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We study the solvability of Dirichlet and Neumann problems for different classes of nonlinear
elliptic systems depending on parameters and with nonmonotone operators, using existence
theorems related to a general system of variational equations in a reflexive Banach space. We also
point out some regularity properties and the sign of the found solutions components. We often
prove the existence of at least two different solutions with positive components.

1. Introduction

In this paper, we present some significant applications of the results got in [1] to Dirichlet
problems (Section 2) of the type:

− div(Ai(x, u1, . . . , un,∇u1, . . . ,∇un))
= λibi|ui|p−2ui + di(x, u1, . . . , un,∇u1, . . . ,∇un) + fi in Ω,

ui = 0 on ∂Ω as i = 1, . . . , n,

(1.1)

and to Neumann problems (Section 3) of the type:

− div(Ai(x, u1, . . . , un,∇u1, . . . ,∇un))

= λibi|ui|p−2ui + di(x, u1, . . . , un,∇u1, . . . ,∇un) + fi in Ω,
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Ai(x, u1, . . . , un,∇u1, . . . ,∇un) · ν

= μîbi|ui|p−2ui + ̂di(x, u1, . . . , un,∇u1, . . . ,∇un) + ̂fi on ∂Ω as i = 1, . . . , n,

(1.2)

where n ≥ 1, λi, μi are real parameters,Ω is a bounded connected open set of RN with regular
boundary ∂Ω, and ν is the outward orthogonal unitary vector to ∂Ω.

The study deals with the solvability of the problems, the existence ofmultiple solutions
with all the components not identically equal to zero and, in the homogeneous case, the
existence of solutions with positive components, bounded and locally Hölderian with their
first derivatives. It is suitable to recall the problem studied in [1] with some notations and
hypotheses.

Let W1, . . . ,Wn real reflexive Banach spaces (n ≥ 1). Let W be the product space
Xn
�=1W� . Let ‖ · ‖ be the norm on W , ‖ · ‖∗ the norm on W∗ (dual space of W), and

〈·, ·〉� (resp. 〈〈·, ·〉〉) the duality between W∗
� (dual space of W�) and W� (resp. W∗ and W).

Let us denote by “∂” Fréchet differential operator and by “∂u�” Fréchet differential operator
with respect to u� . Let A/≡ 0 and Dj /≡ 0 (j = 1, . . . , m;m ≥ 1) be real functionals defined in
W,B� and ̂B� (� = 1, . . . , n) real functionals defined inW� satisfying the conditions:

(i11) A is lower weakly semicontinuous inW and C1(W \ {0}),
B� and ̂B� are weakly continuous inW� and C1(W�),

∃p > 1 : A(tv) = tpA(v) for all t ≥ 0 and for all v ∈ W, B�(tv�) = tpB�(v�)
and ̂B�(tv�) = tp ̂B�(v�) for all t ≥ 0 and for all v� ∈W� ;

(i12) Dj is weakly continuous inW and C1(W \ {0}), ∃qj > 1 :

Dj(tv) = tqjDj(v) for all t ≥ 0 and for all v ∈W, 1 < q1 < · · · < qm if m > 1.

Let F = (F1, . . . , Fn) with F� ∈ W�
∗, λ� and μ� ∈ R; let us consider the following

problem.

Problem (P). Find u = (u1, . . . , un) ∈W \ {0} such that

〈∂uiA(u), vi〉i = λi〈∂Bi(ui), vi〉i + μi
〈

∂ ̂Bi(ui), vi
〉

i
+

m
∑

j=1

〈

∂uiDj(u), vi
〉

i
+ 〈Fi, vi〉i

∀i ∈ {1, . . . , n}, ∀vi ∈Wi.

(1.3)

Obviously Problem (P)means to find the critical points u ∈W \ {0} of the Euler functional:

E(v) = A(v) −
n
∑

�=1

[

λ�B�(v�) + μ� ̂B�(v�)
]

−
m
∑

j=1

Dj(v) − 〈〈F, v〉〉 ∀v = (v1, . . . , vn) ∈W,

(1.4)

where 〈〈F, v〉〉 =
∑n

�=1 〈F�, v�〉� .
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Let us set

Hλμ(v) = A(v) −
n
∑

�=1

[

λ�B�(v�) + μ� ̂B�(v�)
]

∀v = (v1, . . . , vn) ∈W, ∀λ = (λ1, . . . , λn), μ =
(

μ1, . . . , μn
) ∈ Rn,

Sλμ =
{

v ∈W : Hλμ(v) = 1
}

, V −
λμ =

{

v ∈W : Hλμ(v) < 0
}

, as m1 = 1, . . . , m

V +(Dm1 , . . . , Dm) =

⎧

⎨

⎩

v ∈W :
m
∑

j=m1

Dj(v) > 0

⎫

⎬

⎭

,

S+(D1, . . . , Dm) =

⎧

⎨

⎩

v ∈W :
m
∑

j=1

Dj(v) = 1

⎫

⎬

⎭

,

S
(

Dj

)

=
{

v ∈W : Dj(v) = −1}, V +(F) = {v ∈W : 〈〈F, v〉〉 > 0}.

(1.5)

About Problem (P), using Lagrange multipliers and the “fibering method,” different
existence theorems have been proved in [1]. They base on one of the following hypotheses:

(i13) ∃c(λ, μ) > 0 : ‖v‖p ≤ c(λ, μ)Hλμ(v) for all v ∈W ;

(i14) ∃c(λ, μ) > 0 : ‖v‖p ≤ c(λ, μ)Hλμ(v) for all v ∈ V +(Dm) (if V +(Dm)/= ∅);
(i15) ∃m1 ∈ {1, . . . , m} : V −

λμ
∩ S(Dm1) is not empty and bounded in W.

Remark 1.1. In this paper, we use some existence theorems ([1], Theorems 2.1, 2.2, 3.1, and
3.2), in which as n > 1, in relation to a set F ⊆ Sλμ, we suppose

(ih16) for each v = (v1, . . . , vn ) ∈ F with vh = 0, there exist vh ∈ Wh \ {0} and the
real functions φ1, . . . , φn such that φh ∈ C0([0, 1]) ∩ C1([0, 1[) and φh(1) = 0,
φ� ∈ C1([0, 1]) and φ�(1) = 1 as � /=h, v(s) = (φ1(s)v1, . . . , φh(s)vh, . . . , φn(s)vn) ∈ F

for all s ∈ [s0, 1] (0 ≤ s0 < 1), lim′′
s → 1−(d/ds)Dj(v(s)) < +∞ for all j ∈

{1, . . . , m}, lims → 1−(d/ds)Dj(v(s)) = −∞ for some j ∈ {1, . . . , m}.
The condition (ih16) assures that for the solutions u = (u1, . . . , un) of Problem (P), found

with the method used in the recalled theorems, we have uh /= 0 if Fh ≡ 0.

Before showing Dirichlet problems (including the problem studied in [2] by Drábek
and Pohozaev when n = 1 andm = 1)we give Propositions 2.2–2.6 which show some cases in
which hypotheses (i13)−(i15) hold. These propositions are based on the comparison between
the parameters λi with suitable eigenvalues connected to p-Laplacian. About Neumann
problems (including the one studied in [3] by Pohozaev and Véron when n = 1) the same
question is solved by Propositions 3.1–3.5 in which the parameters λi and μi have compared
with zero. Finally, the results in Appendix are very useful: Propositions A.1 and A.2 in order
to get condition (ih16), Propositions A.3 and A.4 to get qualitative properties of the solutions
and the positive sign of the components of the found solutions.

2. Dirichlet Problems

Let Ω ⊆ RN be an open, bounded, connected and C2,β set with 0 < β ≤ 1. Let | · |N the
Lebesgue measure on RN, 1 < p <∞, p̃ =Np/(N − p) if N > p, p̃ = ∞ otherwise.
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Let us assume

W =
(

W
1,p
0 (Ω)

)n
(n ≥ 1) with ‖v‖ =

(

n
∑

�=1

∫

Ω
|∇v� |pdx

)1/p

∀v = (v1, . . . , vn) ∈W,

B�(v�) = p−1
∫

Ω
b� |v� |pdx ∀v� ∈W1,p

0 (Ω) where b� ∈ L∞(Ω) \ {0}, b� ≥ 0, ̂B� ≡ 0.

(2.1)

Moreover we consider the functionals A (as in (i11)) such that

∃c̃ > 0 : A(v) ≥ p−1c̃‖v‖p ∀v ∈ W. (2.2)

Let us use the notationHλ (Sλ and V −
λ , resp.) instead ofHλμ (Sλμ and V −

λμ, resp.).
As � = 1, . . . , n let λ∗

�
and u∗

�
, respectively, the first eigenvalue and the first

eigenfunction of the problem:

u� ∈W1,p
0 (Ω) : −c̃ div

(

|∇u� |p−2∇u�
)

= θb� |u� |p−2u� in Ω. (2.3)

Let us remember that [4]

u∗
�
∈ C1,α� (Ω) with 0 < α� < 1, u∗

�
> 0 in Ω;

λ∗
�
= c̃

∫

Ω |∇u∗
�
|pdx/ ∫

Ω b� |u∗� |pdx = min{c̃ ∫Ω |∇v� |pdx/
∫

Ω b� |v� |pdx :
∫

Ω b� |v� |pdx >
0};
λ∗
�
is simple, that is, each eigenfunction of (2.3) related to λ∗

�
is of the type c�u∗� with

c� ∈ R \ {0};
λ∗
�
is isolate, that is, there exists a > 0 such that λ∗

�
is the only eigenvalue of (2.3)

belonging to ]0, a[.

Remark 2.1. About the results related to problem (2.3), it is sufficient to suppose b� ∈ L∞(Ω)
and b+� = max{b�, 0}/≡ 0 as � = 1, . . . , n. This holds also for the results of this section if we limit
to consider only the parameters λ1, . . . , λn nonnegative.

Let us start by presenting some sufficient conditions such that (i13), (i14), and (i15) hold.
Using the variational characterization of λ∗

�
it is easy to verify the following

proposition.

Proposition 2.2. If λ� < λ∗
�
for all � ∈ {1, . . . , n}, then (i13) holds. Consequently, (i14) holds when

V +(Dm)/= ∅.
When λ� ≥ λ∗

�
for some � ∈ {1, . . . , n}, it is possible to fulfil (i14) with an additional

condition on Dm. Let I = {1, . . . , n}. For any I∗ ⊆ I let

V ∗ = {v = (v1, . . . , vn) ∈W : v� ≡ 0 if � ∈ I \ I∗,
v� = c�u∗� if � ∈ I∗ with c� ∈ R and c� /= 0 for some �

}

,
(2.4)

and let us suppose

(i21) There exists I∗ ⊆ I : Dm(v) < 0 for all v ∈ V ∗.
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Proposition 2.3. Let (i21) holds with I∗ /= I. Let V +(Dm)/= ∅. If we fix the parameters set (λ�)�∈I\I∗
with λ� < λ∗� , then there exists δ∗ > 0 such that (i14) also holds for any (λ�)�∈I∗ ∈ X�∈I∗[λ∗�, λ

∗
�
+ δ∗[.

Proof. Arguing by contradiction, for any k ∈ N there exist (λk
�
)
�∈I∗ ∈ X�∈I∗[λ∗�, λ

∗
�
+ k−1[ and

vk = (vk1 , . . . , v
k
n) ∈ V +(Dm) such that

A
(

vk
)

− p−1
∑

�∈I\I∗
λ�

∫

Ω
b� |v� |pdx − p−1

∑

�∈I∗
λk�

∫

Ω
b�

∣

∣

∣vk�

∣

∣

∣

p
dx < k−1

∥

∥

∥vk
∥

∥

∥

p
. (2.5)

Set wk = ‖vk‖−1vk, we have

Dm

(

wk
)

> 0,

c̃
∑

�∈I\I∗

∫

Ω

∣

∣

∣∇wk
�

∣

∣

∣

p
dx−

∑

�∈I\I∗
λ�

∫

Ω
b�

∣

∣

∣wk
�

∣

∣

∣

p
dx+c̃

∑

�∈I∗

∫

Ω

∣

∣

∣∇wk
�

∣

∣

∣

p
dx −

∑

�∈I∗
λk�

∫

Ω
b�

∣

∣

∣wk
�

∣

∣

∣

p
dx<pk−1,

(2.6)

moreover, since ‖wk‖ = 1, there exists w ∈W such that (within a subsequence)

wk −→ w weakly in W, wk −→ w strongly in (Lp(Ω))n. (2.7)

Taking into account that Dm is weakly continuous inW , from (2.6) as k → +∞we get

Dm(w) ≥ 0, (2.8)

∑

�∈I\I∗

[

c̃

∫

Ω
|∇w� |pdx − λ�

∫

Ω
b� |w� |pdx

]

+
∑

�∈I∗

[

c̃

∫

Ω
|∇w� |pdx − λ∗�

∫

Ω
b� |w� |pdx

]

≤ 0.

(2.9)

Since

w� /≡ 0 =⇒ c̃

∫

Ω
|∇w� |pdx − λ�

∫

Ω
b� |w� |pdx > 0,

c̃

∫

Ω
|∇w� |pdx − λ∗�

∫

Ω
b� |w� |pdx ≥ 0,

(2.10)

from (2.9), we deduce that

w� ≡ 0 ∀� ∈ I \ I∗, ∀� ∈ I∗∃c� ∈ R : w� = c�u∗�. (2.11)

Let us add that c� /= 0 for some � ∈ I∗, since if c� = 0 for all � ∈ I∗ we have the contradiction
c̃ = c̃ limk→+∞‖wk‖p = 0. Then w ∈ V ∗, and consequently Dm(w) < 0 from (i21). This last
inequality contradicts (2.8).

In the same way the following propositions can be proved.
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Proposition 2.4. Let (i21) holds with I∗ = I. Let V +(Dm)/= ∅. Then, there exists δ∗ > 0 such that
(i14) also holds for any (λ�)�∈I ∈ X�∈I[λ∗�, λ

∗
�
+ δ∗[.

Let us pass to (i15) and suppose

(i22) there exist I∗ ⊆ I and m1 ∈ {1, . . . , m} such that Dm1(v) < 0 and A(v) =
c̃p−1

∑

�∈I∗
∫

Ω |∇v� |pdx for any v ∈ V ∗.

Proposition 2.5. If (i22) holds with I∗ /= I, then

V −
λ ∩ S(Dm1)/= ∅ ∀(λ�)�∈I with (λ�)�∈I∗ ∈ X

�∈I∗
[

λ∗�, +∞
[ \ {(

λ∗�
)

�∈I∗
}

. (2.12)

Moreover, if we fix the parameters set (λ�)�∈I\I∗ with λ� < λ
∗
�
, then there exists δ∗ > 0 such that

V −
λ ∩ S(Dm1) is bounded in W ∀(λ�)�∈I∗ ∈ X

�∈I∗
[

λ∗�, λ
∗
� + δ∗

[ \ {(

λ∗�
)

�∈I∗
}

. (2.13)

Proof. Let us prove (2.12). Let v ∈ V ∗ with v� = u∗
�
if � ∈ I∗, then Dm1(v) < 0. Let w =

|Dm1(v)|−1\qm1v, we have

Dm1(w) = |Dm1(v)|−1Dm1(v) = −1,

Hλ(w) = p−1
∑

�∈I∗

[

c̃

∫

Ω
|∇w� |pdx − λ�

∫

Ω
b� |w� |pdx

]

< 0.
(2.14)

Let us prove (2.13). Arguing by contradiction, for any k ∈ N there exist (λk
�
)
�∈I∗ ∈

X�∈I∗[λ∗�, λ
∗
� + k−1[ with (λk�)�∈I∗ /= (λ∗�)�∈I∗ and (vk,h)h∈N

⊆ V −
λk

∩ S(Dm1), where λk� = λ� if
� ∈ I \ I∗, such that

sup
h∈N

∥

∥

∥vk,h
∥

∥

∥ = +∞. (2.15)

Relation (2.15) implies that there exists (hk)k∈N
⊆ N strictly increasing such that

δk =
∥

∥

∥vk,hk
∥

∥

∥ −→ +∞ as k −→ +∞. (2.16)

Let wk = δ−1
k
vk,hk , we have

∑

�∈I\I∗

[

c̃

∫

Ω

∣

∣

∣∇wk
�

∣

∣

∣

p
dx − λ�

∫

Ω
b�

∣

∣

∣wk
�

∣

∣

∣

p
dx

]

+
∑

�∈I∗

[

c̃

∫

Ω

∣

∣

∣∇wk
�

∣

∣

∣

p
dx − λk�

∫

Ω
b�

∣

∣

∣wk
∣

∣

∣

p
dx

]

< 0,

Dm1

(

wk
)

= −δ−qm1
k

,

∃w ∈W :
(

within a subsequence
)

wk −→ w weakly in W,wk −→ w strongly in (Lp(Ω))n.
(2.17)
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Then, as k → +∞we get

∑

�∈I\I∗

[

c̃

∫

Ω
|∇w� |pdx − λ�

∫

Ω
b� |w� |pdx

]

+
∑

�∈I∗

[

c̃

∫

Ω
|∇w� |pdx − λ∗�

∫

Ω
b� |w� |pdx

]

≤ 0,

(2.18)

Dm1(w) = 0. (2.19)

From (2.18), we get that w ∈ V ∗. Then since (i22) inequality Dm1(w) < 0 holds, which
contradicts (2.19).

Proposition 2.6. If (i22) holds with I∗ = I, then

V −
λ ∩ S(Dm1)/= ∅ ∀λ = (λ�)�∈I ∈ X

�∈I
[

λ∗�, +∞
[ \ {(

λ∗�
)

�∈I
}

,

∃δ∗ > 0 : V −
λ ∩ S(Dm1) is bounded in W ∀λ = (λ�)�∈I ∈ X

�∈I
[

λ∗�, λ
∗
� + δ

∗[ \ {(

λ∗�
)

�∈I
}

.

(2.20)

The proof as in Proposition 2.5.

Remark 2.7. The applications we now show, except the first one, deal with systems with n > 1
equations. We consider the functionalsAwith c̃ = 1, and we suppose b� ∈ L∞(Ω)\{0}, b� ≥ 0.

Application 2.8. Let n = 1. Let us consider the problem

−div
(

|∇u|p−2∇u
)

= λ1b1|u|p−2u +
m
∑

j=1

dj |u|qj−2u in Ω, u = 0 on ∂Ω, (2.21)

where

p < q1 < p̃, d1 ∈ L∞(Ω) \ {0} if m = 1,

p < q1 < · · · < qm < p̃, dj ∈ L∞(Ω) \ {0} as j = 1, . . . , m,

dj ≤ 0 as j = 1, . . . , m − 1 if m > 1.

(2.22)

Evidently

A(v) = p−1
∫

Ω
|∇v|pdx, Dj(v) = q−1j

∫

Ω
dj |v|qj dx ∀v ∈W. (2.23)

Let us advance the conditions:

d+
m /≡ 0 (=⇒ V +(Dm)/= ∅), (2.24)

∫

Ω
dm

(

u∗1
)qmdx < 0

(

=⇒ Dm

(

c1u
∗
1

)

< 0 ∀c1 ∈ R \ {0}). (2.25)
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Let us note that (Propositions 2.2, 2.4, and 2.6)

(2.24) =⇒ (

(i14) holds if λ1 < λ∗1
)

,

(2.24) and (2.25) =⇒ (∃δ∗1 > 0 : (i14) holds if λ1 < λ∗1 + δ
∗
1

)

,

(2.25) =⇒ (∃δ∗2 > 0 : (i15) holds if λ1 ∈
]

λ∗1, λ
∗
1 + δ

∗
2
[)

.

(2.26)

Proposition 2.9 (see [1], Theorems 2.1, 2.2, 4.1, and 4.2; Remarks 2.1, 2.3, 4.1, and 4.4;
Proposition A.3; [5, 6]). Under assumptions (2.22) we have:

(i) When (2.24) holds, with λ1 < λ∗1 [resp. (2.24) and (2.25) hold, with λ1 < λ∗1 + δ
∗
1] problem

(2.21) has at least two weak solutions u0 and −u0 (u0 = τ0v0, τ0 = const. > 0, v0 ∈
Sλ1 ∩ V +(Dm)), and it results in u0 ∈ L∞(Ω) ∩ C1,α0

�oc
(Ω), u0 > 0;

(ii) When (2.25) holds, with λ1 ∈]λ∗1, λ∗1 + δ∗2[ problem (2.21) has at least two weak solutions
u and − u (u = τ v, τ = const. > 0, v ∈ V −

λ1
∩ S(Dm)), and it results in u ∈ L∞(Ω) ∩

C1,α
�oc(Ω), u > 0.

Consequently, when (2.24) and (2.25) hold, with λ1 ∈]λ∗1, λ∗1 +min{δ∗1, δ∗2}[ problem (2.21)
has at least four different weak solutions.

Remark 2.10. Our results include the ones of Drábek and Pohozaev [2] whenm = 1.

Application 2.11. Let us consider the system:

−div
(

|∇ui|p−2∇ui
)

= λibi|ui|p−2ui +
∣

∣

∣

∣

∣

n
∑

�=1

d�u�

∣

∣

∣

∣

∣

q1−2( n
∑

�=1

d�u�

)

di − ˜di|ui|q1−2ui in Ω,

ui = 0 on ∂Ω as i = 1, . . . , n,

(2.27)

where

1 < q1 < p̃, q1 /= p, d�, ˜d� ∈ L∞(Ω), d�, ˜d� > 0. (2.28)

System (2.27) is included among Problem (P)with:

A(v) = p−1
n
∑

�=1

∫

Ω
|∇v� |pdx,

D1(v) = q−11

[

∫

Ω

∣

∣

∣

∣

∣

n
∑

�=1

d�v�

∣

∣

∣

∣

∣

q1

dx −
n
∑

�=1

∫

Ω

˜d� |v� |q1dx
]

∀v = (v1, . . . , vn) ∈W.

(2.29)
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Let us advance the conditions (compatible):

d
q1
�
< ˜d� ∀� ∈ {1, . . . , n}(=⇒ D1

(

0, . . . , ciu∗i , . . . , 0
)

< 0 as i = 1, . . . , n, ci ∈ R \ {0}),
(2.30)

there exist Ω+ ⊆ Ω and a constant c̃j > 0 such that |Ω+|N > 0 and

⎛

⎝

∑

� /= j

d� + c̃jdj

⎞

⎠

q1

>
∑

� /= j

˜d� + c̃
q1
j

˜dj in Ω+ (

=⇒ V +(D1)/= ∅ (

Proposition A.1
))

. (2.31)

Then (Propositions 2.2, 2.3, and 2.5)

(2.31) =⇒ (

(i14) holds if λ� < λ∗� ∀� ∈ {1, . . . , n}), (2.32)

and set i ∈ {1, . . . , n}

(2.30) and (2.31) =⇒ (

with λ� < λ
∗
� ∀� /= i ∃δ∗1 > 0 : (i14) holds if λi < λ∗i + δ

∗
1

)

, (2.33)

(2.30) =⇒ (

with λ� < λ
∗
� ∀� /= i ∃δ∗2 > 0 : (i15) holds if λi ∈

]

λ∗i , λ
∗
i + δ

∗
2
[)

. (2.34)

Taking into account that D1(v1, . . . , vn) ≤ D1(|v1|, . . . , |vn|) and D1(−v) = D1(v), from
([1], Theorem 2.1, Remark 2.1, and Theorem 4.1) we get the following proposition.

Proposition 2.12. Under assumptions (2.28) we have:

(i) When (2.31) holds, ((2.30) and (2.31) hold resp.), choosing λ1, . . . , λn as in (2.32) (resp.
(2.33)) system (2.27) has at least two weak solutions u0 and −u0 with u0

�
≥ 0 as � =

1, . . . , n (u0 = τ0v0, τ0 = const. > 0, v0 ∈ Sλ ∩ V +(D1));

(ii) When (2.30) holds, choosing λ1, . . . , λn as in (2.34) system (2.27) has at least two weak
solutions u and −u (u = τ v, τ = const. > 0, v ∈ V −

λ ∩ S(D1)).

Consequently, when (2.30) and (2.31) hold, with λ� < λ∗
�
for all � /= i and λi ∈]λ∗i , λ∗i +

min{δ∗1, δ∗2}[ system (2.27) has at least four different weak solutions.

The following proposition is obvious.
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Proposition 2.13. The following relations hold:

u0i /≡ 0 as i = 1, . . . , n,

∃h, k ∈ {1, . . . , n} : uh /≡ 0, uk /≡ 0.
(2.35)

Proposition 2.14. If p < q1, then as i = 1, . . . , n:

u0i ∈ L∞(Ω) ∩ C1,α0i
�oc (Ω), u0i > 0. (2.36)

Proof. It is easy to prove that

n
∑

i=1

∫

Ω

∣

∣

∣∇u0i
∣

∣

∣

p−2∇u0i · ∇vidx ≤
∫

Ω
g

(

n
∑

i=1

u0i

)p−1( n
∑

i=1

vi

)

dx

∀v = (v1, . . . , vn) ∈
(

W
1,p
0 (Ω) ∩ L∞(Ω)

)n
with vi ≥ 0,

(2.37)

where g ∈ Lq1/(q1−p)(Ω). Then (Proposition A.3) u0i ∈ L∞(Ω) and consequently [5] u0i ∈
C

1,α0i
�oc (Ω).

Let us note that u0i is a weak supersolution to the equation:

−div
(

|∇ui|p−2∇ui
)

= λibi|ui|p−2ui − ˜di|ui|q1−2ui in Ω. (2.38)

Then, since (2.35), it must be [6] u0i > 0.

Let us continue the analysis of system (2.27) under the condition:

⎛

⎝

∑

� /= i

d�

⎞

⎠

q1

< min
{

˜d1, . . . , ˜dn
}

∀i ∈ {1, . . . , n}, (2.39)

then

D1
(

c1u
∗
1, . . . , cnu

∗
n

)

< 0 ∀(c1, . . . , cn) ∈ Rn \ {0} with ci = 0 for at least one i ∈ {1, . . . , n}.
(2.40)

Hence (Proposition 2.5) if I∗ ⊆ I and I∗ /= I:

(2.39)=⇒
(

as λ� < λ∗� ∀� ∈ I\I∗ ∃δ∗ > 0 : (i15) holds if (λ�)�∈I∗ ∈ X
�∈I∗

[

λ∗�, λ
∗
�+δ

∗[\(λ∗�
)

�∈I∗

)

.

(2.41)

Proposition 2.15. Under assumptions (2.28) and (2.39), choosing λ1, . . . , λn as in (2.41) system
(2.27) has at least two weak solutions u and −u (u = τ v, τ = const. > 0, v ∈ V −

λ ∩ S(D1)) with
ui /≡ 0 as i = 1, . . . , n.
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Proof. Thanks to ([1], Theorem 4.1), there exists v ∈ V −
λ ∩ S(D1) such that

Hλ(v) = inf
{

Hλ(v) : v ∈ V −
λ ∩ S(D1)

}

= e, u = τ v is a weak solution of system (2.27),
(2.42)

where τ = (−pq−11 e)
1/(q1−p).

Reasoning by contradiction, let, for example, u1 ≡ 0. Since −1 = D1(v) ≤ D1(0, |v2|,
. . . , |vn|) and from (2.39) D1(0, |v2|, . . . , |vn|) < 0, setting δ = |D1(0, |v2|, . . . , |vn|)|−1/q1 we have

D1(0, δ|v2|, . . . , δ|vn|) = −1, Hλ(0, δ|v2|, . . . , δ|vn|) = δpHλ(v) ≤ Hλ(v), (2.43)

then Hλ(0, δ|v2|, . . . , δ|vn|) = Hλ(v). This implies that ([1], see the proof of Theorem 4.1)
(0, τδ|v2|, . . . , τδ|vn|) is a weak solution of system (2.27). Then (

∑n
�=2 d� |v� |)q1−1 ≡ 0 from

which u� ≡ 0 too as � = 2, . . . , n.
Condition (2.39) holds in particular when

(

n
∑

�=1

d�

)q1

< min
{

˜d1, . . . , ˜dn
}

. (2.44)

Proposition 2.16. Replacing in Proposition 2.15 (2.39) with (2.44), it is right to say that ui ≥ 0 and
ui /≡ 0 as i = 1, . . . , n. Consequently, if p < q1

ui ∈ L∞(Ω) ∩ C1,ai
�oc(Ω), ui > 0 as i = 1, . . . , n. (2.45)

Proof. Set δ = |D1(|v1|, . . . , |vn|)|−1/q1 , as in Proposition 2.15 (τδ|v1|, . . . , τδ|vn|) is a weak
solution to system (2.27).

Let us add that since (2.44) ⇒ D1(c1u∗1, . . . , cnu
∗
n) < 0 for all (c1, . . . , cn) ∈ Rn \ {0},

there exists (Proposition 2.6) δ∗∗ > 0 such that

(i15) holds if (λ�)�∈I ∈
n

X
�=1

[

λ∗�, λ
∗
� + δ

∗∗[ \ {(

λ∗�
)

�∈I
}

. (2.46)

Then the existence of u is assured also choosing λ1, . . . , λn as in (2.46), and the conclusions of
Proposition 2.16 hold.

Application 2.17. Let us set

λ1 = · · · = λn = λ, b1 = · · · = bn = b
(

then λ∗1 = · · · = λ∗n = λ∗, u∗1 = · · · = u∗n = u∗
)

,

A(v) = p−1
n
∑

�=1

∫

Ω
|∇v� |pdx, D1(v) = q−11

∫

Ω
d1

(

n
∑

�=1

|v� |γ
)q1/γ

dx, ∀v = (v1, . . . , vn) ∈W,

(2.47)
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where

1 < γ < q1 < p̃, q1 /= p, d1 ∈ L∞(Ω). (2.48)

Let us consider the system:

−div
(

|∇ui|p−2∇ui
)

= λb|ui|p−2ui + d1
(

n
∑

�=1

|u� |γ
)(q1/γ)−1

|ui|γ−2ui in Ω,

ui = 0 on ∂Ω as i = 1, . . . , n.

(2.49)

We advance the conditions

d+
1 /≡ 0 (=⇒ V +(D1)/= ∅), (2.50)

∫

Ω
d1(u∗)

q1dx < 0 (=⇒ D1(c1u∗, . . . , cnu∗) < 0 ∀(c1, . . . , cn) ∈ Rn \ {0}). (2.51)

Therefore,

(2.50) =⇒
(

(i14) holds if λ < λ∗
)

(

Proposition 2.2
)

,

(2.50) and (2.51) =⇒
(

∃δ∗1 > 0 : (i14) holds if λ < λ∗ + δ∗1
)

(

Proposition 2.4
)

,

(2.51) =⇒
(

∃δ∗2 > 0 : (i15) holds if λ ∈ ]

λ∗, λ∗ + δ∗2
[

)

(

Proposition 2.6
)

.

(2.52)

Then ([1], Theorems 2.1 and 4.1, and Remarks 2.1 and 4.1).

Proposition 2.18. Under assumption (2.48), we have:

(i) When (2.50) holds, ((2.50) and (2.51) hold resp.), if λ < λ∗ (resp. λ < λ∗ + δ∗1) system
(2.49) has at least two weak solutions u0 and −u0 with u0

�
≥ 0 as � = 1, . . . , n (u0 =

τ0v0, τ0 = const. > 0, v0 ∈ Sλ ∩ V +(D1));

(ii) When (2.51) holds, if λ ∈]λ∗, λ∗ + δ∗2[ system (2.49) has at least two weak solutions u and
−u with u� ≥ 0 as � = 1, . . . , n (u = τ v, τ = const. > 0, v ∈ V −

λ
∩ S(D1)).

Consequently, when (2.50) and (2.51) hold, with λ ∈]λ∗, λ∗+min{δ∗1, δ∗2}[ system (2.49) has
at least four different weak solutions.

In order to establish some properties of u0 and u it is useful to recall that ([1], Theorems
2.1 and 4.1)

D1

(

v0
)

= sup{D1(v) : v ∈ Sλ ∩ V +(D1)} = e, τ0 =
(

q1p
−1e

)1/(p−q1)
, (2.53)

Hλ(v) = inf
{

Hλ(v) : v ∈ V −
λ ∩ S(D1)

}

= e, τ =
(

−pq−11 e
)1/(q1−p)

. (2.54)
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Proposition 2.19. When p < q1, we have

u0i ∈ L∞(Ω) ∩ C1,α0i
�oc (Ω), (2.55)

besides

u0i /≡ 0 ∀i ∈ {1, . . . , n} if γ < p. (2.56)

Proof. The relation u0i ∈ L∞(Ω) comes from Proposition A.3. Then [5] u0i ∈ C
1,α0i
�oc (Ω).

About (2.56), it is sufficiently (Remark 1.1) to prove that

(

ih16

)

holds ∀h ∈ {1, . . . , n} with F = Sλ ∩ V +(D1). (2.57)

Let v = (v1, . . . , vn) ∈ Sλ ∩ V +(D1) with vh ≡ 0. Since

v ∈ V +(D1) =⇒
⎛

⎝∃ a compact set K ⊆ Ω : |K|N > 0, d1 > 0 and ψ =
∑

� /=h

|v� |γ > 0 in K

⎞

⎠,

(2.58)

let (Proposition A.1) (ϕε)0<ε<ε0 ⊆ C∞
0 (Ω)with 0 ≤ ϕε ≤ 1 such that

ϕε −→ χ strongly in Ls(Ω),
∫

Ω

∣

∣∇ϕε
∣

∣

s
dx −→ +∞ as ε −→ 0+ ∀s ∈ [1,+∞[, (2.59)

where χ is the characteristic function of K. Set ε such that

∫

Ω
d1ψ

(q1/γ)−1ϕγεdx > 0, δ = p−1
[∫

Ω

∣

∣∇ϕε
∣

∣

p
dx − λ

∫

Ω
bϕ

p
εdx

]

> 0, (2.60)

with v(s) = (s1/pv1, . . . , (1 − s)1/pδ−1/pϕε, . . . , s1/pvn) it results in

Hλ(v(s)) = δ−1(1 − s)p−1
[∫

Ω

∣

∣∇ϕε
∣

∣

p
dx − λ

∫

Ω
bϕ

p
εdx

]

+ sHλ(v) = 1 ∀s ∈ [0, 1],

∃s0 ∈ [0, 1[ : D1(v(s)) > 0 ∀s ∈ [s0, 1], lim
s→ 1−

d

ds
D1(v(s)) = −∞.

(2.61)

Proposition 2.20. When p < q1, we have

ui ∈ L∞(Ω) ∩ C1,αi
�oc(Ω), (2.62)

ui > 0 ∀i ∈ {1, . . . , n} if p < γ. (2.63)



14 Abstract and Applied Analysis

Proof. We can get (2.62) from Proposition A.3 and [5].
About (2.63), it is sufficiently [6] to prove that ui /≡ 0 as i = 1, . . . , n. Reasoning by

contradiction, let, for example, v1 ≡ 0. We note that

v ∈ V −
λ =⇒

(

∃� ∈ {2, . . . , n} :
∫

Ω
|∇v� |pdx − λ

∫

Ω
bv

p

�
dx < 0

)

. (2.64)

Let us suppose � = 2 and set v(s) = ((1 − s)1/γv2, s
1/γv2, v3, . . . , vn). Then

D1(v(s)) = −1 ∀s ∈ [0, 1], ∃s0 ∈ [0, 1[ : Hλ(v(s)) < 0 ∀s ∈ [s0, 1],

lim
s→ 1−

d

ds
Hλ(v(s)) = +∞.

(2.65)

Set s1 ∈ [s0, 1[ such that (d/ds)Hλ(v(s)) > 0 for all s ∈ [s1, 1[ and taking into account (2.54),
we get the contradiction:

Hλ(v) ≤ Hλ(v(s)) < Hλ(v) ∀s ∈ [s1, 1[. (2.66)

Proposition 2.21. When γ = p < q1, we allow that as i = 1, . . . , n:

u0i > 0, ui > 0. (2.67)

Proof. The assumption γ = p implies that

∀v = (v1, . . . , vn) ∈W \ {0} with vh ≡ 0 for some h ∈ {1, . . . , n},
∃ṽ = (ṽ1, . . . , ṽn) ∈W : ṽ� /≡ 0 as � = 1, . . . , n, Hλ(ṽ) = Hλ(v), D1(ṽ) = D1(v).

(2.68)

Let, for example, v1 ≡ 0 and v2 /≡ 0. Set s ∈ ]0, 1[ and v1
1 = (1 − s)1/pv2, v1

2 = s1/pv2, v
1
� = v�

as � > 2, with v1 = (v1
1, . . . , v

1
n), we have

Hλ

(

v1
)

= Hλ(v), D1

(

v1
)

= D1(v). (2.69)

If v3 ≡ 0, set v2
1 = (1 − s)1/pv1

1, v
2
3 = s1/pv1

1 , v
2
� = v1

� as � ∈ {1, . . . , n} \ {1, 3}, with v2 =
(v2

1, . . . , v
2
n), it results in

Hλ

(

v2
)

= Hλ(v), D1

(

v2
)

= D1(v). (2.70)

This method let us to find ṽ.
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Then, if v0
h
≡ 0 (resp. vh ≡ 0) for some h ∈ {1, . . . , n}, with ṽ0 (resp. ˜v) as in (2.68) we

have from (2.53) (resp. (2.54))D1(ṽ0) = e (resp. Hλ(˜v) = e). Consequently ([1], see the proof
of Theorem 2.1 (resp. Theorem 4.1)) ũ0 = τ0ṽ0 (resp. ˜u = τ ˜v) is a weak solution of system
(2.49). Therefore [6] ũ0i > 0 (resp. ˜ui > 0) as i = 1, . . . , n.

Application 2.22. Let us assume λ�, b� , and A as in Application 2.17,

Dj(v) = q−1j

∫

Ω
dj

(

n
∑

�=1

|v� |γj
)qj/γj

dx ∀v = (v1, . . . , vn) ∈W as j = 1, . . . , m, (2.71)

where

p < q1 < · · · < qm < p̃, 1 < γj < qj , dm ∈ L∞(Ω),

dj ∈ L∞(Ω) \ {0}, dj ≤ 0 if j = 1, . . . , m − 1.
(2.72)

Let us consider the system:

−div
(

|∇ui|p−2∇ui
)

= λb|ui|p−2ui +
m
∑

j=1

dj

(

n
∑

�=1

|u� |γj
)(qj/γj )−1

|ui|γj−2ui in Ω,

ui = 0 on ∂Ω as i = 1, . . . , n,

(2.73)

under almost one of the conditions:

d+
m /≡ 0,

∫

Ω
dm(u∗)

qmdx < 0. (2.74)

By using some results ([1], Theorems 2.2 and 4.2, and Remarks 2.3 and 4.4), we can advance
a proposition similar to Proposition 2.18 replacing in particular V +(D1) with V +(Dm) and
S(D1) with S(Dm).

Thanks to Proposition A.3 and a result of [5], for the solutions u0 and u to system
(2.73), we have

u0i ∈ L∞(Ω) ∩ C1,α0i
�oc (Ω), ui ∈ L∞(Ω) ∩ C1,αi

�oc (Ω). (2.75)

We continue to analyze the properties of u0 and u. To this aim we recall that ([1], Theorems
2.2 and 4.2), set for each v ∈ V +(Dm) (resp. v ∈ V −

λ
∩ S(Dm)) ψ(t, v) = ptp−1Hλ(v) −

∑m
j=1 qjt

qj−1Dj(v),we have:

∃ | t(v) > 0 : ψ(t(v), v) = 0,
∂ψ

∂t
(t(v), v)/= 0. (2.76)
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Besides with ˜

˜E(v) = (t(v))pHλ(v) −
∑m

j=1 (t(v))
qjDj(v), it results in

˜

˜E
(

v0
)

= inf
{

˜

˜E(v) : v ∈ Sλ ∩ V +(Dm)
}

, τ0 = t
(

v0
)

, (2.77)

˜

˜E(v) = inf
{

˜

˜E(v) : v ∈ V −
λ ∩ S(Dm)

}

, τ = t(v). (2.78)

Proposition 2.23. When γm < p ≤ γj as j = 1, . . . , m − 1, then

u0i /≡ 0 ∀i ∈ {1, . . . , n}. (2.79)

Proof. It is sufficiently (Remark 1.1) to prove that

(

ih16

)

holds ∀h ∈ {1, . . . , n} with F = Sλ ∩ V +(Dm). (2.80)

Let v = (v1, . . . , vn) ∈ Sλ ∩ V +(Dm) with vh ≡ 0. As in Proposition 2.19, it is possible to find
vh ∈ C∞

0 (Ω) \ {0} such that with v(s) = (s1/pv1, . . . , (1 − s)1/pvh, . . . , s1/pvn), it results in

Hλ(v(s)) = 1 ∀s ∈ [0, 1], Dm(v(s)) > 0 ∀s ∈ [s0, 1] (0 ≤ s0 < 1),

lim
s→ 1−

d

ds
Dj(v(s)) ∈ R as j = 1, . . . , m − 1, lim

s→ 1−

d

ds
Dm(v(s)) = −∞.

(2.81)

Proposition 2.24. When p < γm ≤ γj as j = 1, . . . , m − 1, then

ui > 0 ∀i ∈ {1, . . . , n}. (2.82)

Proof. It is sufficiently [6] to prove that ui /≡ 0 for all i ∈ {1, . . . , n}. Reasoning by
contradiction, let, for example, v1 ≡ 0 and v2 /≡ 0 such that

∫

Ω
|∇v2|pdx − λ

∫

Ω
bv

p

2dx < 0. (2.83)

Since

t(v) > 0, ψ(t(v), v) = 0,
∂ψ

∂t
(t(v), v)/= 0, (2.84)

there exist an open ball ˜B of W with centre v included in V −
λ
and a unique functional t∗(v)

belongs to C1( ˜B) such that

t∗(v) > 0, ψ(t∗(v), v) = 0 ∀v ∈ ˜B. (2.85)
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Then, the functional

E∗(v) = (t∗(v))pHλ(v) −
m
∑

j=1

(t∗(v))qjDj(v) ∀v ∈ ˜B (2.86)

belongs to C1( ˜B), and we have

t(v) = t∗(v) ∀v ∈ ˜B ∩ S(Dm). (2.87)

Then, for (2.78)

E∗(v) = inf
{

E∗(v) : v ∈ ˜B ∩ S(Dm)
}

. (2.88)

Now, let us remark that with v(s) = ((1 − s)1/γmv2, s
1/γmv2, v3, . . . , vn), it results in

Dm(v(s)) = −1 ∀s ∈ [0, 1], ∃s0 ∈ [0, 1[ : v(s) ∈ ˜B ∀s ∈ [s0, 1],

lim
s→ 1−

d

ds
Hλ(v(s)) = +∞, lim

s→ 1−

d

ds
Dj(v(s)) ∈ R as j = 1, . . . , m − 1.

(2.89)

Then, since

d

ds
E∗(v(s)) = (t∗(v(s)))p

d

ds
Hλ(v(s)) −

m
∑

j=1

(t∗(v(s)))qj
d

ds
Dj(v(s)) ∀s ∈ [s0, 1[, (2.90)

we have lims→ 1−(d/ds)E∗(v(s)) = +∞. Consequently,

∃s1 ∈ [s0, 1[ :
d

ds
E∗(v(s)) > 0 ∀s ∈ [s1, 1[, (2.91)

from which we get the contradiction:

E∗(v) ≤ E∗(v(s)) < E∗(v) ∀s ∈ [s1, 1[. (2.92)

Proposition 2.25. When p = γ1 = · · · = γm, we allow that

u0i > 0, ui > 0 ∀i ∈ {1, . . . , n}. (2.93)

Proof. We reason as in Proposition 2.21, taking into account (2.77) and (2.78) ([1], see proofs
of Theorems 2.2 and 4.2).
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Application 2.26. Let for each v = (v1, . . . , vn) ∈W :

A(v) = p−1
n
∑

�=1

∫

Ω
|∇v� |pdx, Dj(v) = −

n
∏

�=1

∫

Ω
|v� |qj�dx as j = 1, . . . , m − 1 (m ≥ 2),

Dm(v) = q−1m

⎡

⎣

∫

Ω

(

n
∑

�=1

d� |v� |γ
)qm/γ

dx −
n
∑

�=1

∫

Ω

˜d� |v� |qmdx
⎤

⎦,

(2.94)

where

1 < γ < p ≤ qj�,
n
∑

�=1

qj� = qj < qm < p̃, q1 < · · · < qm−1,

d�, ˜d� ∈ L∞(Ω), d�, ˜d� > 0.

(2.95)

Let us consider the system:

−div
(

|∇ui|p−2∇ui
)

= λibi|ui|p−2ui −
m−1
∑

j=1

⎛

⎝qji
∏

� /= i

∫

Ω
|u� |qj�dx

⎞

⎠|ui|qji−2ui

+

(

n
∑

�=1

d� |u� |γ
)(qm/γ)−1

di|ui|γ−2ui − ˜di|ui|qm−2ui in Ω,

ui = 0 on ∂Ω as i = 1, . . . , n.

(2.96)

Let us introduce the conditions:

∃Ω+ ⊆ Ω : |Ω+|N > 0, d
qm/γ

�
> ˜d� in Ω+ for some � ∈ {1, . . . , n − 1} (=⇒ V +(Dm)/= ∅),

(2.97)

d
qm/γ
n < ˜dn (=⇒ Dm(0, . . . , 0, cnu∗n) < 0 ∀cn ∈ R \ {0}). (2.98)

Then (Propositions 2.2, 2.3 and 2.5)

(2.97) =⇒ (

with λ� < λ
∗
� ∀� ∈ {1, . . . , n} (i14) holds

)

, (2.99)

(2.97) and (2.98) =⇒ (

with λ� < λ
∗
� ∀� ∈ {1, . . . , n − 1} ∃δ∗1 > 0 : (i14) holds if λn < λ∗n + δ

∗
1

)

,
(2.100)

(2.98) =⇒ (

with λ� < λ
∗
� ∀� ∈ {1, . . . , n − 1} ∃δ∗2 > 0 : (i15) holds if λn ∈ ]

λ∗n, λ
∗
n + δ

∗
2
[)

.
(2.101)

Since ([1], Theorems 2.2 and 4.2; Remarks 2.3 and 4.4), we get the following proposition.



Abstract and Applied Analysis 19

Proposition 2.27. Under assumption (2.95) we have:

(i) When (2.97) holds ((2.97) and (2.98) hold, resp.), set λ1, . . . , λn as in (2.99) (resp. (2.100))
system (2.96) has at least two weak solutions u0 and −u0 with u0� ≥ 0 as � = 1, . . . , n (u0 =
τ0v0, τ0 = const. > 0, v0 ∈ Sλ ∩ V +(Dm));

(ii) When (2.98) holds, set λ1, . . . , λn as in (2.101) system (2.96) has at least two weak solutions
u and −u with u� ≥ 0 as � = 1, . . . , n (u = τ v, τ = const. > 0, v ∈ V −

λ
∩ S(Dm)).

Consequently, when (2.97) and (2.98) hold, with λ� < λ∗
�
for all � ∈ {1, . . . , n − 1} and

λn ∈]λ∗n, λ∗n +min{δ∗1, δ∗2}[ system (2.96) has at least four different weak solutions.

We remark that (Proposition A.3, [5]) as i = 1, . . . , n:

u0i ∈ L∞(Ω) ∩ C1,α0i
�oc (Ω), ui ∈ L∞(Ω) ∩ C1,αi

�oc(Ω). (2.102)

Moreover, since u0i (resp. ui) is a weak supersolution of the equation:

−div
(

|∇ui|p−2∇ui
)

= λibi|ui|p−2ui −
m−1
∑

j=1

ajqji|ui|qji−2ui − ˜di|ui|qm−2ui in Ω, (2.103)

where aj =
∏

� /= i

∫

Ω (u0
�
)qj�dx (resp. aj =

∏

� /= i

∫

Ω (u�)
qj�dx), we have [6]

u0i > 0 if u0i /≡ 0
[

resp. ui > 0 if ui /≡ 0
]

. (2.104)

Proposition 2.28. It results in

u0i > 0 as i = 1, . . . , n, u� > 0. (2.105)

Proof. Since (2.104), we must show that

u0i /≡ 0 as i = 1, . . . , n, (2.106)

u� /≡ 0. (2.107)

About (2.106), it is sufficient (Remark 1.1) to prove that

(

ih16

)

holds ∀h ∈ {1, . . . , n} with F = Sλ ∩ V +(Dm). (2.108)

Let v = (v1, . . . , vn) ∈ Sλ ∩ V +(Dm) with vh ≡ 0. Let K ⊆ Ω be a compact set such that

|K|N > 0, ψ =
∑

� /=h

d� |v� |γ > 0 in K. (2.109)
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From Proposition A.1, there exists ϕ ∈ C∞
0 (Ω), with 0 ≤ ϕ ≤ 1, such that

δ = p−1
[∫

Ω

∣

∣∇ϕ∣∣pdx − λh
∫

Ω
bhϕ

pdx

]

> 0,
∫

Ω
ψqm/γdhϕ

pdx > 0. (2.110)

Then, with v(s) = (s1/pv1, . . . , (1 − s)1/pδ−1/pϕ, . . . , s1/pvn), we have

Hλ(v(s)) = 1 ∀s ∈ [0, 1], ∃s0 ∈ [0, 1[ : Dm(v(s)) > 0 ∀s ∈ [s0, 1],

lim
s→ 1−

d

ds
Dj(v(s)) ∈ ]−∞, 0] as j = 1, . . . , m − 1, lim

s→ 1−

d

ds
Dm(v(s)) = −∞.

(2.111)

Let us prove (2.107). We recall that ([1], Theorem 4.2):

˜

˜E(v) = inf
{

˜

˜E(v) : v ∈ V −
λ ∩ S(Dm)

}

, (2.112)

where ˜

˜E as in Application 2.22. Reasoning by contradiction, let v� ≡ 0. Then, v� /≡ 0 for some
� /= � and consequently from (2.104)

∑

� /= � d�(v�)
γ > 0.

Let ϕ ∈ C∞
0 (Ω), with 0 ≤ ϕ ≤ 1, such that

∫

Ω d
qm/γ

�
ϕqmdx >

∫

Ω
˜d�ϕ

qmdx. Let us consider
the function:

g(s, τ) = Dm

(

τv1, . . . , sϕ, . . . , τvn
)

=q−1m

⎡

⎢

⎣

∫

Ω

⎛

⎝sγd�ϕ
γ+τγ

∑

� /= �

d�(v�)
γ

⎞

⎠

qm/γ

dx−sqm
∫

Ω

˜d�ϕ
qmdx−τqm

∑

� /= �

∫

Ω

˜d�(v�)
qmdx

⎤

⎥

⎦

∀s ≥ 0, ∀τ ≥ 1.
(2.113)

Since

g(0, 1) = −1, ∂g

∂s
(s, τ) > 0 ∀s > 0, ∀τ ≥ 1, g(0, τ) = −τqm < −1 ∀τ > 1,

lim
s→+∞

g(s, τ) = +∞ ∀τ ≥ 1,
(2.114)

we have

∀τ ≥ 1 ∃ | s(τ) ≥ 0 (s(1) = 0, s(τ) > 0 for τ > 1) : g(s(τ), τ) = −1. (2.115)

We note that limτ→ 1+s(τ) = 0. In fact, if {τn} ⊆]1, +∞[ and lim τn = 1, being g(s(τn), τn) =
−1, {s(τn)} is bounded (else (within a subsequence) lim g(s(τn), τn) = +∞). Then (within a
subsequence) lim s(τn) = ω with g(ω, 1) = 0, from which ω = 0.
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We add that s(τ) belongs to C1(]1,+∞[), and its derivative has the form:

s′(τ) = − 1

(s(τ))γ−1
g̃(s(τ), τ) ∀τ > 1 with lim

τ→ 1+
g̃(s(τ), τ) ∈ ]−∞, 0[. (2.116)

Hence, set v(τ) = (τv1, . . . , s(τ)ϕ, . . . , τvn), it results in

Dm(v(τ)) = −1 ∀τ ≥ 1, lim
τ→ 1+

d

dτ
Hλ(v(τ)) = pHλ(v) < 0,

lim
τ→ 1+

d

dτ
Dj(v(τ)) = 0 as j = 1, . . . , m − 1.

(2.117)

As in Proposition 2.24, we introduce the open ball ˜B with centre v included in V −
λ
and the

functionals t∗(v) and E∗(v) belonging to C1( ˜B). Chosen τ0 > 1 such that v(τ) ∈ ˜B for all τ ∈
[1, τ0], we have

d

dτ
E∗(v(τ)) = (t∗(v(τ)))p

d

dτ
Hλ(v(τ)) −

m−1
∑

j=1

(t∗(v(τ)))qj
d

dτ
Dj(v(τ)) ∀τ ∈ [1, τ0], (2.118)

and consequently limτ→ 1+(d/dτ)E∗(v(τ)) < 0. Then, taking into account (2.112), with τ1 ∈
]1, τ0] such that (d/dτ)E∗(v(τ)) < 0 for all τ ∈]1, τ1], we get the contradiction:

E∗(v) ≤ E∗(v(τ)) < E∗(v) ∀τ ∈ ]1, τ1]. (2.119)

Proposition 2.29. If d
qm/γ
� > ˜d� as � = 1, . . . ,n − 1, then

u� > 0 as � = 1, . . . , n. (2.120)

Proof. In fact,

u� > 0 as � = 1, . . . , n − 1
(

Proposition 2.23
)

,

un ≡ 0 =⇒ Dm(u) > 0.
(2.121)
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Application 2.30. Let for each v = (v1, . . . , vn) ∈W :

A(v) = p−1
∫

Ω

(

n
∑

�=1

|∇v� |γ
)p/γ

dx +
n

∏

�=1

∫

Ω
|∇v� |p�dx,

Dj(v) =
∫

Ω
ρj

(

n
∏

�=1

|v� |qj�
)

dx as j = 1, . . . , m − 1,

Dm(v) = q−1m

⎡

⎣

∫

Ω

∣

∣

∣

∣

∣

n
∑

�=1

d�v�

∣

∣

∣

∣

∣

qm−1( n
∑

�=1

d�v�

)

dx −
∫

Ω
d|vn|qmdx

⎤

⎦,

(2.122)

where

1 < γ < p, p� > 1,
n
∑

�=1

p� = p, qj� > 1,
n
∑

�=1

qj� = qj , p < qm, q1 < · · · < qm < p̃,

ρj ∈ L∞(Ω) \ {0}, ρj ≤ 0, d�, d ∈ L∞(Ω), d�(x)/= 0 a.e. in Ω, d > 0.

(2.123)

Let as � = 1, . . . , n F� ∈ W−1,p′(Ω) (p′ = p/(p − 1)). Let 〈〈F, v〉〉 =
∑n

�=1〈F�, v�〉 for all v ∈ W .
Set ηi = 0 as i = 1, . . . , n − 1 and ηn = 1, let us consider the system:

− div

⎛

⎝

⎡

⎣

(

n
∑

�=1

|∇u� |γ
)(p/γ)−1

|∇ui|γ−2 + pi
⎛

⎝

∏

� /= i

∫

Ω
|∇u� |p�

⎞

⎠|∇ui|pi−2
⎤

⎦∇ui
⎞

⎠

= λibi|ui|p−2ui +
m−1
∑

j=1

qjiρj

⎛

⎝

∏

� /= i

|u� |qj�
⎞

⎠|ui|qji−2ui

+

∣

∣

∣

∣

∣

n
∑

�=1

d�u�

∣

∣

∣

∣

∣

qm−1
di − ηid|un|qm−2un + Fi in Ω,

ui = 0 on ∂Ω as i = 1, . . . , n,

(2.124)

under at least one of the following conditions

∃Ω+ ⊆ Ω : |Ω+|N > 0, d� > 0 in Ω+ for some � ∈ {1, . . . , n − 1} (=⇒ V +(Dm)/= ∅), (2.125)

|dn|qm < d (=⇒ Dm(0, . . . , 0, cnu∗n) < 0 ∀cn ∈ R \ {0}). (2.126)

Evidently, about the validity of (i14)we choose λ1, . . . , λn as in Application 2.26.

Proposition 2.31 (see [1], Theorem 3.2). Under assumptions (2.123), (2.125) ((2.125) and
(2.126), resp.), if F /≡ 0 and ‖F‖∗ is sufficiently small, for λ1, . . . , λn as in (2.99) (resp. (2.100)) system
(2.124) has at least one weak solution ũ (ũ = τ̃ ṽ, τ̃ = const. > 0, ṽ ∈ Sλ ∩ V +(Dm)).
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Let us note that

ũh /≡ 0 even if Fh ≡ 0 since (Fh ≡ 0, ũh ≡ 0) =⇒
n
∑

�=1

d�ũ� ≡ 0 =⇒ Dm(ũ) ≤ 0. (2.127)

Application 2.32. Let λ1 = · · · = λn = 0, and for each v = (v1, . . . , vn) ∈W :

A(v) = p−1
∫

Ω

[

n
∑

�=1

(|∇v� |γ + a|v� |γ
)

]p/γ

dx,

Dj(v) = q−1j

∫

Ω
dj

(

n
∑

�=1

|v� |γj
)qj/γj

dx as j = 1, . . . , m, with m > 2,

(2.128)

under one of the following assumptions:

a ∈ L∞(Ω), a ≥ 0, dj ∈ L∞(Ω) \ {0} with d1 ≤ 0, dj ≥ 0 as j ≥ 2,

1 < γj < γ < p < q2 < · · · < qm < p̃ as j ≥ 2, γ ≤ γ1 < q1 < q2;
(2.129)

a ∈ L∞(Ω), a ≥ 0, as j = 1, . . . , m dj ∈ L∞(Ω) \ {0}, dj ≥ 0,

1 < γj < γ < p < q1 < · · · < qm < p̃.
(2.130)

Set F as in Application 2.30. Let us consider the system:

− div

⎛

⎝

[

n
∑

�=1

(|∇u� |γ + a|u� |γ
)

](p/γ)−1
|∇ui|γ−2∇ui

⎞

⎠

= −
[

n
∑

�=1

(|∇u� |γ + a|u� |γ
)

](p/γ)−1
a|ui|γ−2ui +

m
∑

j=1

dj

(

n
∑

�=1

|u� |γj
)(qj/γj )−1

|ui|γj−2ui + Fi in Ω,

ui = 0 on ∂Ω as i = 1, . . . , n.
(2.131)

Let us verify that

(2.129)
[

resp. (2.130)
]

=⇒
((

ih16

)

holds ∀h ∈ {1, . . . , n} with F = Sλ ∩ V +(D2, . . . , Dm)
[

resp. F = Sλ ∩ V +(D1, . . . , Dm)
]

)

.

(2.132)
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Let v = (v1, . . . , vn) ∈ F with, for example, v1 ≡ 0. Let j0 ∈ {2, . . . , m} (resp. j0 ∈
{1, . . . , m}) and �0 ∈ {2, . . . , m} such that dj0v�0 /≡ 0. Let us suppose �0 = 2 and set v(s) =
((1 − s)1/γv2, s 1/γ

v2, v3, . . . , vn). Then,

A(v(s)) = 1 ∀s ∈ [0, 1], ∃s0 ∈ [0, 1[ : Dj0(v(s)) > 0 ∀s ∈ [s0, 1],

lim
s→ 1−

d

ds
Dj0(v(s)) = −∞, lim′′

s→ 1−

d

ds
Dj(v(s)) < +∞ as j /= j0.

(2.133)

Proposition 2.33. Under assumption (2.129) (resp. (2.130)), system (2.131) with F ≡ 0 has at least
two weak solutions u0 and −u0, and we have as i = 1, . . . , n:

u0i ∈ L∞(Ω), u0i ≥ 0, u0i /≡ 0. (2.134)

Consequently,

a ≡ 0 =⇒ u0i ∈ C
1,α0i
�oc (Ω), a ≡ 0 and (2.129) holds with p ≤ γ1 [resp. (2.130) holds] =⇒ u0i > 0.

(2.135)

Proof. The statement is due to ([1], Theorem 2.2, Remark 2.3), [5], Proposition A.3, [6].

Proposition 2.34 (see [1], Theorems 3.1, 3.2). Under assumption (2.129) (resp. (2.130)),
system (2.131) with F /≡ 0 and ‖F‖∗ sufficiently small has at least two different weak solutions
u1 and u2 (ui = τivi, τ i = const. > 0, v1 ∈ V +(F) ∩ Sλ, v2 ∈ Sλ ∩ V +(D2, . . . , Dm) [resp. v2 ∈
Sλ ∩ V +(D1, . . . , Dm)]), and we have u2h /≡ 0 even if Fh ≡ 0.

Remark 2.35. If
⋃m
j=2{x ∈ Ω : dj(x) > 0} [resp.

⋃m
j=1{x ∈ Ω : dj(x) > 0}] = Ω (within a set with

measure equal to zero), with the same reasoning used about (2.132), we get that

(

ih16

)

holds ∀h ∈ {1, . . . , n} with F = V +(F) ∩ Sλ, (2.136)

hence, u1h /≡ 0 even if Fh ≡ 0.

3. Neumann Problems

Let Ω ⊆ RN be an open, bounded, and connected C0,1 set. Let | · |N, p and p̃ as in Section 2, σ
the measure on ∂Ω, ν the outward unit normal to ∂Ω, p̂ = (N − 1)p/(N − p) if p < N, p̂ = ∞ if
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p ≥N. Let us assume

W =
(

W1,p(Ω)
)n

(n ≥ 1) with ‖v‖ =

(

n
∑

�=1

∫

Ω

[|∇v� |p + |v� |p
]

dx

)1/p

∀v = (v1, . . . , vn) ∈W,

B�(v�) = p−1
∫

Ω
b� |v� |pdx ∀v� ∈W1,p(Ω), where b� ∈ L∞(Ω) \ {0},

̂B�(v�) = p−1
∫

∂Ω

̂b� |v� |pdσ ∀v� ∈W1,p(Ω), where ̂b� ∈ L∞(∂Ω) \ {0}.
(3.1)

We note that for each v� ∈ W1,p(Ω) we set γ0(v�) = v� where γ0 is the trace operator from
W1,p(Ω) intoW1−(1/p),p(∂Ω). Morever we consider the functionals A (as in (i11)) such that

∃c̃ > 0 : A(v) ≥ p−1c̃
n
∑

�=1

∫

Ω
|∇v� |pdx ∀v ∈W. (3.2)

It is easy to verify the following.

Proposition 3.1. Let b�, ̂b� ≥ 0 as � = 1, . . . , n. Then,

(i13) holds if λ�, μ� ≤ 0, λ� + μ� < 0 as � = 1, . . . , n. (3.3)

Let us set I = {1, . . . , n} and for each I∗ ⊆ I

C∗ = {c = (c1, . . . , cn) ∈ Rn : c� = 0 if � ∈ I \ I∗, c� /= 0 for some � ∈ I∗}. (3.4)

Let us introduce the conditions:

(i31) there exists I∗ ⊆ I : Dm(c) < 0 for all c ∈ C∗;

(i32) there exist I∗ ⊆ I andm1 ∈ {1, . . . , m} : Dm1(c) < 0 and A(c) = 0 for all c ∈ C∗.

Proposition 3.2. Let (i31) holds with I∗ /= I. Let V +(Dm)/= ∅. Let b�, ̂b� ≥ 0 as � ∈ I \ I∗. Then with
λ�, μ� ≤ 0 and λ� + μ� < 0 as � ∈ I \ I∗ ∃δ∗ > 0: (i14) holds if |λ� |, |μ� | ≤ δ∗ as � ∈ I∗.

Proof. Reasoning by contradiction, for each k ∈ N there exist λk
�
, μk

�
∈ [−k−1, k−1], with � ∈ I∗,

and vk = (vk1 , . . . , v
k
n) ∈ V +(Dm) such that

∥

∥

∥vk
∥

∥

∥

p
> k

⎧

⎨

⎩

A
(

vk
)

−
∑

�∈I\I∗
p−1

[

λ�

∫

Ω
b�

∣

∣

∣vk�

∣

∣

∣

p
dx + μ�

∫

∂Ω

̂b�
∣

∣

∣vk�

∣

∣

∣

p
dσ

]

−
∑

�∈I∗
p−1

[

λk�

∫

Ω
b�

∣

∣

∣vk�

∣

∣

∣

p
dx + μk�

∫

∂Ω

̂b�
∣

∣

∣vk�

∣

∣

∣

p
dσ

]

}

,

(3.5)
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then, set wk = ‖vk‖−1vk, we have

Dm

(

wk
)

> 0, p−1

⎧

⎨

⎩

c̃
n
∑

�=1

∫

Ω

∣

∣

∣∇wk
�

∣

∣

∣

p
dx −

∑

�∈I\I∗

[

λ�

∫

Ω
b�

∣

∣

∣wk
�

∣

∣

∣

p
dx + μ�

∫

∂Ω

̂b�
∣

∣

∣wk
�

∣

∣

∣

p
dσ

]

⎫

⎬

⎭

< k−1 +
∑

�∈I∗
p−1

[

λk�

∫

Ω
b�

∣

∣

∣wk
�

∣

∣

∣

p
dx + μk�

∫

∂Ω

̂b�
∣

∣

∣wk
�

∣

∣

∣

p
dσ

]

.

(3.6)

Since ‖wk‖ = 1, there exists w ∈W such that (within a subsequence)

wk−→ w weakly in W, wk−→ w strongly in (Lp(Ω))n, wk−→ w strongly in (Lp(∂Ω))n.
(3.7)

Consequently, from (3.6), passing to limit as k → +∞, we get

Dm(w) ≥ 0,
n
∑

�=1

∫

Ω
|∇w� |pdx = 0,

∑

�∈I\I∗

[

λ�

∫

Ω
b� |w� |pdx + μ�

∫

∂Ω

̂b� |w� |pdσ
]

= 0,

(3.8)

from which w = 0, and then the contradiction 0 = limk→+∞‖wk‖ = 1.

Proposition 3.3. Let (i31) holds with I∗ = I. Let V +(Dm)/= ∅. Then,

∃δ∗ > 0 : (i14) holds if |λ� |,
∣

∣μ�
∣

∣ ≤ δ∗ as � = 1, . . . , n. (3.9)

The proof as in Proposition 3.2.

Proposition 3.4. Let (i32) holds with I∗ /= I. Let
∫

Ω b�dx,
∫

∂Ω
̂b�dσ > 0 as � ∈ I∗. Then,

V −
λμ ∩ S(Dm1)/= ∅ ∀(λ�, μ�

)

�∈I with λ�, μ� ≥ 0 ∀� ∈ I∗, λ� + μ� > 0 for some � ∈ I∗.
(3.10)

Moreover, if b�, ̂b� ≥ 0 as � ∈ I \ I∗, we have
with λ�, μ� ≤ 0 and λ� + μ� < 0 as � ∈ I \ I∗ ∃δ∗ > 0 : (i15) holds

if λ�, μ� ∈ [0, δ∗] ∀� ∈ I∗ and λ� + μ� > 0 for some � ∈ I∗.

Proof. The first statement is evident. Let us prove the second one. Reasoning by contradiction,
for each k ∈ N there exist λk

�
, μk

�
∈ [0, k−1], with � ∈ I∗ and λk

�
+ μk

�
> 0 for some � ∈ I∗, and a

sequence (vk,h)h∈N
such that

(

vk,h
)

h∈N

⊆ V −
λkμk

∩ S(Dm1)
(

λk� = λ�, μk� = μ� as � ∈ I \ I∗
)

, sup
h

∥

∥

∥vk,h
∥

∥

∥ = +∞. (3.11)
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Let {hk} ⊆ N be a strictly increasing sequence such that ‖vk,hk‖ → +∞ as k → +∞.
Let wk = ‖vk,hk‖−1vk,hk . Then, Dm1(w

k) = −‖vk,hk‖−qm1 and

p−1

⎧

⎨

⎩

c̃
n
∑

�=1

∫

Ω

∣

∣

∣∇wk
�

∣

∣

∣

p
dx −

∑

�∈I\I∗

[

λ�

∫

Ω
b�

∣

∣

∣wk
�

∣

∣

∣

p
dx + μ�

∫

∂Ω

̂b�
∣

∣

∣wk
�

∣

∣

∣

p
dσ

]

⎫

⎬

⎭

< p−1
∑

�∈I∗

[

λk�

∫

Ω
b�

∣

∣

∣wk
�

∣

∣

∣

p
dx + μk�

∫

∂Ω

̂b�
∣

∣

∣wk
�

∣

∣

∣

p
dσ

]

,

(3.12)

moreover, there exists w ∈W such that (within a subsequence)

wk −→ w weakly in W, wk −→ w strongly in (Lp(Ω))n,

wk −→ w strongly in (Lp(∂Ω))n.
(3.13)

Consequently,

Dm1(w) = 0,
n
∑

�=1

∫

Ω
|∇w� |pdx = 0,

∑

�∈I\I∗

[

λ�

∫

Ω
b� |w� |pdx + μ�

∫

∂Ω

̂b� |w� |pdσ
]

= 0,

(3.14)

then w = 0, and the contradiction 0 = limk→+∞‖wk‖ = 1.

Proposition 3.5. Let (i32) holds with I∗ = I. Let
∫

Ω b�dx,
∫

∂Ω
̂b�dσ > 0 as � = 1, . . . , n. Then,

V −
λμ ∩ S(Dm1)/= ∅ if λ�, μ� ≥ 0 ∀� ∈ I and λ� + μ� > 0 for some � ∈ I,

∃δ∗ > 0 : (i15) holds if λ�, μ� ∈ [0, δ∗] ∀� ∈ I and λ� + μ� > 0 for some � ∈ I.
(3.15)

The proof as in Proposition 3.4.

Remark 3.6. It is suitable to make some clarifications.

(i) The assumption “b�, ̂b� ≥ 0” (see Propositions 3.1, 3.2, and 3.4) can be replaced by
“b�, ̂b� do not change sign.” In this case we can choose λ� and μ� such that λ�b� ≤
0, μ�̂b� ≤ 0 and |λ� | + |μ� | > 0.

(ii) The assumption “
∫

Ω b�dx,
∫

∂Ω
̂b�dσ > 0” (see Propositions 3.4 and 3.5) can be

replaced by “
∫

Ω b�dx,
∫

∂Ω
̂b�dσ /= 0”. In this case, we can choose λ� and μ� such that

λ�
∫

Ω b�dx, μ�
∫

∂Ω
̂b�dσ ≥ 0 and |λ� |+|μ� | > 0 for some �, with |λ� |, |μ� | ≤ δ∗ instead

of λ�, μ� ∈ [0, δ∗].

(iii) When for each � ∈ {1, . . . , n} b�, ̂b� do not change sign, then the conclusion of the
Proposition 3.2 [resp. Proposition 3.3] holds even if λ�b�, μ�̂b� ≤ 0 and |λ� |+|μ� | > δ∗
as � ∈ I∗ (resp. as � = 1, . . . , n).

In order to simplify the presentation of the applications, we suppose in the next
b� ∈ L∞(Ω) \ {0} and ̂b� ∈ L∞(∂Ω) \ {0}, while the additional assumptions on b�, ̂b� and
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the assumptions on
∫

Ω b�dx,
∫

∂Ω
̂b�dσ (the same of Propositions 3.1, 3.2, 3.4, and 3.5) will be

pointed out case by case.

Passing to the applications (with n > 1), we recall that in [3] Pohozaev and Véron in
the case n = 1 have studied the Neumann problem:

−div
(

|∇u|p−2∇u
)

= λb(x)|u|p−2u + c(x)|u|s−2u + a(x)|u|q−2u in Ω,

|∇u|p−2 ∂u
∂ν

= k(x)|u|r−2u on ∂Ω.
(3.16)

The existence theorems proved by these authors can be got by using some results of ([1],
Theorems 2.1, 2.2, 4.1, and 4.2; Remarks 2.1, 2.3, 4.1, and 4.4), Propositions 3.3 and 3.5.

Application 3.7. Let for each v = (v1, . . . , vn) ∈W :

A(v) = p−1
n
∑

�=1

∫

Ω
|∇v� |pdx, D1(v) = q−11

⎡

⎣

∫

∂Ω

(

n
∑

�=1

d� |v� |γ
)q1/γ

dσ −
n
∑

�=1

∫

∂Ω

̂d� |v� |q1dσ
⎤

⎦,

(3.17)

where

1 < γ < q1 < p̂, q1 /= p, d�, ̂d� ∈ L∞(∂Ω), d�, ̂d� > 0. (3.18)

Let us consider the system:

− div
(

|∇ui|p−2∇ui
)

= λibi|ui|p−2ui in Ω,

|∇ui|p−2 ∂ui
∂ν

= μîbi|ui|p−2ui +
(

n
∑

�=1

d� |u� |γ
)(q1/γ)−1

di|ui|γ−2ui

− ̂di|ui|q1−2ui on ∂Ω as i = 1, . . . , n.

(3.19)

Let us introduce the conditions:

∫

∂Ω

(

n
∑

�=1

d�

)q1/γ

dσ <

∫

∂Ω

̂d dσ
(

̂d = min
{

̂d1, . . . , ̂dn
})

, (3.20)

∃Γ ⊆ ∂Ω : σ(Γ) > 0,

(

n
∑

�=1

d�

)q1/γ

>
n
∑

�=1

̂d� on Γ, (3.21)

∫

Ω
b�dx > 0,

∫

∂Ω

̂b�dσ > 0 as � = 1, . . . , n. (3.22)
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Evidently (3.20) ⇒ D1(c) < 0 for all c ∈ Rn \ {0}. Moreover (3.21) ⇒ V +(D1)/= ∅
(Proposition A.2). Hence (Propositions 3.3 and 3.5)

(3.20) and (3.21)

=⇒ (∃δ∗1 > 0 : (i14) holds if |λ� |,
∣

∣μ�
∣

∣ ≤ δ∗1 ∀� ∈ {1, . . . , n}), (3.23)

(3.20) and (3.22)

=⇒ (∃δ∗2 > 0 (i15) holds if λ�, μ� ∈
[

0, δ∗2
] ∀� ∈ {1, . . . , n}, λ� + μ� > 0 for some �

)

.

(3.24)

Proposition 3.8 (see ([1], Theorems 2.1 and 4.1; Remarks 2.1 and 4.1); Proposition A.4; [5, 6]).
Under assumption (3.18), we have:

(i) When (3.20) and (3.21) hold, with λ�, μ� as in (3.23) system (3.19) has at least two weak
solutions u0 and −u0 (u0 = τ0v0, τ0 = const. > 0, v0 ∈ Sλμ ∩ V +(D1)), and it results in

u0i ∈ L∞(Ω) ∩ C1,α0i
�oc (Ω), u0i ≥ 0 as i = 1, . . . , n, u0i > 0 if u0i /≡ 0; (3.25)

(ii) When (3.20) and (3.22) hold, with λ�, μ� as in (3.24) system (3.19) has at least two weak
solutions u and −u (u = τ v, τ = const. > 0, v ∈ V −

λμ ∩ S(D1)), and it results in

ui ∈ L∞(Ω) ∩ C1,αi
�oc(Ω), ui ≥ 0 as i = 1, . . . , n, ui > 0 if ui /≡ 0. (3.26)

Consequently, when (3.20)–(3.22) hold, with λ�, μ� as in (3.24) andmin{δ∗1, δ∗2} instead of δ∗2 system
(3.19) has at least four different weak solutions.

Proposition 3.9. If γ < p < q1, then u0i > 0 as i = 1, . . . n.

Proof. It is sufficient (Remark 1.1) to verify that

(

ih16

)

holds as h = 1, . . . , n with F = Sλμ ∩ V +(D1). (3.27)

Let v = (v1, . . . , vn) ∈ V +(D1) ∩ Sλμ. Let, for example, v1 ≡ 0. Since
∫

∂Ω (
∑

� /= 1 d� |v� |γ)q1/γdσ > 0, there exists Γ+ ⊆ ∂Ω such that

σ(Γ+) > 0,
∑

� /= 1

d� |v� |γ > 0 on Γ+. (3.28)

Let K ⊆ Ω a compact set and Ω′ an open set such that

|K|N > 0, K ⊆ Ω′, Ω′ ⊆ Ω. (3.29)
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Since Propositions A.1 and A.2, there exist a compact set ̂Γ+ ⊆ Γ+, with σ(̂Γ+) > 0, and
(ϕ1ε)0<ε<ε0 , (ϕ2ε)0<ε<ε0 ⊆ C∞

0 (RN) such that

0 ≤ ϕ1ε ≤ 1, supp ϕ1ε ⊆ Ω′, ϕ1ε −→ χ strongly in Ls(Ω)
∫

Ω

∣

∣∇ϕ1ε
∣

∣

s
dx −→ +∞ as ε −→ 0+ ∀s ∈ [1,+∞[,

0 ≤ ϕ2ε ≤ 1, supp ϕ2ε ⊆ RN \Ω′, ϕ2ε −→ χ̂ strongly in Ls(∂Ω),
∫

Ω
ϕs2εdx −→ 0 as ε −→ 0+ ∀s ∈ [1,+∞[,

(3.30)

where χ (resp. χ̂) is the characteristic function of K (resp. ̂Γ+). Let us choose ε such that

δ = p−1
[∫

Ω

∣

∣∇ϕε
∣

∣

p
dx − λ1

∫

Ω
b1ϕ

p
εdx − μ1

∫

∂Ω

̂b1ϕ
p
εdσ

]

> 0,

∫

∂Ω

⎛

⎝

∑

� /= 1

d� |v� |γ
⎞

⎠

(q1/γ)−1

d1ϕ
γ
εdσ > 0

(

ϕε = ϕ1ε + ϕ2ε
)

,

(3.31)

and we set v(s) = ((1 − s)1/pδ−1/pϕε, s1/pv2, . . . , s1/pvn). Then,

Hλμ(v(s)) = 1 ∀s ∈ [0, 1], ∃s0 ∈ [0, 1[ : D1(v(s)) > 0 ∀s ∈ [s0, 1],

lim
s→ 1−

d

ds
D1(v(s)) = −∞.

(3.32)

Proposition 3.10. If

d
q1/γ

�
< ̂d� as � = 1, . . . , n, (3.33)

λ� + μ� > 0 as � = 1, . . . , n, (3.34)

then ui > 0 as i = 1, . . . , n.

Proof. We recall that ([1], Theorem 4.1)

Hλμ(v) = inf
{

Hλμ(v) : v ∈ V −
λμ ∩ S(D1)

}

. (3.35)

Reasoning by contradiction let, for example, v1 ≡ 0. As c1 = const. > 0 and

g(s, τ) = D1(sc1, τv2, . . . , τvn) = q−11 [
∫

∂Ω (d1sγc
γ

1 + τ
γ
∑

� /= 1 d�(v�)
γ)
q1\γ

dσ − sq1cq11
∫

∂Ω
̂d1dσ −

τq1
∑

� /= 1

∫

∂Ω
̂d�(v�)

q1dσ] for all s, τ ≥ 0, we have g(0, τ) = −τq1 > −1 for all τ ∈]0, 1[ and
since (3.33) lims→+∞g(s, τ) = −∞ for all τ ≥ 0. Then for all τ ∈]0, 1[, it is possible to choose
s(τ) > 0 such that g(s(τ), τ) = −1. Let us add that there exist s0 > 0 and τ0 ∈]0, 1[ such that
(∂g/∂s)(s, τ) > 0 for all (s, τ) ∈]0, s0[x]τ0, 1[.
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Let now {τn} ⊆]τ0, 1[ and lim τn = 1. Since g(s(τn), τn) = −1, {s(τn)} is necessarily
bounded. Then (within a subsequence) lim s(τn) = ω ≥ s0. Consequently, from the
inequality:

Hλμ(v) ≤ Hλμ(v(τn)), where v(τn) = (s(τn)c1, τnv2, . . . , τnvn) ∈ V −
λμ ∩ S(D1), (3.36)

as n → +∞ and from (3.34), we get the contradiction:

Hλμ(v) ≤ −p−1ωpc
p

1

(

λ1

∫

Ω
b1dx + μ1

∫

∂Ω

̂b1dσ

)

+Hλμ(v) < Hλμ(v). (3.37)

Remark 3.11. Let us note that the conditions (3.20), (3.21), and (3.33) are compatible.

Application 3.12. Let for each v = (v1, . . . , vn) ∈W :

A(v) = p−1
[

n−1
∑

�=1

∫

Ω
|∇v� |pdx +

∫

Ω

(

|∇vn|γ +
∫

∂Ω
|vn|γdσ

)p/γ

dx

]

,

D1(v) = q−11

[

n−1
∑

�=1

∫

Ω
ρ� |v� + vn|q1−1(v� + vn)dx −

n
∑

�=1

∫

∂Ω

̂d� |v� |q1dσ
]

,

(3.38)

where

1 < γ < p, 1 < q1 < p̂, q1 /= p, ρ� ∈ L∞(Ω), ρ� > 0, ̂d� ∈ L∞(∂Ω), ̂d� > 0.
(3.39)

Let us consider the system:

− div
(

|∇ui|p−2∇ui
)

= λibi|ui|p−2ui + ρi|ui + un|q1−1 in Ω as i = 1, . . . , n − 1,

− div

[

(

|∇un|γ +
∫

∂Ω
|un|γdσ

)(p/γ)−1
|∇un|γ−2∇un

]

= λnbn|un|p−2un +
n−1
∑

�=1

ρ� |u� + un|q1−1 in Ω,

|∇ui|p−2 ∂ui
∂ν

= μîbi|ui|p−2ui − ̂di|ui|q1−2ui on ∂Ω as i = 1, . . . , n − 1,
(

|∇un|γ +
∫

∂Ω
|un|γdσ

)(p/γ)−1
|∇un|γ−2 ∂un

∂ν

= μn̂bn|un|p−2un −
[

∫

Ω

(

|∇un|γ +
∫

∂Ω
|un|γdσ

)(p/γ)−1
dx

]

|un|γ−2un

− ̂dn|un|q1−2un on ∂Ω.
(3.40)
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Pointing out that V +(D1)/= ∅, we advance the conditions

∫

Ω

(

n−1
∑

�=1

ρ�

)

dx <

∫

∂Ω

̂d dσ
(

̂d = min
{

̂d1, . . . , ̂dn
})

, (3.41)

∫

Ω
b�dx > 0,

∫

∂Ω

̂b�dσ > 0 as � = 1, . . . , n − 1, (3.42)

bn ≥ 0, ̂bn ≥ 0. (3.43)

Taking into account that

(3.41) =⇒ D1(c1, . . . , cn−1, 0) < 0 ∀(c1, . . . , cn−1) ∈ Rn−1 \ {0}, (3.44)

we have (Propositions 3.2 and 3.4)

(3.41) and (3.43)

=⇒ (

with λn, μn ≤ 0, λn + μn < 0 ∃δ∗1 > 0 : (i14) holds if |λ� |,
∣

∣μ�
∣

∣ ≤ δ∗1 as � = 1, . . . , n − 1
)

,

(3.45)

(3.41)–(3.43)

=⇒ (

with λn, μn ≤ 0, λn + μn < 0 ∃δ∗2 > 0 : (i15) holds

if λ�, μ� ∈
[

0, δ∗2
]

as � = 1, . . . , n − 1 and λ� + μ� > 0 for some � ).

(3.46)

Proposition 3.13 (see ([1], Theorems 2.1 and 4.1; Remark 2.1); Proposition A.4; [5, 6]). Under
assumption (3.39), we have

(i) When (3.41) and (3.43) hold, with λ�, μ� as in (3.45) system (3.40) has at least one weak
solution u0 (u0 = τ0v0, τ0 = const. > 0, v0 ∈ Sλμ ∩ V +(D1)), and it results in

u0i ∈ L∞(Ω) ∩ C1,α0i
�oc (Ω), u0i > 0 as i = 1, . . . , n − 1,

u0n ∈ L∞(Ω), u0n ≥ 0, u0n /≡ 0;
(3.47)

(ii) When (3.41)–(3.43) hold, with λ�, μ� as in (3.46) system (3.40) has at least one weak
solution u (u = τ v, τ = const. > 0, v ∈ V −

λμ ∩ S(D1)), and it results in ui /≡ 0 as
i = 1, . . . , n.

Consequently, when (3.41)–(3.43) hold, with λ�, μ� as in (3.46) and min{δ∗1, δ∗2} instead of
δ∗2 system (3.40) has at least two different weak solutions.

About the properties of u0i and ui expressed by Proposition 3.13, it is necessary to
remark that if u = (u1, . . . , un) is a nontrivial weak solution to system (3.40), then ui /≡ 0 as
i = 1, . . . , n. In fact,

un ≡ 0 =⇒ ui ≡ 0 as i = 1, . . . , n − 1, ui ≡ 0 for some i ∈ {1, . . . , n − 1} =⇒ un ≡ 0.
(3.48)
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Application 3.14. Let n = 2 and for any v = (v1, v2) ∈W :

A(v) = p−1
2

∑

�=1

∫

Ω
|∇v� |pdx, Dj(v) = q−1j

∫

Ω
ρj

∣

∣

∣

∣

∣

2
∑

�=1

dj� |v� |γj
∣

∣

∣

∣

∣

qj/γj

dx as j = 1, . . . , m − 1,

Dm(v) = q−1m

∫

∂Ω
ρm

(

2
∑

�=1

|v� |γm
)qm/γm

dσ,

(3.49)

where

1 < γj < qj as j = 1, . . . , m, p < q1 < · · · < qm < p̂, ρj ∈ L∞(Ω), ρj < 0,

dj� ∈ L∞(Ω) \ {0}, ρm ∈ L∞(∂Ω).
(3.50)

Let us consider the system:

−div
(

|∇ui|p−2∇ui
)

= λibi|ui|p−2ui

+
m−1
∑

j=1

ρj

∣

∣

∣

∣

∣

2
∑

�=1

dj� |u� |γj
∣

∣

∣

∣

∣

(qj/γj )−2( 2
∑

�=1

dj� |u� |γj
)

dji|ui|γj−2ui in Ω,

|∇ui|p−2 ∂ui
∂ν

= μîbi|ui|p−2ui + ρm
(

2
∑

�=1

|u� |γm
)(qm/γm)−1

|ui|γm−2ui on ∂Ω as i = 1, 2.

(3.51)

Let us introduce the conditions:

ρ+m /≡ 0
(

=⇒ V +(Dm)/= ∅ (

Proposition A.2
))

, (3.52)
∫

∂Ω
ρmdσ < 0

(

=⇒ Dm(c1, c2) < 0 ∀(c1, c2) ∈ R2 \ {0}
)

, (3.53)

∫

Ω
b�dx > 0,

∫

∂Ω

̂b�dσ > 0 as � = 1, 2, (3.54)

we have (Propositions 3.3 and 3.5)

(3.52) and (3.53) =⇒ (∃δ∗1 > 0 : (i14) holds if |λ� |,
∣

∣μ�
∣

∣ ≤ δ∗1 as � = 1, 2
)

, (3.55)

(3.53) and (3.54)

=⇒ (∃δ∗2 > 0 : (i15) holds if λ�, μ� ∈
[

0, δ∗2
]

as � = 1, 2, λ� + μ� > 0 for some �
)

.

(3.56)

Proposition 3.15 (see ([1], Theorems 2.2 and 4.2; Remarks 2.3 and 4.4); Proposition A.4; [5]).
Under assumption (3.50), we have
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(i) When (3.52) and (3.53) hold, with λ�, μ� as in (3.55) system (3.51) has at least two weak
solutions u0 and −u0 (u0 = τ0v0, τ0 = const. > 0, v0 ∈ Sλμ ∩ V +(Dm)), and it results
in

u0i ∈ L∞(Ω) ∩ C1,α0i
�oc (Ω), u0i ≥ 0 as i = 1, 2; (3.57)

(ii) When (3.53) and (3.54) hold, with λ�, μ� as in (3.56) system (3.51) has at least two weak
solutions u and −u (u = τ v, τ = const. > 0, v ∈ V −

λμ
∩ S(Dm)), and it results in

ui ∈ L∞(Ω) ∩ C1,αi
�oc(Ω), ui ≥ 0 as i = 1, 2. (3.58)

Consequently, when (3.52)–(3.54) hold, with λ�, μ� as in (3.56), and min{δ∗1, δ∗2} instead of
δ∗2 system (3.51) has at least four different weak solutions.

Proposition 3.16. Under the assumption p ≤ 2γj and dj1 · dj2 < 0 as j = 1, . . . , m − 1, we have

(i) if γj0 < p for some j0 ∈ {1, . . . , m}, then u0i > 0 as i = 1, 2;

(ii) if γj0 < γm ≤ p for some j0 ∈ {1, . . . , m − 1}, then ui > 0 as i = 1, 2.

Proof. First of all u0i is a weak supersolution to the equation:

−div
(

|∇ui|p−2∇ui
)

= λibi|ui|p−2ui +
m−1
∑

j=1

ρj
∣

∣

∣dj1
(

u01

)γj
+ dj2

(

u02

)γj
∣

∣

∣

(qj/γj )−2
d2
ji|ui|2γj−2ui in Ω.

(3.59)

Also, ui has a similar property. Then [6] it is sufficient to verify that

u0i /≡ 0, (3.60)

ui /≡ 0. (3.61)

About (3.60), let us prove (Remark 1.1) that

(

ih16

)

holds as h = 1, 2 with F = Sλμ ∩ V +(Dm). (3.62)

Let v = (v1, v2) ∈ V +(Dm) ∩ Sλμ. Let, for example, v1 ≡ 0. Let

K ⊆ Ω a compact set : |K|N > 0, v2 /≡ 0 in K,

Ω′ an open set : K ⊆ Ω′, Ω′ ⊆ Ω,

Γ ⊆ ∂Ω : σ(Γ) > 0, ρm|v2| > 0 on Γ.

(3.63)
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Since Propositions A.1 and A.2, there exists ϕ ∈ C∞
0 (RN), with 0 ≤ ϕ ≤ 1 and supp ϕ ⊆

Ω′ ∪ (RN \Ω′), such that

∫

Ω
ρj

∣

∣dj2|v2|γj
∣

∣

(qj/γj )−2|v2|γj ϕγj dj1dj2 dx > 0 as j = 1, . . . , m − 1,
∫

∂Ω
ρm|v2|qm−γmϕγmdσ > 0,

δ = p−1
[∫

Ω

∣

∣∇ϕ∣∣pdx − λ1
∫

Ω
b1ϕ

pdx − μ1

∫

∂Ω

̂b1ϕ
pdσ

]

> 0.

(3.64)

Then with v(s) = ((1 − s)1/pδ−1/pϕ, s1/pv2), we have

Hλμ(v(s)) = 1 ∀s ∈ [0, 1], ∃s0 ∈ [0, 1[ : Dm(v(s)) > 0 ∀s ∈ [s0, 1],

lim
s→ 1−

d

ds
Dj0(v(s)) = −∞, lim

s→ 1−

d

ds
Dj(v(s)) < +∞ as j /= j0.

(3.65)

Passing to (3.61), let us introduce the function ψ(t, v) = ptp−1Hλμ(v) −
∑m

j=1 qjt
qj−1Dj(v), and

let us remember that ([1], Theorem 4.2)

∀v ∈ V −
λμ ∩ S(Dm)∃ | t(v) > 0 : ψ(t(v), v) = 0,

˜

˜E(v) = inf
{

˜

˜E(v) : v ∈ V −
λμ ∩ S(Dm)

}

,
(3.66)

where ˜

˜E(v) = (t(v))pHλμ(v) −
∑m

j=1 (t(v))
qjDj(v).

Reasoning by contradiction, let us set, for example, v1 ≡ 0 and set v(s) =
((1 − s)1/γmv2, s

1/γmv2). Since

Dm(v(s)) = −1 ∀s ∈ [0, 1], ∃s0 ∈ [0, 1[ : Hλμ(v(s)) < 0 ∀s ∈ [s0, 1],

lim
s→ 1−

d

ds
Dj0(v(s)) = −∞, lim

s→ 1−

d

ds
Dj(v(s)) < +∞ as j ∈ {1, . . . , m − 1} \ {

j0
}

,
(3.67)

as in Proposition 2.24, we get the contradiction:

˜

˜E(v) ≤ ˜

˜E(v(s)) < ˜

˜E(v) ∀s ∈ [s1, 1[ (s0 ≤ s1 < 1). (3.68)

Application 3.17. Let n > 2 and set for each v = (v1, . . . , vn) ∈W :

A(v) = p−1
n
∑

�=1

∫

Ω
|∇v� |pdx,

Dj(v) = q−1j
n
∑

�=1
� /= j

∫

Ω
ρj

∣

∣djj
∣

∣vj
∣

∣

γj + dj� |v� |γj
∣

∣

qj/γj dx as j = 1, . . . , n,

Dn+1(v) = q−1n+1

∫

∂Ω
ρn+1

(

n
∑

�=1

|v� |γn+1
)qn+1/γn+1

dσ,

(3.69)
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where

1 < γj < qj as j = 1, . . . , n + 1, p < q1 < · · · < qn+1 < p̂, ρj ∈ L∞(Ω), ρj < 0,

dj� ∈ L∞(Ω) \ {0}, ρn+1 ∈ L∞(∂Ω).
(3.70)

Let us consider the system:

− div
(

|∇ui|p−2∇ui
)

= λibi|ui|p−2ui +
∑

� /= i

ρi
∣

∣dii|ui|γi+di� |u� |γi
∣

∣

(qi/γi)−2(dii|ui|γi+di� |u� |γi
)

dii|ui|γi−2ui

+
∑

j /= i

ρj
∣

∣djj
∣

∣uj
∣

∣

γj + dji|ui|γj
∣

∣

(qj/γj )−2(djj
∣

∣uj
∣

∣

γj + dji|ui|γj
)

dji|ui|γj−2ui in Ω,

|∇ui|p−2 ∂ui
∂ν

= μîbi|ui|p−2ui + ρn+1
(

n
∑

�=1

|u� |γn+1
)(qn+1/γn+1)−1

|ui|γn+1−2ui on ∂Ω as i = 1, . . . , n.

(3.71)

Let us make the assumptions:

ρ+n+1 /≡ 0,
∫

∂Ω
ρn+1dσ < 0,

∫

Ω
b�dx > 0,

∫

∂Ω

̂b�dσ > 0 as � = 1, . . . , n. (3.72)

About Neumann’s problem (3.71), we have an existence result similar to the one of
Proposition 3.15 related to system (3.51). About the positive sign of the components of the
weak solutions u0 and u to system (3.71), as in Proposition 3.16, we show.

Proposition 3.18. Under the assumption p ≤ 2γj as j = 1, . . . , n and djj ·dj� < 0 as j, � ∈ {1, . . . , n}
with � /= j, we have

(i) if either γn+1 < p or γj < p for all j ∈ {1, . . . , n} \ {j0} for some j0, then u0i > 0 as
i = 1, . . . , n;

(ii) if γj < γn+1 ≤ p for all j ∈ {1, . . . , n} \ {j0} for some j0, then ui > 0 as i = 1, . . . , n.

The following remark deals also with Application 3.14.

Remark 3.19. Making in (3.50) (resp. (3.70)) the change

q1 < · · · < qm < p
[

resp. q1 < · · · < qn+1 < p
]

, (3.73)

system (3.51) (resp. (3.71)) has at least the two weak solutions u and −u ([1], Theorem
4.2; Remark 4.4). The components of u keep the properties that Propositions 3.15 and 3.16
(Proposition 3.15 and Proposition 3.18 resp.) underline.
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Application 3.20. Let for each v = (v1, . . . , vn) ∈W :

A(v) = p−1
n
∑

�=1

∫

Ω
|∇v� |pdx,

Dj(v) = q−1j

∫

∂Ω
ρj

∣

∣dj1
∣

∣vj
∣

∣

γj + dj2|vn|γj
∣

∣

qj/γj dσ as j = 1, . . . , n − 1,

Dn(v) =
(∫

∂Ω
|vn|γ̂ndσ

)(∫

Ω
ρn|vn|γndx

)

,

(3.74)

where

1 < γj < qj < p̂ as j = 1, . . . , n − 1, 1 < γn < p̃, 1 < γ̂n < p̂,

p < q1 < · · · < qn−1 < qn = γn + γ̂n,

ρj ∈ L∞(∂Ω), ρj < 0, dj1, dj2 ∈ L∞(∂Ω) \ {0}, ρn ∈ L∞(Ω).

(3.75)

Let us consider the system:

−div
(

|∇ui|p−2∇ui
)

= λibi|ui|p−2 in Ω as i = 1, . . . , n − 1,

−div
(

|∇un|p−2∇un
)

= λnbn|un|p−2un + γn
(∫

∂Ω
|un|γ̂ndσ

)

ρn|un|γn−2un in Ω,

|∇ui|p−2 ∂ui
∂ν

= μîbi|ui|p−2ui + ρi
∣

∣di1|ui|γi + di2|un|γi
∣

∣

(qi/γi)−2

× (

di1|ui|γi + di2|un|γi
)

di1|ui|γi−2ui on ∂Ω as i = 1, . . . , n − 1,

|∇un|p−2 ∂un
∂ν

= μn̂bn|un|p−2un +
n−1
∑

j=1

ρj
∣

∣dj1
∣

∣uj
∣

∣

γj + dj2|un|γj
∣

∣

(qj/γj )−2

× (

dj1
∣

∣uj
∣

∣

γj + dj2|un|γj
)

dj2|un|γj−2un
+ γ̂n

(∫

Ω
ρn|un|γndx

)

|un|γ̂n−2un on ∂Ω.

(3.76)

Let us introduce the conditions:

ρ+n /≡ 0
(

=⇒ V +(Dn)/= ∅ (

Propositions A.1 and A.2
))

, (3.77)
∫

Ω
ρndx < 0 (=⇒ Dn(0, . . . ., 0, cn) < 0 ∀cn ∈ Rn \ {0}), (3.78)

b� ≥ 0, ̂b� ≥ 0 as � = 1, . . . , n − 1, (3.79)
∫

Ω
bndx > 0,

∫

∂Ω

̂bndσ > 0. (3.80)
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We have (Propositions 3.2 and 3.4)

(3.77)–(3.79)

=⇒ (

with λ�, μ� ≤ 0, λ� + μ� < 0 as � = 1, . . . , n − 1 ∃δ∗1 > 0 :

(i14) holds if |λn|,
∣

∣μn
∣

∣ ≤ δ∗1
)

,

(3.81)

(3.78)–(3.80)

=⇒ (

with λ�, μ� ≤ 0, λ� + μ� < 0 as � = 1, . . . , n − 1

∃δ∗2 > 0 : (i15) holds if λn, μn ∈ [

0, δ∗2
]

and λn + μn > 0
)

.

(3.82)

Proposition 3.21 (see ([1], Theorems 2.2 and 4.2; Remarks 2.3 and 4.4); Proposition A.4; [5,
6]). Under assumption (3.75), we have

(i) When (3.77)–(3.79) hold, with λ�, μ� as in (3.81), system (3.76) has at least two weak
solutions u0 and −u0 (u0 = τ0v0, τ0 = const. > 0, v0 ∈ Sλμ ∩ V +(Dn)), and it results in
u0i ≥ 0 (i = 1, . . . , n), u0n /≡ 0. If γn < p̂, then

u0i ∈ L∞(Ω) ∩ C1,α0i
�oc (Ω) (i = 1, . . . , n),

u0i /≡ 0 =⇒ u0i > 0 (i = 1, . . . , n − 1);
(3.83)

(ii) When (3.78)–(3.80) hold, with λ�, μ� as in (3.82), system (3.76) has at least two weak
solutions u and −u (u = τv, τ = const. > 0, v ∈ V −

λμ
∩ S(Dn)), and it results in

ui ≥ 0 (i = 1, . . . , n), un /≡ 0. If γn < p̂, then

ui ∈ L∞(Ω) ∩ C1,αi
�oc(Ω) (i = 1, . . . , n),

ui /≡ 0 ⇒ ui > 0 (i = 1, . . . , n − 1).
(3.84)

Consequently, when (3.77)–(3.80) hold, with λ�, μ� as in (3.82), andmin{δ∗1, δ∗2} instead of δ∗2 system
(3.76) has at least four different weak solutions. Obviously, u0n > 0 and un > 0 if p ≤ γn < p̂.

The following proposition gives a sufficient condition to

u0i > 0 as i = 1, . . . , n − 1, (3.85)

ui > 0 as i = 1, . . . , n − 1. (3.86)

Proposition 3.22. Let γn < p̂. If γj < p and dj1 · dj2 < 0 as j = 1, . . . , n − 1, then (3.85) and (3.86)
hold.

Proof. Since

(v1, . . . , vn) ∈ V +(Dn) =⇒ (∃Γ ⊆ ∂Ω : σ(Γ) > 0, |vn| > 0 on Γ), (3.87)



Abstract and Applied Analysis 39

using Propositions A.1 and A.2, we can verify that

(

ih16

)

holds as h = 1, . . . , n − 1 with F = Sλμ ∩ V +(Dn), (3.88)

from which (Remark 1.1)we get (3.85).
Let us prove (3.86). Reasoning by contradiction, let us set, for example, v1 ≡ 0. If

v(s) = ((1 − s)1/pvn, v2, . . . , vn), we have

Dn(v(s)) = −1 ∀s ∈ [0, 1], ∃s0 ∈ [0, 1[ : Hλμ(v(s)) < 0 ∀s ∈ [s0, 1],

lim
s→ 1−

d

ds
D1(v(s)) = −∞.

(3.89)

Then as in Proposition 3.16, we get a contradiction.

Remark 3.23. Making in (3.75) the change:

1 < γj < qj as j = 1, . . . , n − 1, 1 < γn, 1 < γ̂n, q1 < · · · < qn = γn + γ̂n < p,
(3.90)

system (3.76) has at least the two weak solutions u and −u ([1], Theorem 4.2; Remark 4.4).
The components of u, all bounded, are locally Hölderian with their first derivatives. If dj1 ·
dj2 < 0 as j = 1, . . . , n − 1, then (3.86) holds.

Application 3.24. Let for each v = (v1, . . . , vn) ∈W :

A(v) = p−1
n
∑

�=1

∫

Ω

(

|∇v� |γ +
∫

Ω
|v� |γdx

)p/γ

dx,

Dj(v) = q−1j

∫

∂Ω

(

n
∑

�=1

|v� |γ
)qj/γ

dσ as j = 1, . . . , m − 1, Dm(v) = q−1m

∫

Ω

(

n
∑

�=1

|v� |γ
)qm/γ

dx,

(3.91)

where

1 < γ < q1 < · · · < qm < p. (3.92)
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Let us consider the system:

− div

[

(

|∇ui|γ +
∫

Ω
|ui|γdx

)(p/γ)−1
|∇ui|γ−2∇ui

]

= λibi|ui|p−2ui −
(

∫

Ω

(

|∇ui|γ +
∫

Ω
|ui|γdx

)(p/γ)−1
dx

)

|ui|γ−2ui

+

(

n
∑

�=1

|u� |γ
)(qm/γ)−1

|ui|γ−2ui in Ω,

(

|∇ui|γ +
∫

Ω
|ui|γdx

)(p/γ)−1
|∇ui|γ−2 ∂ui

∂ν

= μîbi|ui|p−2ui +
m−1
∑

j=1

(

n
∑

�=1

|u� |γ
)(qj/γ)−1

|ui|γ−2ui on ∂Ω as i = 1, . . . n.

(3.93)

We advance the condition:

b� ≥ 0, ̂b� ≥ 0 as � = 1, . . . n, (3.94)

and we note that (Proposition 3.1)

(3.94) =⇒ (

(i13) holds if λ�, μ� ≤ 0, λ� + μ� < 0 as � = 1, . . . , n
)

. (3.95)

Proposition 3.25. Under conditions (3.92) and (3.94), with λ�, μ� as in (3.95), system (3.93) has
at least two weak solutions u0 and −u0 (u0 = τ0v0, τ0 = const. > 0, v0 ∈ S+(D1, . . . , Dm)), and it
results in

u0i ∈ L∞(Ω), u0i ≥ 0, u0i /≡ 0 as i = 1, . . . , n. (3.96)

Proof. We recall that ([1], Section 2), set ψ(t, v) = ptp−1Hλμ(v) −
∑m

j=1 qjt
qj−1Dj(v), we have

∀v ∈ V +(D1, . . . , Dm) ∃ | t(v) > 0 : ψ(t(v), v) = 0,

the functional t(v) is C1 in V +(D1, . . . , Dm).
(3.97)

We introduce the functional ˜

˜E(v) = (t(v))pHλμ(v) − ∑m
j=1 (t(v))

qjDj(v) which is C1 in
V +(D1, . . . , Dm). We still remember that ([1], Theorem 2.3; Remark 2.5)

∃v0 ∈ S+(D1, . . . , Dm), with v0
i ≥ 0 as i = 1, . . . , n, such that

˜

˜E
(

v0
)

= inf
{

˜

˜E(v) : v ∈ S+(D1, . . . , Dm)
}

,

u0 = t
(

v0
)

v0 is a weak solution to system (3.93).

(3.98)
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The property u0i ∈ L∞(Ω) is due to Proposition A.4. Let us verify that u0i /≡ 0 as i =
1, . . . , n. Reasoning by contradiction, let us set, for example, v0

1 ≡ 0 and v0
2 /≡ 0. As v(s) =

((1 − s)1/γv0
2, s

1/γv0
2 , v

0
3 , . . . , v

0
n), we have

m
∑

j=1

Dj(v(s)) = 1 ∀s ∈ [0, 1],
[

d

ds
Hλμ(v(s))

]

s=1
> 0. (3.99)

Then, since (d/ds)˜˜E(v(s)) = (t(v(s)))p(d/ds)Hλμ(v(s)), there exists s0 ∈ [0, 1[ such that

(d/ds)˜˜E(v(s)) > 0 for all s ∈ [s0, 1], from which the contradiction:

˜

˜E
(

v0
)

≤ ˜

˜E(v(s)) < ˜

˜E
(

v0
)

, ∀s ∈ [s0, 1[. (3.100)

Application 3.26. Let for each v = (v1, . . . , vn) ∈W :

A(v) = p−1
n
∑

�=1

∫

Ω
|∇v� |pdx, D1(v) = q−11

∫

Ω
ρ

∣

∣

∣

∣

∣

n
∑

�=1

d�v�

∣

∣

∣

∣

∣

q1

dx,

D2(v) =

(

∫

Ω

[

n
∑

�=1

˜d� |v� |γ
]

dx

)(

∫

∂Ω
ρ̂

[

n
∑

�=1

̂d� |v� |γ̂
]

dσ

)

,

(3.101)

where

1 < γ < p̃, 1 < γ̂ < p̂, 1 < q1 < min
{

p̃, q2 = γ + γ̂
}

,

p < q2, ρ, d� ∈ L∞(Ω) \ {0}, ρ ≤ 0, ρd� /≡ 0

as some �, ˜d� ∈ L∞(Ω) \ {0}, ˜d� ≥ 0, ρ̂ ∈ L∞(Ω) \ {0}, ̂d� = const. > 0.

(3.102)

Let as � = 1, . . . , n F� = f� + ̂f� , where f� ∈ Lp′(Ω) (p′ = p/(p − 1)) and ̂f� ∈ (W1−(1/p),p(∂Ω))
∗

(dual space of W1−(1/p),p(∂Ω)). Let 〈〈F, v〉〉 =
∑n

�=1〈F�, v�〉 for all v = (v1, . . . , vn) ∈ W . Let
us consider the system:

− div
(

|∇ui|p−2∇ui
)

= λibi|ui|p−2ui + ρ

∣

∣

∣

∣

∣

n
∑

�=1

d�u�

∣

∣

∣

∣

∣

q1−2( n
∑

�=1

d�u�

)

di

+ γ

(

∫

∂Ω
ρ̂

[

n
∑

�=1

̂d� |u� |γ̂
]

dσ

)

˜di|ui|γ−2ui + fi in Ω,

|∇ui|p−2 ∂ui
∂ν

= μîbi|ui|p−2ui + γ̂
(

∫

Ω

[

n
∑

�=1

˜d� |u� |γ
]

dx

)

ρ̂ ̂di|ui|γ̂−2ui + ̂fi on ∂Ω as i = 1, . . . , n.

(3.103)
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Let us introduce the conditions:

(

ρ̂
)+
/≡ 0

(

=⇒ V +(D2)/= ∅ (

Proposition A.1 and A.2
))

,
∫

∂Ω
ρ̂ dσ < 0 (=⇒ D2(c) < 0 ∀c ∈ Rn \ {0}), (3.104)

and let us note that (Proposition 3.3)

(3.104) =⇒ (∃δ∗ > 0 : (i14) holds if |λ� |,
∣

∣μ�
∣

∣ ≤ δ∗ as � = 1, . . . , n
)

. (3.105)

Proposition 3.27. Under assumptions (3.102) and (3.104), if F /≡ 0 and ‖F‖∗ is sufficiently small,
then with λ�, μ� as in (3.105), system (3.103) has at least one weak solution ũ (ũ = τ̃ ṽ, τ̃ = const. >
0, ṽ ∈ Sλμ ∩ V +(D2)). When γ < p ≤ q1, it results in

ũh /≡ 0 even if Fh ≡ 0. (3.106)

Proof. The existence of ũ is due to ([1], Theorem 3.2). About (3.106), it is sufficiently
(Remark 1.1) to verify that

(

ih16

)

holds as h = 1, . . . , n with F = Sλμ ∩ V +(D2). (3.107)

Let v = (v1, . . . , vn) ∈ V +(D2) ∩ Sλμ with, for example, v1 ≡ 0. Let ψ =
∑

� /= 1 d�v� . Let K ⊆ Ω
be a compact set having positive measure such that

˜d1 > 0 in K if ρd1ψ ≡ 0, either ρd1ψ > 0 in K or ρd1ψ < 0 in K if ρd1ψ /≡ 0. (3.108)

Proposition A.1 lets us choose ϕ ∈ C∞
0 (RN) satisfying the following conditions:

δ = p−1
[∫

Ω

∣

∣∇ϕ∣∣pdx − λ1
∫

Ω
b1

∣

∣ϕ
∣

∣

p
dx

]

> 0,
∫

Ω

˜d1ϕ
γdx > 0 if ρd1ψ ≡ 0,

∫

Ω
ρd1

∣

∣ψ
∣

∣

q1−2ψϕdx > 0 if ρd1ψ /≡ 0.
(3.109)

Then with v(s) = ((1 − s)1/pδ−1/pϕ, s1/pv2, . . . , s1/pvn), we have

Hλμ(v(s)) = 1 ∀s ∈ [0, 1], D2(v(s)) > 0 ∀s ∈ [s0, 1] (0 ≤ s0 < 1),

lim
s→ 1−

d

ds
D1(v(s)) ∈ R, lim

s→ 1−

d

ds
D2(v(s)) = −∞ if ρd1ψ ≡ 0,

lim
s→ 1−

d

ds
D1(v(s)) = −∞, lim

s→ 1−

d

ds
D2(v(s)) ∈ R if ρd1ψ /≡ 0.

(3.110)

Now we replace conditions (3.104)with the following:

ρ̂ ≥ 0, b� ≥ 0, ̂b� ≥ 0 as � = 1, . . . , n. (3.111)
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Proposition 3.28. Under assumptions (3.102) and (3.111), if F /≡ 0 and ‖F‖∗ is sufficiently small,
then with λ�, μ� ≤ 0 and λ� + μ� < 0 as � = 1, . . . , n system (3.103) has at least two different weak
solution u1 and u2 (ui = τivi, τ i = const. > 0, v1 ∈ Sλμ ∩ V +(F), v2 ∈ Sλμ ∩ V +(D2)). When
γ < p ≤ q1, it results in

u2h /≡ 0 even if Fh ≡ 0. (3.112)

Proof. The existence of u1 and u2 is due to ([1], Theorems 3.1, 3.2, and 3.3; Remark 3.1).
Relation (3.112) is proved as in Proposition 3.27.

Appendix

In this appendix, we present some results used previously. The first one is trivial. The second
one is easy to prove. It is possible to show the third one and the fourth one with the technique
developed by Drabek in ([7, Lemma 3.2]). The symbols σ, p̂, and p̃ are the same introduced
in Section 3.

Proposition A.1. Let Ω be an open set of RN . Let K ⊆ Ω be a compact set with |K|N > 0. If Ω′ is an
open set such that K ⊆ Ω′ ⊆ Ω, then there exists a family of functions (ϕε)0<ε<ε0 ⊆ C∞

0 (Ω) such that

0 ≤ ϕε ≤ 1, supp ϕε ⊆ Ω′, ϕε −→ χ strongly in Ls(Ω),
∫

Ω

∣

∣∇ϕε
∣

∣

s
dx −→ +∞ as ε −→ 0+ ∀s ∈ [1,+∞[,

(A.1)

where χ is the characteristic function of K.

Proposition A.2. Let Ω ⊆ RN be an open, bounded, connected and C0,1 set. Let U be an open
neighborhood of ∂Ω. If Γ is a subset of ∂Ω with σ(Γ) > 0, then there exist a compact set ̂Γ ⊆ Γ with
σ(̂Γ) > 0 and a family of functions (ϕε)0<ε<ε0 ⊆ C∞

0 (RN) such that

0 ≤ ϕε ≤ 1, supp ϕε ⊆ U, ϕε −→ χ̂ strongly in Ls(∂Ω),
∫

RN
ϕsε dx −→ 0 as ε −→ 0+ ∀s ∈ [1,+∞[,

(A.2)

where χ̂ is the characteristic function of ̂Γ.

Let Ω ⊆ RN be an open, bounded, connected and C0,1 set. Let as i =
1, . . . , n Ai(x, ξ, η1, . . . , ηn) be a Carathèodory function into RN defined for x ∈ Ω, for ξ ∈ Rn

and for (η1, . . . , ηn) ∈ (RN)n such that

Ai

(

x, ξ, η1, . . . , ηn
)

· ηi ≥ c0
∣

∣

∣ηi
∣

∣

∣

p
, (A.3)

where 1 < p < +∞, c0 = const. > 0.
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Proposition A.3. Let (u1, . . . , un) ∈ (W1,p
0 (Ω))

n
with ui ≥ 0. If there exist r ∈ ]p, p̃[ and g ∈

Lr/(r−p)(Ω) with g ≥ 0 such that

n
∑

i=1

∫

Ω
Ai(x, u1, . . . , un,∇u1, . . . ,∇un) · ∇vidx ≤

∫

Ω
g

(

n
∑

i=1

ui

)p−1( n
∑

i=1

vi

)

dx

∀(v1, . . . , vn) ∈
(

W
1,p
0 (Ω) ∩ L∞(Ω)

)n
with vi ≥ 0,

(A.4)

then ui ∈ L∞(Ω) as i = 1, . . . n.

Proposition A.4. Let (u1, . . . , un) ∈ (W1,p(Ω))n with ui ≥ 0. If there exist r ∈]p, p̂[, g ∈
Lr/(r−p)(Ω) with g ≥ 0, ĝ ∈ Lr/(r−p)(∂Ω) with ĝ ≥ 0 such that

n
∑

i=1

∫

Ω
Ai(x, u1, . . . , un,∇u1, . . . ,∇un) · ∇vidx

≤
∫

Ω
g

(

1 +
n
∑

i=1

ui

)p−1( n
∑

i=1

vi

)

dx +
∫

∂Ω
ĝ

(

1 +
n
∑

i=1

ui

)p−1( n
∑

i=1

vi

)

dσ

∀(v1, . . . , vn) ∈
(

W1,p(Ω) ∩ L∞(Ω)
)n

with vi ≥ 0,

(A.5)

then ui ∈ L∞(Ω) as i = 1, . . . , n.

Remark A.5. If ĝ ≡ 0, we can suppose r ∈]p, p̃[.

Acknowledgment

This paper is supported by the Second University of Naples.

References

[1] L. Toscano and S. Toscano, “On the solvability of a class of general systems of variational equations
with nonmonotone operators,” Journal of Interdisciplinary Mathematics, vol. 14, no. 2, pp. 123–147, 2011.
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[3] S. I. Pohozaev and L. Véron, “Multiple positive solutions of some quasilinear Neumann problems,”
Applicable Analysis, vol. 74, no. 3-4, pp. 363–390, 2000.
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