conditions (compatible):

dl <d, vee(l,...,n}(= Di(0,...,cas,...,00<0asi=1,...,n, c; € R\ {0}),
(2.30)

there exist Q* C Q and a constant ¢; > 0 such that [Q*|5 > 0 and

qi
<Zdy + Ejdj> > Y'de+cl'd; in Q" (= V*(D1)#0 (Proposition A.1)).  (231)
¢7 ¢7

Then (Propositions 2.2, 2.3, and 2.5)

(2.31) = ((i14) holds if A¢ <A V€ € {1,...,n}), (2.32)
andsetie {1,...,n}

(2.30) and (2.31) = (with A < A3 V€#i 367 > 0: (ir) holds if A; < AT +5),  (2.33)

(2.30) = (with g < A} V€ #i 365 > 0 : (is5) holds if A; € |47, A7 + 85[). (2.34)

Taking into account that D1 (v, ...,v,) < Di(|v1],...,|vs|) and D;(-v) = Di(v), from
([1], Theorem 2.1, Remark 2.1, and Theorem 4.1) we get the following proposition.

Proposition 2.12. Under assumptions (2.28) we have:
(i) When (2.31) holds, ((2.30) and (2.31) hold resp.), choosing Ay, ..., A, as in (2.32) (resp.

(2.33)) system (2.27) has at least two weak solutions u® and —u® with ug >0asé =
1,...,n (u° =710, 19 = const. >0, v° € S, NV*+(Dy));

(ii) When (2.30) holds, choosing \1,..., A, as in (2.34) system (2.27) has at least two weak
solutions wand —u (u=70v,T = const. >0,v € V. N S(D1)).

Consequently, when (2.30) and (2.31) hold, with Ay < \}, for all €#i and \; €], A} +
min{67, 63} [ system (2.27) has at least four different weak solutions.

The following proposition is obvious.
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Proposition 2.13. The following relations hold:

O .
u; 20 asi=1,...,n,

_ _ (2.35)
dh, ke {1,...,n}:u,#0,u, £0.
Proposition 2.14. Ifp < gy, thenasi=1,...,n:
o’
W e L™(Q)NC,l(Q), >0 (2.36)

Proof. It is easy to prove that
n 2 n p-1 n
pe
Vu? Vu?-VUidng g( u?> < Ui>dx
ZlfQi | o ; 21: (2.37)
Vo = (v, 0a) € (W (@)1 L°°(Q)>" with ; > 0,
where g € L7/@7P)(Q). Then (Proposition A.3) u) € L*(Q) and consequently [5] u! €

i
C,.. ().
Let us note that ! is a weak supersolution to the equation:

1,u?
doc

—div<|Vu,~|""2Vui> = NbilwiP2u; — Aol i in Q. (2.38)

Then, since (2.35), it must be [6] u? > 0. O

Let us continue the analysis of system (2.27) under the condition:

qn
<ng> <min{£z“1,...,(§n} Vie(l,...,n}, (2.39)

04
then

Di(ciui, ..., caity) <0 V(ci,...,cy) € R"\ {0} with ¢; =0 for at least one i € {1,...,n}.
(2.40)

Hence (Proposition 2.5) if I* C I and I* #1I:

(2.39)= <as Ao <Ay Ve € INI* 36" > 0: (i15) holds if (A¢),e;- € é)g [A}, Ap+6" [\(J\’;)ed).
I
(2.41)
Proposition 2.15. Under assumptions (2.28) and (2.39), choosing Ay, ..., \, as in (2.41) system

(2.27) has at least two weak solutions u and —u (u = 7o, 7 = const. > 0,0 € V, N S(D1)) with
u;#0asi=1,...,n.
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Proof. Thanks to ([1], Theorem 4.1), there exists v € V" N S(D1) such that

H,(v) =inf{H,(v) :ve V. NS(Dy)} =e, u=T0 isa weak solution of system (2.27),
(2.42)

where T = (—pq;lg)l/(qlfp).

Reasoning by contradiction, let, for example, ; = 0. Since -1 = D;(v) < D;(0, [v2],
..., |o4]) and from (2.39) D1(0, |02, ..., |v4]) <0, setting 6 = |D1(0, |02/, ..., |5n|)|71/‘71 we have

D1(0,6[D2), ..., 6[on]) = -1, H\\(0,6[02],...,6[v4]) = 6"H\(0) < Hy(0), (243)

then H,(0,6[v2|,...,6[v,|) = Hy(v). This implies that ([1], see the proof of Theorem 4.1)
(0,76[0y],...,T6[v,|) is a weak solution of system (2.27). Then (3;_, de|oe))™ ™ = 0 from
whichu,=0tooas€=2,...,n.

Condition (2.39) holds in particular when

n q
(ng> < min{éil,...,&n}. (2.44)
=1

O

Proposition 2.16. Replacing in Proposition 2.15 (2.39) with (2.44), it is right to say that u; > 0 and
u;#0asi=1,...,n. Consequently, if p < qu

7 e L*(Q)NCAQ), w>0asi=1,...,n (2.45)

Proof. Set 6 = IDy(|71), - .., [B) V", as in Proposition 2.15 (T6[v1],...,T6|v,|) is a weak
solution to system (2.27).

Let us add that since (2.44) = Di(c1uj,...,cauy) < 0 for all (cy,...,cq) € R\ {0},
there exists (Proposition 2.6) 6** > 0 such that

(i15) holds if (A¢) et Ee)fl (A5, A5 + 6 [\ {(N)) ot }- (2.46)

Then the existence of u is assured also choosing 14, ..., A, as in (2.46), and the conclusions of
Proposition 2.16 hold. O

Application 2.17. Let us set
M=-=Xy=4, by=--=by=b (then\!=--- =\ =10 =-=u}=u),

n n n/y
A<v>=p‘12f VooPdx, Di(o) =g f d1<2|vev> dx, Vo= (o,...,00) €W,
¢=17Q Q 2=1
(2.47)
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where

l<y<qi<p, q#p di€L®(Q). (2.48)

Let us consider the system:

n (q1/y)-1
—div<|Vui|p_2Vui> = Ab|wilPu; + dy <Z|ug|Y> 2w in Q,

= (2.49)
u;=0 on o0Q asi=1,...,n.
We advance the conditions
di#£0 (= V*(Dy)#0), (2.50)
f di(u)Tdx <0 (= Di(ciu*,...,cou®) <0 VY(cy,...,cn) € R"\ {0}). (2.51)
Q

Therefore,

(2.50) = <(i14) holds if X < A*) (Proposition 2.2),
(2.50) and (2.51) = <36; >0 (i14) holds if X < A* + 5;) (Proposition 2.4),  (2.52)
(2.51) = (35; >0 (iys) holds if X € |A*, A" + &3 [) (Proposition 2.6).

Then ([1], Theorems 2.1 and 4.1, and Remarks 2.1 and 4.1).
Proposition 2.18. Under assumption (2.48), we have:

(i) When (2.50) holds, ((2.50) and (2.51) hold resp.), if A < \* (resp. A < A* + &) system
(2.49) has at least two weak solutions u® and —u® with u > 0as € = 1,...,n (u° =
7090, 75 = const. > 0,9° € S, N V+(Dy));

(ii) When (2.51) holds, if X €A, A + 03[ system (2.49) has at least two weak solutions u and
~uwithuy>0as€=1,...,n (u=70,7 = const. >0,v € V. NS(Dy)).

Consequently, when (2.50) and (2.51) hold, with X €]A", A +min {67, 65 } [ system (2.49) has
at least four different weak solutions.

In order to establish some properties of u° and % it is useful to recall that ([1], Theorems
2.1and 4.1)

Dy (v()) =sup{Di(v) :v €SNV (D)} =e¢, 70 = <q1p‘1E (2.53)

H(@) =inf[Hy(0) 0 e VynS(D)) =e, 7= (-pae) " . (@54
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Proposition 2.19. When p < g1, we have

€ L*(Q) N CY (), (2.55)
besides
W0 Vie{l,...,n}ify<p. (2.56)

0
Proof. The relation u? € L*(Q) comes from Proposition A.3. Then [5] u? € C;’:C" (Q).
About (2.56), it is sufficiently (Remark 1.1) to prove that

(i’;6> holds Vhe {1,...,n) with § = S, N V*(Dy). (2.57)

Letov = (vy,...,v,) € Sy N V*(D,) with v, = 0. Since

veVHD) = <EI a compact set KC Q: |K|y >0,d1 >0 and ¢ = Z|vg|y >0 in K>,
2#h
(2.58)

let (Proposition A.1) (¢, C Cy(Q) with 0 < ¢, <1 such that

)0<€<€o = -

e — x strongly in L°(Q), f |Vo:|’dx — +c0  as e — 0" Vs € [1, +oo], (2.59)
Q

where y is the characteristic function of K. Set € such that

I dyg /M1l dx > 0, 5=p [J‘ |Vep.|"dx —XI bpldx| >0, (2.60)
Q Q Q

with o(s) = (sVPvy,...,(1 - s)/P67 Py, ..., s"/Pv,) it results in

Hy(v(s)) =6'(1-s)p™ UQ |Vepe | dx —XL} bpldx| +sHy(v) =1 VYse[0,1],

(2.61)
dsp € [0,1] : D1(v(s)) >0 Vs € [so,1], lirr11 %Dl(v(s)) = —o0.
s— 1"
O]
Proposition 2.20. When p < g1, we have
;€ L®(Q) NCo(Q), (2.62)

u;>0 Vie{l,...,n}ifp<y. (2.63)
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Proof. We can get (2.62) from Proposition A.3 and [5].
About (2.63), it is sufficiently [6] to prove that #;#0 as i = 1,...,n. Reasoning by
contradiction, let, for example, ©; = 0. We note that

aeV;:><3ee{z,...,n}:f |v77g|de—Xf b5§dx<o>. (2.64)
Q Q

Let us suppose € =2 and set v(s) = ((1 - s)l/Yﬁz, sYY0,,03,...,7,). Then

Di(v(s)) =-1 Vse[0,1], dsp € [0,1] : Hy(v(s)) <0 Vs € [so,1],

4 (2.65)
Sh_)rrltd—SH)L(v(s)) = +o0.

Set s1 € [so, 1[ such that (d/ds)H,(v(s)) > 0 for all s € [s1,1[ and taking into account (2.54),
we get the contradiction:

H)(v) < H)(v(s)) < Hy(v) Vse€ [s1,1]. (2.66)
O

Proposition 2.21. When y = p < q1, we allow thatasi=1,...,n:
u >0, u; > 0. (2.67)
Proof. The assumption y = p implies that
Yo = (vy,...,0,) € W\ {0} with v, =0 for some h € {1,...,n},
30 =(01,...,0n) EW:0,20 as¥=1,...,n, H)(v) = Hy(v), D1(9)= D;(v).

(2.68)

Let, for example, v1 = 0 and v, #0. Set s €]0,1[ and v] = (1 - s)Po,, vy = s'Pvy, vy = v,

as ¢ >2,witho' = (v},...,v}), we have
H, <v1) - Hy(v), D (vl> = Dy (v). (2.69)

If v3 =0, set ’U% = (1—5)1/’70}, v§ = sl/”’v}, U‘} = v} as ¢ € {1,...,n}\ {1,3}, with v* =

(vz, ey vz), it results in
1 n
H,\ <1J2> = H)L(U), D1 <Z)2> = D1 (v). (2.70)

This method let us to find .
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Then, if vg =0 (resp. v, =0) for some h € {1,...,n}, with 3° (resp. 5) as in (2.68) we
have from (2.53) (resp. (2.54)) D1 (2°) = e (resp. H, (%) = ¢). Consequently ([1], see the proof
of Theorem 2.1 (resp. Theorem 4.1)) #° = 798° (resp. u = 7o) is a weak solution of system

(2.49). Therefore [6] ﬁ? >0 (resp. u; >0)asi=1,...,n O
Application 2.22. Let us assume )y, by, and A as in Application 2.17,
2=1

n i/
Dj(v) = q;l L; d <Z|04|Yj> dx Yo=(vy,...,0,)EW asj=1,...,m, (2.71)

where

P<qi<-<qm<p, 1<y;<q;, dm€L®Q),

e (2.72)
die L*(Q)\ {0}, d;<0ifj=1,...,m-1
Let us consider the system:
_ m n (a;/v))-1
—div(| VP2 Vu; ) = Ablu;|Pu; + d-< |ug|Yf> i u; in Q,
( ) ]gl ] ; (2.73)
uy =0 on 0Q asi=1,...,n,

under almost one of the conditions:

d;, #0, f dp(u)dx < 0. (2.74)
Q

By using some results ([1], Theorems 2.2 and 4.2, and Remarks 2.3 and 4.4), we can advance
a proposition similar to Proposition 2.18 replacing in particular V*(D;) with V*(D,,) and
S(D») with S(D,y,).

Thanks to Proposition A.3 and a result of [5], for the solutions #° and u to system
(2.73), we have

WeL®Q)n cj,"’ (Q), weLl®(Q)NCH(Q). (2.75)

We continue to analyze the properties of u” and %. To this aim we recall that ([1], Theorems
2.2 and 4.2), set for each v € V*(D;,) (resp. v € V| N S(Dn)) ¢(t,v) = pt!'H, (v) —
371 gt Dj(v), we have:

3| tv) > 0: g(t(v),v) =0, %—q;(t(v),v) #0. (2.76)
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Besides with E(v) = (t(v))PHy(v) - Zj"il (t(v))¥ D;(v), it results in
E'(z;o) - inf{E(v) . vESN V*(Dm)}, =), 2.77)
E@) = inf{E(v) L0 € VI N S(Dy) } 7 = 1(D). (2.78)
Proposition 2.23. When y,, <p <yjasj=1,...,m—1, then
W0 Vie{l,... n). (2.79)
Proof. 1t is sufficiently (Remark 1.1) to prove that
(i§‘6> holds Vhe (1,...,n} with§=S,nV*(Dy). (2.80)

Letv = (vy,...,v,) € Sy N V*(D,,) with v, = 0. As in Proposition 2.19, it is possible to find
T, € C2(Q) \ {0} such that with v(s) = (s'/7vy, ..., (1~ 8)PTy,...,s'Pv,), it results in

H)(v(s))=1 Vse[0,1], Dy(v(s)) >0 Vs e [sg,1] (0<s9<1),

li dD-( €R =1 -1 lim %D (s)) = - (281)
slﬂnil?% i(v(s)) asj=1,...,.m-1, slﬁrrlg% m(v(s)) = —oo.
O
Proposition 2.24. Whenp <y, <yjasj=1,...,m—1, then
u;>0 Vie{l,...,n}. (2.82)

Proof. It is sufficiently [6] to prove that u;#0foralli € {1,...,n}. Reasoning by
contradiction, let, for example, 71 = 0 and v, #0 such that

f |VD,|Pdx — Xf bohdx < 0. (2.83)
Q Q

Since

t@) >0,  ¢(t(D),2) =0, %—f(t(ﬁ),ﬁ);«ﬁo, (2.84)

there exist an open ball B of W with centre T included in V| and a unique functional #*(v)
belongs to C!(B) such that

t(v) >0, ¢(t*(v),v)=0 VoeB. (2.85)
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Then, the functional

E*(v) = (t'(v))" Hi(v) - i(t*(v))q’D]’(v) Vo € B
j=1

belongs to C! (E), and we have
t(v) =t (v) VYo e BnS(Dy).
Then, for (2.78)
E*(D) = inf{E*(v) cveBn S(Dm)}.
Now, let us remark that with v(s) = ((1 - s)l/Y'"ﬁz, s Dy, s, ..., Ty), it results in

Dy (v(s)) =-1 Vse|[0,1], dsp € [0,1] : v(s) € B Vse [s0,1],
. d . d .
Sh_)rrlg%Hl(v(s)) = +o0o, slirrlygD,-(v(s)) €R asj=1,.... m-1.

Then, since

2 B (0(5)) = (0()) 2 Hi(o(s)) - jf;(t*(v(s)))qfdisDj(v(s)) Vs € [so,11,

we have limg_,1-(d/ds)E*(v(s)) = +oo. Consequently,
d ..
Js1 € [0, 1] : d_sE (v(s)) >0 Vse s, 1],
from which we get the contradiction:

E*(v) <E*(v(s)) < E*(v) Vs € [sy,1].

Proposition 2.25. When p =y = - -+ = ¥, we allow that

>0, >0 Vie{l,... n}.

17

(2.86)

(2.87)

(2.88)

(2.89)

(2.90)

(2.91)

(2.92)

(2.93)

Proof. We reason as in Proposition 2.21, taking into account (2.77) and (2.78) ([1], see proofs

of Theorems 2.2 and 4.2).

O



18 Abstract and Applied Analysis

Application 2.26. Let for each v = (vy,...,v,) € W:

A(v)zp"lzf |VoePdx, Dj(v)z—l‘[f lve|T¢dx asj=1,...,m—-1(m>2),
=17 Q =179

n am/Y n ~
Du(0) = g f S deloel” dx—zf Toloelmdx |,
Q \¢=1 0=17Q

(2.94)

where

1<y<p<qje, gie =i <qm <P, G < <qm-1,
! ;] Fo (2.95)

de,de € L2(Q), de, de > 0.

Let us consider the system:

j=1 2#i

m-1
—div (V" V) = Aibiful”u; - i lue| P dox ) || uy
q;j o

n (@n/7)-1 B (2.96)
+ <Zde|ué|y> dilwi] 7w - dilwi| " u; in Q,
=1

ui=0 on o0Q asi=1,...,n.

Let us introduce the conditions:

30T CQ QN >0, dg’"/y > d; in Q* for some 2 € {1,...,n -1} (= V(D) #0),

(2.97)
di'" <dy (= Du(0,...,0,c,u;) <0 Ve, € R\ {0}). (2.98)

Then (Propositions 2.2, 2.3 and 2.5)
(297) = (with ¢ < X, V2 € {1,...,n} (i14) holds), (2.99)

(2.97) and (2.98) = (with A < A3 V€ € {1,...,n—1} 367 > 0: (irs) holds if A, < A% + &),
(2.100)

(2.98) = (with A < A5 V€ € {1,...,n—1} 38} > 0: (i15) holds if A, € A%, A% +85]).
(2.101)

Since ([1], Theorems 2.2 and 4.2; Remarks 2.3 and 4.4), we get the following proposition.
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Proposition 2.27. Under assumption (2.95) we have:

(i) When (2.97) holds ((2.97) and (2.98) hold, resp.), set Ay, ..., A, asin (2.99) (resp. (2.100))
system (2.96) has at least two weak solutions u® and —u° with ug >0as€=1,...,n U =
709°, 79 = const. > 0,2° € Sy N V*(D,));

(ii) When (2.98) holds, set A1, ..., , asin (2.101) system (2.96) has at least two weak solutions
uand —uwithug >0as€=1,...,n (u=709,7 = const. >0,v € V[ NS(Dy,)).

Consequently, when (2.97) and (2.98) hold, with Ay < X forall € € {1,...,n -1} and
An €]JA3,, Ay, + min{6], 65 }[ system (2.96) has at least four different weak solutions.

We remark that (Proposition A.3, [5]) asi=1,...,n:

W eL*(@Q)NCY(Q), e Ll=(Q)nCH Q). (2.102)

doc

Moreover, since ) (resp. ;) is a weak supersolution of the equation:

m-1
_diV<|Vui|p_2vui> = NibilwilP 2w = Y ajqilui| i - dilug| Py in Q, (2.103)
i1

where a; = [T, [ %) dx (resp. a; = [TesiJo (o) dx), we have [6]
u? >0 if ul#0 [resp. u; > 0 if u; #0]. (2.104)
Proposition 2.28. It results in
w >0 asi=1,...,n, 1z > 0. (2.105)

Proof. Since (2.104), we must show that

W#0 asi=1,...,n, (2.106)

u; #0. (2.107)
About (2.106), it is sufficient (Remark 1.1) to prove that
<i§l6) holds Vh € {1,...,n) with § =S, NV*(Dy). (2.108)
Letv = (v1,...,v,) € Sy N V*(Dy,) with v, =0. Let K C Q be a compact set such that

— Y 1
K|y >0, ¢= gjhderel >0 inK. (2.109)
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From Proposition A.1, there exists ¢ € C5° (), with 0 < ¢ <1, such that
5=p! U [Ve| dx - )th bh(ppdx] >0, J /Y dypP dx > 0. (2.110)
Q Q Q

Then, with v(s) = (s"Pvy,..., (1 -s)/P6VPg,...,s'/Pv,), we have

H)(v(s))=1 Vse[0,1], dsp € [0,1] : Dy(v(s)) >0 Vs € [so,1],

i dD 1 1 y dD (2111)
lim 2-Dj(0(5)) €]-00,0] asj=1,...,m=1,  lim <Dy (u(s)) = -
Let us prove (2.107). We recall that ([1], Theorem 4.2):

E@) = inf{E(v) 10 € VN S(Dy) } 2.112)

where E as in Application 2.22. Reasoning by contradiction, let v; =0. Then, v, #0 for some
0+ ¢and consequently from (2.104) Zeﬂ de(vg)' > 0.

Let ¢ € CP(Q), with 0 < ¢ < 1, such that [, dg’"/y(pqmdx > [q Jg(pqmdx. Let us consider
the function:

g(s,7) = Dy (701, ...,59,...,T0,)

Gn/y
= L <sYd€<pY +77 Y d, (%)Y> dx—s" J‘Qgeqﬂm dox=t 3, ,[ o de(De)™"dx

040 0#¢
Vs>0, Vr>1.
(2.113)

Since

0
g(0,1) =-1, a—‘g(s,‘r) >0 Vs>0, Vr>1, g(0,7)=-1""<-1 Vr>1,

(2.114)
lim g(s,7) =+ V721,
s—+00
we have
Vr>13|s(t) >0 (s(1) =0,s(t) >0 for 7> 1): g(s(7), ) = -1 (2.115)

We note that lim,_,1+s(7) = 0. In fact, if {7,} C]1, +oo[ and lim 7, = 1, being g(s(7), T) =
-1, {s(1,)} is bounded (else (within a subsequence) lim g(s(7y), ;) = +o0). Then (within a
subsequence) lim s(7,) = w with g(w, 1) = 0, from which w = 0.
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We add that s(7) belongs to C!(]1, +oo[), and its derivative has the form:

N N
s'(t) = —Wg(s(‘r)m) V1 > 1 with TIer11+g(s(T),T) € ]-o0,0][. (2.116)

Hence, set v(7) = (1701,...,5(T)@, ..., TU,), it results in

D, (v(t))=-1 Vr>1, lim iHl(U(T)) =pH,(v) <0,
eolndr (2.117)

. d .
TILI?+ED7(U(T)) =0 asj=1,.... m-1

As in Proposition 2.24, we introduce the open ball B with centre o included in V| and the

functionals t*(v) and E*(v) belonging to Cl(ﬁ). Chosen 1 > 1 such that (1) € Bforall T e
[1, 7], we have

m—1

%E*(vm)=<t*<v<7)>>ﬁd%HA<v(T>>—g;(t*(v(T)))"f%Dj(v(T)) vrellml  (2118)

and consequently lim,_,1+(d/d7r)E*(v(t)) < 0. Then, taking into account (2.112), with 7y €
11, 7] such that (d/d7r)E*(v(t)) <0 for all T €]1, 7], we get the contradiction:

E*(@) < E*(v(7)) < E*(@) Vrell,m]. (2.119)
O

Proposition 2.29. Ide”’/Y > Eg as €=1,...,n—1, then
U >0 asé=1,...,n (2.120)
Proof. In fact,

ur>0 asé=1,...,n-1 (Proposition 2.23),

— _ (2.121)
u, =0= D,,(u) > 0.

O
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Application 2.30. Let for each v = (vy,...,v,) € W:

n 1284 n
A) =p! J; <Z|vw|r> dx+HfQ|vUe|Pfdx,
=1

/=

S =

Dj(v) = f pj< |Ug|qjé>dx asj=1,....m-1, (2.122)
Q 2=1

qm=1 n
Du(v) = g, [fg (Zdevé>dx - fg d|vn|qmdx] ,
/=1

n
Zdﬂ)g
/=1

where

n n
I<y<p, pe>1, Dpe=p, gie >1, Dgie=4qj, P<Gm i< <qu<p,
) =1 (2.123)

pi €L*(Q)\ (0}, p;<0,dp,deL®(Q), de(x)#0ae.inQ, d >0.

Letas¢=1,...,n F, e W7 (Q) (p'=p/(p-1)).Let ((Fv)) = 3y 1(Fe,ve) forallve W.
Setn=0asi=1,...,n—1and 7, =1, let us consider the system:

n (p/y)-1
- div< [<Z|Vug|f> Vi + pi <H f |Vug|m> |Vui|"f2] Vui>
= 0#i7Q

m-1
_2 . .l._2
= Aibifusl” ”i+Z‘7iiP1<l [|”f|q’é>|”i|q] Ui (2.124)

j=1 C#i
gm=1

+ d; - mid|u,|*u, + F; in Q,

n
ngug
=1

u;=0 on o0Q asi=1,...,n,
under at least one of the following conditions

QT CQ: Q" >0, de>0 in Q" for some £ € {1,...,n—-1} (= V" (Dy)#0), (2.125)

da|? <d (= Dy(0,...,0,cuu’) <0 ¥eu € R\ {O0}). (2.126)

Evidently, about the validity of (i14) we choose 14, ..., A, as in Application 2.26.

Proposition 2.31 (see [1], Theorem 3.2). Under assumptions (2.123), (2.125) ((2.125) and
(2.126), resp.), if F #0 and ||F||, is sufficiently small, for A1, ..., A, as in (2.99) (resp. (2.100)) system
(2.124) has at least one weak solution 1 (1 = T0, T = const. >0, v € Sy NV*(Dy,)).
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Let us note that

n
u, 20 even if Fj, =0 since (F, =0, u;, =0) = ngﬁg =0= D,,(u) <0. (2.127)
=1
Application 2.32. Let Ay =--- =14, =0, and for each v = (vy,...,v,) € W:

n p/y
Aw) =p! . [Z(wvw + a|vg|y)] dx,
=1

. . (2.128)
D;(v) = q].‘l fQ dj<Z|vg|Yf> dx asj=1,...,m, withm>2,
e=1
under one of the following assumptions:
acel®(Q), a>0, dj e L*(Q)\ {0} withd; <0, dj>0asj>2, (2.129)
1<yj<y<p<@<-<qm<p asj22, y<y<qi<q; '
acel®(Q), a>0, asj=1,...,m d;eL®Q)\ {0}, d;=>0, (2.130)
1<yj<y<p<qi<-<gm<p. '
Set F as in Application 2.30. Let us consider the system:
n (p/y)-1
—div I:Z(|Vug|Y + a|ug|Y)] |V >V
e=1
(p/1)-1 m n (aj/y))-1
=- ue|" + aluy alu;|""u; + i up|” wi|" "u; + F; in Q,
[Z(iv " +al |Y>] o2 Zd1<2| |Y'> il i+ Fyin Q
=1 =1 e=1
u;=0 on 0Q asi=1,...,n.
(2.131)
Let us verify that

(2.129) [resp. (2.130)] = <(i§6> holds Vh € {1,...,n) with §= Sy NV (D», ..., D)

[resp. § = S\ NV (Dy,..., Dy)] ).
(2.132)



24 Abstract and Applied Analysis

Let v = (v1,...,v,) € § with, for example, v; = 0. Let jo € (2,...,m]} (resp. jo €
{1,...,m}) and & € {2,...,m} such that dj v, #0. Let us suppose ¢y = 2 and set v(s) =
(1=9)""0y,5 "0y, 03,...,04). Then,

A((s)) =1 VYse€[0,1],  3spe[0,1[: Dj(v(s)) >0 Vs e [so,1],

im 9 p im’ 4 p . (2.133)
lim —=Djy(v(s)) = -0, lim —=D;(v(s)) < +oo  as j# fo.

Proposition 2.33. Under assumption (2.129) (resp. (2.130)), system (2.131) with F = 0 has at least
two weak solutions u° and —u®, and we haveasi=1,...,n:

u) e L®(Q), u) >0,ul#0. (2.134)
Consequently,

a=0= u? € C}Z’:E(Q), a=0and (2.129) holds with p < y1 [resp. (2.130) holds] = u? > 0.
(2.135)

Proof. The statement is due to ([1], Theorem 2.2, Remark 2.3), [5], Proposition A.3, [6]. O

Proposition 2.34 (see [1], Theorems 3.1, 3.2). Under assumption (2.129) (resp. (2.130)),
system (2.131) with F#0 and ||F||, sufficiently small has at least two different weak solutions
ul and v? (u' = 0, T = const. > 0,v' € V(F)NS), v*> € Sy NV*(Dy,...,Dy) [resp. v* €
SyNV*(Dy,...,Dw)]), and we have u;, #0 even if Fy = 0.

Remark 2.35. 1f Uil {x € Q: dj(x) > 0} [resp. U {x € Q: d;(x) > 0}] = Q (within a set with
measure equal to zero), with the same reasoning used about (2.132), we get that

(i{lé) holds Vhe{l,...,n} with§=V*(F)NS,, (2.136)

hence, u} #0 even if F; =0.

3. Neumann Problems

Let Q C RN be an open, bounded, and connected C*! set. Let | - |y, p and 7 as in Section 2, ¢
the measure on 0Q, v the outward unit normal to 0Q,p = (N -1)p/(N —p) if p < N,p = oo if
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p > N. Let us assume

n n 1/P
W= (Wl"’(Q)> (n>1) with |jv| = <ZI [IVoelP + [vel”] dx> Yo = (vy,...,0,) €W,
0=17Q
By(ve) =p™ f belvgPdx Vv, € W'P(Q), where by € L*(Q) \ {0},
Q
Bo(vp) = p_lf belvelPdo Vv, € WP(Q), where by € L*(3Q) \ {0}.
0Q

(3.1)

We note that for each v, € WP (Q) we set yy(vs) = v, where yy is the trace operator from
WP(Q) into W-(/P)P(3Q). Morever we consider the functionals A (as in (i11)) such that

3E>0: A(v) 2p7'), I |VoePdx Vo e W. (3.2)
0=17Q

It is easy to verify the following.

Proposition 3.1. Let bg,Ee >0as€=1,...,n. Then,

(i13) holds if)tg,//tg <0, Ag+ He <0 as £=1,...,n. (3.3)

LetussetI =1{1,...,n} and foreach I* C I

C'={c=(c1,---,cn) ER":cog=0if £ €I\ TI", cg#0 for some ¢ € I"}. (3.4)

Let us introduce the conditions:
(i31) there exists I* C I : D,,(c) <0 for all ¢ € C*;

(i32) there exist I* C I and my € {1,...,m} : Dy, (c) <0and A(c) =0 for all ¢ € C*.

Proposition 3.2. Let (i31) holds with I* # 1. Let V*(D,,) #(. Let by, by>0aslel \ I*. Then with
Xe, pe < Oand X+ pp <0as € €1\ I* 36* > 0: (irg) holds if |Xg|, |pe| < 6 as € € I*.

Proof. Reasoning by contradiction, for each k € N there exist AK, /‘]e( € [~k k7], with ¢ € I*,
and v* = (Uf,...,vﬁ) € V*(D,,) such that

Cel\I*

_Zp‘l [)JQJ‘ bg'v’g|pdx+‘u’(ff 5g|v’g'pdo]},
Q o)

el

”vk”p > k{A<vk> - Z p‘1 [Ag IQ bg|v’;|pdx + Yo Lg Eg|v’g|pdo]

(3.5)
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then, set w* = ||[ok|| "' v, we have

Dm<wk>>0, pl{Eif |Vw’g|pdx— Z
=179

)LgJ‘ bg|w’e‘|pdx + [/lgf Eg|w§|pdo] }
Cel\I* Q aQ

<kl4 p‘l )LI; by w’g< de +,u’g Bg w’g pdo .
Z Q oQ

el

(3.6)

Since ||w*|| = 1, there exists w € W such that (within a subsequence)

k

w* — w weakly in W, w*

— w strongly in (LP(Q))", w*— w strongly in (L7 (0Q))".

(3.7)

Consequently, from (3.6), passing to limit as k — +oo, we get

Du@)20, 3 [ (Vaorldx=0, 3 [t belweldx e[ behwcdo] =0,
= Ja Q o0

Cel\I*
(3.8)
from which w = 0, and then the contradiction 0 = limy _, .o ||w*|| = 1. O
Proposition 3.3. Let (i31) holds with I* = I. Let V*(D,,) #0. Then,
36* > 0: (i14) holds if |Ag|, |pe| <6* as €=1,...,n. (3.9)

The proof as in Proposition 3.2.
Proposition 3.4. Let (iz;) holds with I* # I. Let [, bedx, [, bedo > 0as € € I*. Then,

Vi n S(Dm,) #0 Y(Ae, pe) ooy with Xg, pe>0V€ €T*, Ao+ pe>0 for some € € I'.
(3.10)

Moreover, if by, Bg >0as eI\ I*, we have

with A¢, pe < 0and X+ pe <0as€ €I\ I" 36* > 0: (i15) holds
if \e, pe € [0,6"] V€ € I* and Ay + pe > 0 for some € € I".

Proof. The first statement is evident. Let us prove the second one. Reasoning by contradiction,
for each k € N there exist A5, p5 € [0,k™1], with € € I* and A5 + 4§ > 0 for some ¢ € I*,and a
sequence (v*M), . such that

(kah)heN C Vi N S(D)) <A’,§ =X, gy =peas £ €1\ I*), sgp”vk’h” =t (3.11)
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Let {hx} C N be a strictly increasing sequence such that |[o*"*|| — +o00 as k — +oo.
-1 —Gm
Let wk = |0k || vkh Then, D,y, (w*) = —||o*"|| ™ and

p‘l {Ei IQ |Vw’(§|pdx - Z [)Lg L} bg|’w’€‘|pdx + Yo fag Eg|w’g'pd0'] }
o=1

et (3.12)
_ P =~ P
<p 12[1’;[ bg|w"§| dx+y’2f bg|w§| da],
oel Q 0Q
moreover, there exists w € W such that (within a subsequence)
wk — w weakly in W, wk —s w strongly in (LF(Q))", (3.13)

wk —s w strongly in (LF(0Q))".

Consequently,

D, (w) =0, Zf |Vw,|Pdx =0, > [)ng be|welf dx + ”‘-’f Bg|’wg|pd0'] =0,
2=17Q eel\I* Q 0Q

(3.14)

then w = 0, and the contradiction 0 = limy _, ;. ||w*|| = 1. O

Proposition 3.5. Let (iz;) holds with I* = I. Let [, bedx, [, bedo >0as€=1,...,n. Then,

V;ﬂﬂS(Dml)aé(/) if ke, pe>0 V€ €I and Ap+pe>0 for some € €1,

3.15
36" > 0: (i15) holds  if A¢, e € [0,6%] VY€ el and Ao+ pe >0 for some € € 1. ( )

The proof as in Proposition 3.4.

Remark 3.6. It is suitable to make some clarifications.

(i) The assumption ”bz,Bg > (0" (see Propositions 3.1, 3.2, and 3.4) can be replaced by
“be, by do not change sign.” In this case we can choose A¢ and p¢ such that Asb, <
0, pebe <0 and |Ag| + |pe| > 0.
(ii) The assumption ”fQ bedx, faQ bedo > 0” (see Propositions 3.4 and 3.5) can be
replaced by ”fQ bedx, fag Eng' #0”. In this case, we can choose A, and p, such that
Ae [ bedx, pe [o, bedo > 0 and |Ae|+|pe| > O for some ¢, with |Ag|, |pe| < 6* instead
of )Lg,‘l/lg € [O, 6*]
(iii) When for each ¢ € {1,...,n} by, Bg do not change sign, then the conclusion of the

Proposition 3.2 [resp. Proposition 3.3] holds even if Asby, [lng < 0and [Ae|+|pe] > 6*
asé €I* (resp.as€=1,...,n).

In order to simplify the presentation of the applications, we suppose in the next
by € L*(Q) \ {0} and b, € L*(0Q) \ {0}, while the additional assumptions on by, b, and



28 Abstract and Applied Analysis

the assumptions on fQ bedx, fag EedO‘ (the same of Propositions 3.1, 3.2, 3.4, and 3.5) will be
pointed out case by case.

Passing to the applications (with n > 1), we recall that in [3] Pohozaev and Véron in

the case n = 1 have studied the Neumann problem:

- div<|Vu|”‘2Vu> = Ab(x)|ulP?u + c(x)|ulu + a(x)|u"u  in Q,
(3.16)
|Vu|P-2Z—;‘ = k(x)[u|u on 0Q.

The existence theorems proved by these authors can be got by using some results of ([1],
Theorems 2.1,2.2, 4.1, and 4.2; Remarks 2.1, 2.3, 4.1, and 4.4), Propositions 3.3 and 3.5.

Application 3.7. Let for each v = (vy,...,v,) € W:

n n quly n
A@)=p?Y f VoiPdx, Do) =g f Sdifoel ) do-S  deloetdo |,
0=17Q 0Q \¢=1 £=170Q

(3.17)
where
1<y<qi<p, qi #p, de,ds € L®(0Q), dg,de>0. (3.18)
Let us consider the system:
- div<|Vu,-|p_2Vui> = \bi|wlP 2w in Q,
ou R n (q1/7)-1
Vil = = pbilul” i + <£§_1;de|uw> il u; (3.19)

—dilui|"*u; on 0Qasi=1,...,n.

Let us introduce the conditions:

n q/y - ) o i
fag <Zlde> do < jasz ddo <d = m1n{d1,. ..,dn}>, (3.20)

/=
n quly no
IrcoQ: o) >0, <ng> >>d, onT, (3.21)
=1 £=1
I bedx >0, EedO‘ >0 as¥f=1,...,n. (3.22)
Q aQ
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Evidently (3.20) = Di(c) < Oforallc € R" )\ {0}. Moreover (3.21) = V*(D;)#0
(Proposition A.2). Hence (Propositions 3.3 and 3.5)

(3.20) and (3.21)

N ) ) (3.23)
= (367 > 0: (i14) holds if A,

pe| <81V E(L,... n}),

(3.20) and (3.22)
= (365 > 0 (i15) holds if Ag, ue € [0, 63] V€ € {1,...,n}, X¢+ pe > 0 for some £).
(3.24)

Proposition 3.8 (see ([1], Theorems 2.1 and 4.1; Remarks 2.1 and 4.1); Proposition A 4; [5, 6]).
Under assumption (3.18), we have:

(i) When (3.20) and (3.21) hold, with A¢, pe as in (3.23) system (3.19) has at least two weak
solutions u® and —u° (u° = t%0°, 70 = const. > 0, v° € Sy, NV*(Dy)), and it results in

W eL®(QNC, N (Q), w>0asi=1,...,n, u0>0iful£0; (3.25)

foc

(ii) When (3.20) and (3.22) hold, with A¢, pe as in (3.24) system (3.19) has at least two weak
solutions uand —u (u =7o, T=const. >0, v € VA‘” N S(Dy)), and it results in

e L*(QNCA(Q), w>20asi=1,...,n u>0if u; 0. (3.26)

Consequently, when (3.20)—(3.22) hold, with Ay, pe as in (3.24) and min{6], 65} instead of 6} system
(3.19) has at least four different weak solutions.

Proposition 3.9. Ify <p < qi, thenu! >0asi=1,...n.

Proof. 1t is sufficient (Remark 1.1) to verify that

(i’;ﬁ) holds as h=1,...,n with § = Sy, N V*(D). (3.27)

Let v = (vy,...,vs) € V*(D1) N Sy, Let, for example, v; = 0. Since
Joo (Ze s delve|)™ Y do > 0, there exists T* C 9Q such that

o) >0,  Dldelvel" >0 onI* (3.28)
2#1 ' .

Let K C Q a compact set and Q' an open set such that

Ky >0, KCQ, Q cQ. (3.29)
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Since Propositions A.1 and A.2, there exist a compact set [* C I'*, with o(T*) > 0, and
(#16) 0<eccyr (P26)0cece, € CZ(RN) such that
0<¢1: <1, supp g1 CQ, 91 — y strongly in L°(Q)
f |[Vgie|’dx — +o0  as e — 07 Vs € [1, +oo,
; N\ O - (3.30)
0<@ <1, supp ¢ CR"\ Q1 ¢, — ¥ strongly in L°(0Q),

I @.dx —0 ase— 0" Vs e [1,+o0],
Q

where x (resp. ) is the characteristic function of K (resp. T'*). Let us choose ¢ such that

s=p" U | Ve | dx — 1y f bigldx — py f I;1¢§do] >0,
o Q 00

@/ (331)
j > delvel” dipldo >0 (e = @1c +¢ac),
0Q \ ¢#1
and we set v(s) = ((1 - 5)1/;76_1/,0%, s'/Pv,,...,sYPv,). Then,
Hy(v(s)) =1 Vse[0,1], dsp € [0,1] : D1(v(s)) >0 Vs € [sp, 1],
d (3.32)
lim — D1 (v(s)) = —oo.
s—1-ds
O
Proposition 3.10. If
'V <dy ase=1,...,n, (3.33)
Ae+pe>0 asl=1,...,n, (3.34)
thenu; >0asi=1,...,n.
Proof. We recall that ([1], Theorem 4.1)
H,,(3) = inf{HMl (v): veVy,NS(Dy) } (3.35)
Reasoning by contradiction let, for example, 77 = 0. As ¢; = const. > 0 and
g(s, ) = Dy(sc1,T02,...,T0,) = q;l o (dlec¥ +7V Yo dg(ig)y)ql\rdo - s‘7lc;71 IS dido -
W Jso de(Te)"do] for all s,7 > 0, we have g(0,7) = -7 > -1 for all 7 €]0,1[ and

since (3.33) lim,_, 4,g(s,T) = —oo for all 7 > 0. Then for all T €]0, 1], it is possible to choose
s(T) > 0 such that g(s(7), T) = 1. Let us add that there exist sy > 0 and 7 €]0, 1[ such that
(0g/0s)(s, ) >0 for all (s,7) €]0,so[x] 70, 1.
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Let now {7,} C]7o,1[ and lim 7,, = 1. Since g(s(7,), 7)) = -1, {s(74)} is necessarily
bounded. Then (within a subsequence) lim s(7,) = w > sp. Consequently, from the
inequality:

H,,(v) < Hy,(v(tn)), where v(ty,) = (s(Tu)c1, Tn02, ..., TaUn) € Vi N S(D»), (3.36)

asn — +oo and from (3.34), we get the contradiction:
Hy,(9) < —p~lwbcl <)q J' bidx + py f Eldo> + Hy,(9) < Hy(0). (3.37)
Q oQ

Remark 3.11. Let us note that the conditions (3.20), (3.21), and (3.33) are compatible.

Application 3.12. Let for each v = (vy,...,v,) € W:

n-1 p/y
A) =p! [ZJ |VoelPdx + f <|an|7 + f |v,,|Ydo> dx],
0=17Q Q oQ

n-1
Di(o) = it [z [ peo ol 0 o 3,
0=17Q

n
=17 0Q

(3.38)
Jelvelqldo] ,

where

l<y<p, 1<q<p, q #p, pe€ L2(Q), pe>0, dy € L®(OQ), do >0.
(3.39)

Let us consider the system:
- div(|Vui|”_2Vui) = \ibi|ui P *u; + pilui + "' inQasi=1,...,n-1,

(p/y)-1 n-1
—div [<|Vun|Y + f |un|Ydo> |Vu,,|Y-2Vun] = nbulttnl’ 1y + > pelue + u,| " in Q,
0Q =1

_, OU; ~ _ ~ _ .
|Vul? za—vl = wibi|lwiP?u; — dijuwi|" *u; on 9Qasi=1,...,n-1,
(p/y)-1 ou
(19l [ o) a2
90 av

N 5 (p/y)-1 )
= jaBalttnl? 2 f (|Vun|Y+f |un|Ydo) de | funl 2t
Q 0Q

—&n|un|‘“_2un on 0Q.
(3.40)
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Pointing out that V*(D;) # 0, we advance the conditions

J‘Q (gpe> dx < fag ddo <J= min{&l,...,JnD, (3.41)

f bedx > 0, bedo>0 asé=1,...,n-1, (3.42)
Q oQ

by>0, b,>0. (3.43)
Taking into account that
(3.41) = D1(c1,...,¢n1,0) <0 Y(ci,...,cno1) € R\ {0}, (3.44)

we have (Propositions 3.2 and 3.4)

(3.41) and (3.43)
= (with Ay, ptn <0, Ay + py <0 367 > 0 (in4) holds if [Ag|, |pe| <67 as €=1,...,n-1),

(3.45)

(3.41)-(3.43)
= (with M pn €0, Ay + p, <0365 > 0 : (i15) holds (3.46)

if A, pe € [0,65] as €=1,...,n—1and A¢ + pe > 0 for some ¢).

Proposition 3.13 (see ([1], Theorems 2.1 and 4.1; Remark 2.1); Proposition A.4; [5, 6]). Under
assumption (3.39), we have

(i) When (3.41) and (3.43) hold, with A, pe as in (3.45) system (3.40) has at least one weak

solution u® (u® = t90°, 0 = const. >0, v° € Sy, NV*(Dy)), and it results in

0 o La? 0 :_ _
W el*(Q)nC, (Q), u>0asi=1,...,n-1, (3.47)
W e L*(Q), u® >0, ud=0;

(ii) When (3.41)—(3.43) hold, with A, pe as in (3.46) system (3.40) has at least one weak
solution u (u = 7o, T = const. > 0, v € V)l‘# N S(Dy)), and it results in u; #0 as
i=1,...,n

Consequently, when (3.41)—(3.43) hold, with A¢, pe as in (3.46) and min{67, 63} instead of

05 system (3.40) has at least two different weak solutions.

About the properties of 1) and ; expressed by Proposition 3.13, it is necessary to
remark that if u = (u1,...,u,) is a nontrivial weak solution to system (3.40), then u; #0 as
i=1,...,n Infact,

u,=0=u;=0 asi=1,...,n-1, u;=0 forsomeie{l,...,n-1} = u,=0.
(3.48)
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Application 3.14. Let n =2 and for any v = (v1,v2) € W:

2 2 49i/vj
A(v) = p_lzf |Voe|Pdx,  Dj(v) = q;lf pi|Ddjelvel|  dx asj=1,...,m-1,
¢=179Q Q  [e=1
> Gm/Ym
Dy(v) = %1 Pm <Z|ve|”"> do,
0Q o=1
(3.49)
where
1<y]~<q]~ asj =1,...,m, P<qi<-<gm<p, ijLm(Q), pj<0, (3.50)
die € L*(Q)\ {0},  pme€ L*(0Q). '
Let us consider the system:
—diV(quilp_2Vui> = NibilwiP2u;
m-1 |2 @i/)-2 s o
+ 3 pi| D djeluel” <Zd]-g|ug|w>d,-,-|ui|w-2ui in Q,
=1 |e=1 o=1
ou 2 (gm/ym)-1
-2 0U; = -2 m =2 .
|Vu;|? Fe uibiluiP“u; + pm <;|ug|y > |u;"™ “u; on 0Q asi=1,2.
(3.51)
Let us introduce the conditions:
pi#0 (= V*(D,,) #0 (Proposition A.2)), (3.52)
pmdo <0 (:> Di(ci,¢2) <0 Y(cr, ) € R2\ {0}), (3.53)
oQ
f bedx > 0, bedo >0 as€=1,2, (3.54)
Q oQ
we have (Propositions 3.3 and 3.5)
(3.52) and (3.53) = (367 > 0 : (i14) holds if |[A¢|, |pe| < 65 as €=1,2), (3.55)
(3.53) and (3.54)
= (365 > 0: (i15) holds if ¢, e € [0, 65] as €=1,2, Ay + pe > 0 for some £).
(3.56)

Proposition 3.15 (see ([1], Theorems 2.2 and 4.2; Remarks 2.3 and 4.4); Proposition A.4; [5]).
Under assumption (3.50), we have
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(i) When (3.52) and (3.53) hold, with A¢, pe as in (3.55) system (3.51) has at least two weak
solutions u® and —u® (u° = %%, 7° = const. > 0, v° € Sy, N V*(Dy,)), and it results
in

1,a?
doc

Wel®(QNnC,(Q), w>0 asi=12 (3.57)

(ii) When (3.53) and (3.54) hold, with A¢, pe as in (3.56) system (3.51) has at least two weak
solutions uand —u (u =7o, T =const. >0, v € V)L‘# N S(Dyy,)), and it results in

% el®(Q)NCY(Q), >0 asi=1,2. (3.58)

doc
Consequently, when (3.52)~(3.54) hold, with A, pe as in (3.56), and min{67, 65} instead of
65 system (3.51) has at least four different weak solutions.
Proposition 3.16. Under the assumption p <2yjand djy -djp <0asj=1,...,m—1, we have

(i) if yj, < p for some jo € {1,...,m}, then u) >0asi=1,2;

(i) if yj, < ym < pforsome jo € {1,...,m—1},thenu; >0asi=1,2.

Proof. First of all 1) is a weak supersolution to the equation:

m-1 ) (g /7i)-2
- diV<|Vui|P_2Vui> = )Libi|ui|p_2ui + ijidjl <u(1)>Y] + d]'z <ug>n | o d]zi|ul~|2”_2ui in Q.
=1
(3.59)
Also, u; has a similar property. Then [6] it is sufficient to verify that
u? #£0, (3.60)
u; 0. (3.61)
About (3.60), let us prove (Remark 1.1) that
(i’;6) holds as h=1,2 with § = Sy, N V*(Dy,). (3.62)

Let v = (v1,v2) € VT (Din) N Sy Let, for example, v = 0. Let

K € Q a compact set: |K|y >0, 7,#£0in K,
Q anopenset: KCQ, QCQ, (3.63)
rcoQ:o(')>0, pmlva] >0 on I.
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Since Propositions A.1 and A.2, there exists ¢ € CP(RN), with 0 < ¢ < 1 and supp ¢ C
Q' U (RN \ Q), such that

f pj|d]~2|vz|”|(qj/rj)_zlszlYf(p”djldjz dx>0 asj=1,....m-1, f pml|va| " Vi do > 0,
Q 80

§=p U |Ve| dx - )q’[ bipPdx —ylf bipPdo| > 0.
Q o 00
(3.64)
Then with v(s) = ((1 - 5)/P67V7¢, s'/Pv,), we have
Hy(0(s) =1 Vse[0,1], 3so€[0,1[: Dy(v(s)) >0 Vs € [so,1],
(3.65)

. d . d .
sllrrll_d—sDj[](v(s))——w, s11ﬁr111_d—sDj(v(s))<+oo as j # jo-

Passing to (3.61), let us introduce the function ¢ (t,v) = pt”’lH)L,l (v) - Z}":l qjt‘?f’lD]- (v), and
let us remember that ([1], Theorem 4.2)

Yov e V)L’H NS(Dy,)3 | t(v) >0: ¢(t(v),v) =0,

E@ﬂ=hﬁ{§&0:ve\ﬁpmsa%ﬂ}, (3.66)

where E(v) = (£(v))"Hyu(0) - > (H(v))"Dj(v).
Reasoning by contradiction, let us set, for example, v,
(1= s)""5,, s1/7n75,). Since

0 and set v(s) =

Dy, (v(s)) =-1 Vse|[0,1], dso € [0,1[: Hyu(v(s)) <0 Vs € [so,1],

tim LD, (o)) = -0, lim SDj(0(s)) < +o0 as € (Lom-T\ o),
Jim ~=Dj,(v(s)) = ~o0,  lim —=D;(v(s o asj yee.,m jo},
as in Proposition 2.24, we get the contradiction:
E®@) < E(v(s)) <E(®@) Vse [s1,1] (so < s1<1). (3.68)
O
Application 3.17. Let n > 2 and set for each v = (vy,...,v,) € W:
A =p Y. [ Vo,
0=17Q
L , @i/ .
D;(v) =q,~1ZfQPj|dﬁ|vf|Y’ +djelvg"|"Vdx asj=1,...,n, (3.69)
=1

4

n qn+1 /Yn+1
Dyn(v) = q;il f Pn+1 <Z|Ue|y"”> do,
aQ

/=1
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where

1<yj<gqj asj =1,...,n+1, P<qi1 < <qna1<p, pi € L*(Q), p;<0,
dje € L*(Q)\ {0},  pui1 € L*(0Q).
(3.70)

Let us consider the system:

1 - - i 11(qi/vi)-2 i i i~
— div(IVuil Vi) = AibilaalP s + 3 i i+ el ™| 772 (difas -+ il ) il

e#i
) @i /y)-2 ' ‘ . .
+ il + djlaa |0 (s oy |7+ o) o in @2,
j#i
au. n (Qn+l/Yn+l)_1
|Vui|p_za—vl = pibiluilP 2 ui + pua <é|uely"”> | 2u; on dQasi=1,...,n.
(3.71)

Let us make the assumptions:

prig 20, f pri1do <0, f bedx > 0, bedo>0 asé=1,...,n (3.72)

00 Q o0

About Neumann’s problem (3.71), we have an existence result similar to the one of
Proposition 3.15 related to system (3.51). About the positive sign of the components of the
weak solutions #° and % to system (3.71), as in Proposition 3.16, we show.

Proposition 3.18. Under the assumptionp <2yjasj=1,...,nandd;jj-djp <0asj, €€ {1,...,n}
with € # j, we have

(i) if either yus1 < pory; < pforallj € {1,...,n}\ {jo} for some jo, then u? > 0 as
i=1,...,n

() if yj <yn1 <p forallje(1,...,n}\ {jo} for some jo, thenu; >0asi=1,...,n
The following remark deals also with Application 3.14.

Remark 3.19. Making in (3.50) (resp. (3.70)) the change
1< <gm<p [resp.q1<--+<quna<p], (3.73)

system (3.51) (resp. (3.71)) has at least the two weak solutions u and —u ([1], Theorem
4.2; Remark 4.4). The components of u keep the properties that Propositions 3.15 and 3.16
(Proposition 3.15 and Proposition 3.18 resp.) underline.
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Application 3.20. Let for each v = (vy,...,v,) € W:

A(v) = pflzj‘ [Voel|Pdx,
=17 Q

Dj(v) = q;' fagpj|dj1|vj|Yf +d]-2|vn|Yf|qj/de0 asj=1,...,n-1,

j
D,(v) = ( f |vn|?"do> <f pn|v,,|Yndx>,
Q Q
where
1<yj<gj<p asj =1,...,n-1, 1<y, <p, 1<y, <p,

P<qi < <qn1<qn="Yn+YVn
pi €L®(Q), p; <0, dpn,dpe L@OQ)\ {0}, p.e L=(Q).

Let us consider the system:

—div<|Vui|”’2Vui> = LbiuwP? inQasi=1,...,n-1,

—div(IVun V) = duby i1, +yn<j Iunl?"d0>pnlun|“‘2un in Q,
0Q

-2 0t b B i i 1(qi/v)-2
[V Za—vl = pibiluilP 2w + pi| din [ua]" + di2|un|”|(‘7 0
x (di|wi]" + diolun|" ) dir |wi]"u;  on 0Qasi=1,...,n-1,
Zaun

n-1
pnbnln "1 + > pj|djr |uj|” + djlu]V |ar/0-2
=

x (di w7 + diplunl") djo |1t | 1

+ ¥n <L2 Pnlttn|™ dx) |un|?"_2u,1 on 0Q.

|V, |~

v

Let us introduce the conditions:

pr#0 (= V*(Dy) #0 (Propositions A.1 and A.2)),
fpndx<0 (= D,(0,....,0,c,) <0 Vc, € R"\ {0}),
Q

be>0, be>0 as€=1,...,n-1,

f b,dx >0, b,do > 0.
Q 0Q

37

(3.74)

(3.75)

(3.76)

(3.77)
(3.78)
(3.79)

(3.80)
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We have (Propositions 3.2 and 3.4)

(3.77)~(3.79)
= (with Ag, ¢ <0, dg+pe<0as€=1,...,n-136;>0: (3.81)
(i14) holds if |A,|, |pua| < 67),

(3.78)~(3.80)
= (with Mg, e <0, le+pe<0asé=1,...,.n-1 (3.82)
365 > 0: (i15) holds if Ay, s € [0,65] and A, + py > 0).

Proposition 3.21 (see ([1], Theorems 2.2 and 4.2; Remarks 2.3 and 4.4); Proposition A.4; [5,
6]). Under assumption (3.75), we have

(i) When (3.77)—(3.79) hold, with ¢, pe as in (3.81), system (3.76) has at least two weak
solutions u® and —u® (u® = t9°, 70 = const. > 0, v° € Sy, NV*(D,)), and it results in
W >0 (i=1,...,n),ud#0.Ify, <p, then

1,17(?

W e L*(Q)NC,(Q) (i=1,...,n),

(3.83)
W£0=u)>0 (i=1,...,n-1);

(ii) When (3.78)—(3.80) hold, with ¢, pe as in (3.82), system (3.76) has at least two weak
solutions u and —u (u = 7o, T = const. > 0, U € V;ﬂ N S(Dy,)), and it results in
ui20(@G=1,...,n), u, #Z0. If y, <p, then

e L?(Q)NC,HNQ) (i=1,...,n),
¢ (3.84)
ﬂi$0$ﬁi>0 (i=1,...,n—1).

Consequently, when (3.77)—(3.80) hold, with Ae, e as in (3.82), and min{6;, 63} instead of 65 system
(3.76) has at least four different weak solutions. Obviously, u > 0 and u, > 0 if p <y, < P.

The following proposition gives a sufficient condition to

W>0 asi=1,...,.n-1, (3.85)

u; >0 asi=1,...,n-1. (3.86)

Proposition 3.22. Lety, <p.Ifyj<panddj -djp <0asj=1,...,n~-1, then (3.85) and (3.86)
hold.

Proof. Since

(V1,...,0) €V (D,) = (AL C8Q: 6(T) >0, v >0 on T), (3.87)
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using Propositions A.1 and A.2, we can verify that
(if) holds as h=1,...,n =1 with § = S, N V*(D,), (3.88)

from which (Remark 1.1) we get (3.85).
Let us prove (3.86). Reasoning by contradiction, let us set, for example, v; = 0. If

v(s) = ((1- s)l/”ﬁn,ﬁz, ...,Un), we have

D,(v(s)) =-1 Vse]0,1], dsp € [0,1[ : Hyu(v(s)) <0 Vs € [sg, 1],

. d (3.89)
shﬁn}i%Dﬁv(s)) = —00.
Then as in Proposition 3.16, we get a contradiction. O

Remark 3.23. Making in (3.75) the change:

1<yj<gqgj asj=1,...,n-1, 1<y, 1<, GI< < Gn=Yn+Tn <P,
(3.90)

system (3.76) has at least the two weak solutions u and —u ([1], Theorem 4.2; Remark 4.4).
The components of #, all bounded, are locally Holderian with their first derivatives. If d;; -
dip<0asj=1,...,n-1,then (3.86) holds.

Application 3.24. Let for each v = (vy,...,v,) € W:

n p/y
A@ =p 3 [ (1veel+ [ fodrax) " ax
=17 Q Q
qm /Y

n aj/y n
Dj(v) = q;l fagz <§|v4|y> do asj=1,....m-1, Dy(v) =g, IQ <§|Ug|y> dx,

(3.91)

where

l<y<qi < - <qm<p. (3.92)
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Let us consider the system:

(p/y)-1
—div <|Vui|Y+ I |ui|de> |V 2V
Q

(p/y)-1
= Aibjfui|’ 2 u; - f (IVuiIY+f Iui|de> dx Y|l 2u;
Q Q

n (qm/Y)_l
+ ue|” w|"u; in Q,
<€Z_;| el > ] u (393)
(p/v)-1 )
(1w [ prax) " w2 ge
o ov

R m-1/ n (q;/7)-1
= yibi|ui|p_2ui + Z <Z|ug|”> lui"2u; on 0Qasi=1,...n.
=1 \e=1

We advance the condition:
be>0, by>0 asé=1,...n, (3.94)
and we note that (Proposition 3.1)

(3.94) = ((i13) holds if X, pe <0, g +pe <0 as€=1,...,n). (3.95)

Proposition 3.25. Under conditions (3.92) and (3.94), with A¢, pe as in (3.95), system (3.93) has
at least two weak solutions u° and —u® (1° = 99°, ° = const. >0, v° € S*(Dy,...,D,,)), and it
results in

wWel®Q), >0, w#0 asi=1,...,n (3.96)
Proof. We recall that ([1], Section 2), set ¢ (t,v) = pt?'Hy,(v) - 37, q;t97' Dj(v), we have

Yo e V(Dy,...,Dp) | t(v) >0: ¢(t(v),v) =0,

. (3.97)
the functional t(v) is C* in V*(Dy,...,Dy,).

We introduce the functional E(v) = (t(v))’Hy(v) - Z]-"il (t(v))"D;(v) which is C' in
V*(Dy,...,D,,). We still remember that ([1], Theorem 2.3; Remark 2.5)

30° € S*(Dy,...,Dy), with v? >0asi=1,...,n, such that
E(v()) = inf{]?(v) :v€ S (Dy,...,Dy) }, (3.98)

u’ = t<00>vo is a weak solution to system (3.93).
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The property u! € L*(Q) is due to Proposition A.4. Let us verify that u?#0 as i

i
1,...,n. Reasoning by contradiction, let us set, for example, v? = 0 and vgio. As v(s) =

((1- s)l/ng, s'/7d), oY,...,00), we have

> Dj(v(s)) =1 Vse[0,1], [%Hkﬂ(v(s))
j=1

> 0. (3.99)

s=1

Then, since (d/ds)E(v(s)) = (t(v(s)))’(d/ds)Hy,(v(s)), there exists sy € [0,1[ such that
(d/ds)E(v(s)) > 0 for all s € [sp, 1], from which the contradiction:

E(UO) < E(o(s)) < E(vo), Vs € [so, 1[. (3.100)
]
Application 3.26. Let for each v = (vy,...,v,) € W:
n n qi
A(v) = p‘lzf |[Vo,|Pdx, D (v) = q{lj p ngvg dx,
1o @ lest (3.101)

(o) o)

where
l<y<p, 1<y<p, l<q<min{p,q=y+7}

p<gs, pde€L®(Q)\ {0}, p<O0, pde20 (3.102)
as some £,dy € L*(Q)\ {0}, d¢>0, peL®(@Q)\{0}, dg=const >0.

Letas€=1,...,n Fo = fo + fo, where f, € LP (Q) (p' = p/(p-1)) and f, € (W-/PP(6Q))"
(dual space of W=(/P?(5Q)). Let ((F,v)) = 3,_(Fe,ve) forall v = (vy,...,v,) € W. Let

us consider the system:
n qi-2 n
Zdeue <ngug>di
e=1 =1

N y< f . ﬁ[z&ew] do> dilui]Pui + fi in Q,

/=1

- diV<|Vu,-|p_2Vui> = )Lib,-|ui|’”_2u,- + P

(3.103)
aui

v

= yi5i|ui|p_2ui + ?<'[ [Zﬁdudy] dx>ﬁc?i|ui|’7_2ui + ﬁ on 0Qasi=1,...,n.

Qf ¢=1

|V [P
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Let us introduce the conditions:

(p)"#0 (= V*(D,)#0 (Proposition A.1 and A.2)),

R (3.104)
f pdo <0 (= Dy(c) <0VceR"\ {0}),
8Q
and let us note that (Proposition 3.3)
(3.104) = (36* > 0: (i14) holds if [Ag|, |pe| < 6" as €=1,...,n). (3.105)

Proposition 3.27. Under assumptions (3.102) and (3.104), if F#0 and ||F||, is sufficiently small,
then with Ag, pe as in (3.105), system (3.103) has at least one weak solution ti (it = Tv, T = const. >
0,7€ Sy, NV*(Dy)). When y < p < q, it results in

1y #0 even if F, =0. (3.106)

Proof. The existence of # is due to ([1], Theorem 3.2). About (3.106), it is sufficiently
(Remark 1.1) to verify that

(igg) holds as h=1,...,n with § = Sy, N V*(Dy). (3.107)

Letv = (vy,...,v,) € VI(D2) N Sy, with, for example, v; = 0. Let ¢ = Zgﬂ devg. Let K C Q
be a compact set having positive measure such that

gl >0in Kif pdigg =0, either pdig >0 in K or pdig <0 in K if pdig#0. (3.108)

Proposition A.1 lets us choose ¢ € C*(RN) satisfying the following conditions:

5=p* UQ |Vl dx -\ J‘Q b1|(p|pdx] >0, J-Q dyg'dx >0 if pdyg =0,

(3.109)
f pdy || g dx > 0 if pdig 0.
Q
Then with v(s) = (1 - s)"/P67VP¢, s'/Pv,,...,sPv,), we have
Hy(v(s)) =1 Vse[0,1], Dy(v(s)) >0 Vs e [so,1] (0<sy<1),
. d . d . _
SILII‘?’%Dl (v(s)) € R, shﬂrrlli%Dz(v(s)) =-oo if pdigp=0, (3.110)

. d . d .
slin},%Dl(v(s)) = -0, Shﬁrrlli%Dz(v(s)) € R if pdip#0.

Now we replace conditions (3.104) with the following:

p>0, bp>0, by>0 asé=1,...,n (3.111)
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O

Proposition 3.28. Under assumptions (3.102) and (3.111), if F#0 and ||F||, is sufficiently small,
then with Ag, pe < 0and X + pe <0as € =1,...,n system (3.103) has at least two different weak
solution u' and u* (u' = 10!, 7' = const. > 0,0' € Sy, NV*(F),v* € Sy, NV*(Dy)). When
y <p < qu, it results in

u; #0 even if F, =0. (3.112)

Proof. The existence of u!' and u? is due to ([1], Theorems 3.1, 3.2, and 3.3; Remark 3.1).
Relation (3.112) is proved as in Proposition 3.27. O

Appendix

In this appendix, we present some results used previously. The first one is trivial. The second
one is easy to prove. It is possible to show the third one and the fourth one with the technique
developed by Drabek in ([7, Lemma 3.2]). The symbols o, p, and p are the same introduced
in Section 3.

Proposition A.1. Let Q be an open set of RN. Let K C Q be a compact set with |K|y > 0. If Q' is an
open set such that K C Q' C Q, then there exists a family of functions (¢e)o.,.,., € C§(€2) such that
0<¢: <1, supp 9 CQ, . —> y strongly in L°(Q),

Al
f |Vge|'dx — +o0 as e — 0" Vs € [1,+oo], (A1)
Q

where  is the characteristic function of K.

Proposition A.2. Let Q C RN be an open, bounded, connected and C%' set. Let U be an open
neighborhood of 0Q. If I is a subset of 02 with o(T') > 0, then there exist a compact set I' C T with
o(I') > 0 and a family of functions (. C CZ(RN) such that

)0<s<eo =

0<¢9: <1, supp.CU, . — ¥ strongly in L*(0Q2),

A2
pidx —0 ase— 0" Vse[l +ool, (A-2)
RN

where X is the characteristic function of T.

Let Q C RN be an open, bounded, connected and C%!' set. Let as i =
1,...,n Ai(x,¢, 111, ..., ") be a Caratheodory function into RN defined for x € Q, for ¢ € R"
and for (%,...,7") € (RN)" such that

A(x gt ") ' c0|11i|p, (A.3)

where 1 < p < +o0, ¢y = const. > 0.
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Proposition A.3. Let (ui,...,u,) € (WS””(Q))n with u; > 0. If there exist r € |p,p[ and g €
L/ =P)(Q) with ¢ > 0 such that

n n p-1 n
ZI Ai(x,u1, ..., uy, Vg, ..., Viuy,) -Vvidxsj g<Z ul) <Z vi>dx
i=1 7/ Q Q \i=1 i=1 (A4)

1p © n
V(v1,...,00) € (WO Q)nL (Q)) with v; > 0,

thenu; € L*(Q)asi=1,...n.

Proposition A.4. Let (uy,...,u,) € (WL’”(Q))" with u; > 0. If there exist r €lp,p[, g €
L=P)(Q) with ¢ >0, g € L™/ P (0Q) with § > 0 such that

n
Zj Ai(x,ur, ..., Uy, Vu,..., Vi) - Vodx
i=1 7 Q

n p-1 n n p-1 n
. A5
fos(reSn) (Be)ac o5 3m) (S

(o, o0) € (WP(@)n L°°(Q)>" with v; > 0,

thenu; € L*(Q)asi=1,...,n.

Remark A.5. 1f g = 0, we can suppose r €]p, p|.
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