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Accurate edge localization is essential in bar code decoding. Since speckle noise is the most
dominant form of noise in laser bar code scanners, it is important to fully understand its effects
on edge detection. Starting with the basic statistical properties of speckle patterns, we present
stochastic analysis of speckle noise. We derive the autocorrelation function and power spectral
density (PSD) of the noise in terms of intensity distribution of the scanning beam. We then study
the signal-to-noise ratio for signals that result from scanning different configurations of edges.
Next, we consider statistical properties of edge localization error caused by speckle noise. We show
that the standard deviation of the error is determined by the PSD of the noise and relative positions
of edges in a bar code symbol. Based on the analysis presented here, we propose new criteria for
system design.

1. Introduction

Image processing, traditionally an engineering field, has recently attracted attention of the
mathematical community. One of the most important image features is edges which are
modeled as discontinuities in the gray level of an image. Edge detection is concerned
with localization of these discontinuities. Information extracted from edges is used for
image processing such as segmentation, recognition, enhancement, and compression. Edge
detection also finds an important application in laser bar code scanning. Information stored
in a linear bar code is encoded in a string S = (p1, p2, . . . , pn), called digital bar pattern, which
represents a sequence of widths of black bars andwhite spaces. The way information is stored
in a bar code symbol depends on the symbology [1]. One of the most popular symbologies is
the universal product code version A (UPCA) which is widely used in retail stores. Figure 1
shows a UPCA symbol encoding the digits “0122345678905.” UPCA symbols encode twelve
digits where each digit consists of two bars and two spaces (code words) with a total width
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Table 1: UPCA encodation patterns.

Number Pattern
0 (3, 2, 1, 1)
1 (2, 2, 2, 1)
2 (2, 1, 2, 2)
3 (1, 4, 1, 1)
4 (1, 1, 3, 2)
5 (1, 2, 3, 1)
6 (1, 1, 1, 4)
7 (1, 3, 1, 2)
8 (1, 2, 1, 3)
9 (3, 1, 1, 2)

0 1 2 3 4 5 6 7 8 9 0 5

Left guard
bar pattern

(101)

Industry
designator

(0)

Left five
characters

of code

Center guard
bar pattern

(01010) Right five
characters

of code

Check
digit (5)

Right guard
bar pattern

(101)

Figure 1: UPCA bar code encoding the digits “012345678905.”

of seven modules. Encodation patterns for digits between 0 and 9 are listed in Table 1 in
Section 4.2. For decoding purposes, it is important to keep track of the scanning direction.
Thus, each digit is assigned two code words which are mirror images of each other: those on
the right side of the symbol start with a bar and those used on the left side start with a space.
Each UPCA symbol contains the following groups of code words (see Figure 1):

(1) a left guard pattern 101,

(2) six digits on the left side: one digit denoting industry type and five digits with
manufacturer’s code,

(3) a center guard pattern 01010,

(4) six digits on the right side: five digits with item code and one check digit,

(5) a right guard pattern 101.
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Figure 2: Bar code signal processing diagram. Signal processor P produces digital bar pattern S.

The structure of the UPCA symbols allows “scanning by halves” since each half can be
scanned separately, and the symbol can be put together afterwards. This gives the advantage
of scanning UPCA bar code from different directions. Since the resulting digital bar pattern is
recovered from the positions of bar/space edges, accurate edge localization is critical in bar
code decoding.

Bar code signal processing can be viewed as an input-output system schematically
shown in Figure 2. Here, f(t) is an observed signal (photodetector current in a laser scanner),
and P represents a signal processor. The processor P depends on signal modeling and
representation. If the signal derivative f ′(t) is modeled as a hidden Markov chain, then P is
based onmaximum likelihood estimation [2]. The digital bar pattern is chosen such that it fits
the observed data f ′(t) with the highest probability. The statistical properties of f ′(t) can be
modeled from heuristic considerations or inferred using learning theory such as the Baum-
Welch algorithm [3]. A bar code signal f(t) can also be modeled as a function of bounded
variation. In this case, the signal processor is based on minimization of a total variation
functional over an appropriate function space [4]. The minimization algorithm performs
both filtering and deblurring, and it is very robust under high noise and blur. However, it
is computationally expensive for implementation in commercial scanners. For related total
variation-based techniques in image processing, see [5–9]. Edge detection techniques based
on multiresolution analysis, anisotropic diffusion filtering, and level set methods can be
found in [10–18].

In this paper, we consider edge detection in bar code symbols based on Canny’s
algorithm [19, 20]. It relies on finding local extrema of f ′(t) where f(t) is assumed to be
a C2 function. Here, the signal processor P consists of three steps: differentiation, filtering,
and edge labeling. The signal is filtered in order to regularize the derivative operator which
amplifies high frequencies. Edge labelling is a process in which true edges are separated from
noised or false edges. When the edges are labelled, a digital bar pattern is produced and sent
to a decoder for further processing.

Laser bar code scanners are very sensitive to noise because an error in the position of a
single edge may cause a failure to read the bar code or to read it incorrectly. There are several
sources of noise in a bar code scanner: Johnson or thermal noise, shot noise, and speckle noise.
Thermal and shot noise are noise currents that are observed in electronic circuits [21, 22].
Thermal noise [23, 24] is associated with random fluctuations of the velocities of electrons
in a conductor. It is independent of any applied voltage, and hence, it is present even if no
current flows in the conductor. Shot noise [25] is generated by fluctuations of the number of
electrons, and it manifests itself only when a current flows in a conductor. The power spectral
densities of both types of noise are nearly constant throughout the frequency spectrum. The
power of thermal noise is given by the Nyquist formula

Pthermal = 4kBTΔf, (1.1)
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where kB is the Boltzmann’s constant, T is the temperature in Kelvins, andΔf is the frequency
band. Similarly, the power of shot noise is

Pshot = 2eIRΔf, (1.2)

where e is the electron charge, I is the current, and R is the resistance of the conductor. The
power of thermal noise in a scanner is normally several times greater than the power of shot
noise. A more recent review of the properties of thermal and shot noise can be found in
[26, 27].

In contrast to thermal and shot noise, speckle noise is an optical phenomenon which
results when spatially coherent electromagnetic (EM) field is scattered from a diffuse surface,
such as paper on which a bar code is printed. The scattered light forms a random interference
pattern in the photodetector aperture. As the laser beam moves across the surface, temporal
changes in the intensity of the pattern induce fluctuations in the photodetector current. It
turns out that under normal operating conditions the effects of thermal and shot noise are
negligible compared to speckle noise, which is the main factor limiting the performance of
a bar code scanner. Only in long-range applications, when the photodetector signal is weak,
the performance is limited by a mixture of electronic and speckle noise. Therefore, in this
work, we limit our attention to speckle noise and investigate its effects on edge detection.
We present stochastic properties of speckle noise and study the signal-to-noise ratio and
edge localization error caused by the noise. We remark that speckle noise is difficult to
filter because its spectrum often overlaps with the spectrum of a noise-free signal. However,
investigation of the effects of speckle noise on edge detection may lead to more efficient
filtering techniques.

The paper is organized as follows. In Section 2, we give an overview of statistical
properties of static speckle patterns. We then study dynamic speckle which induces noise in
the photodetector signal. We show that speckle noise is a weakly stationary random process
and calculate the autocorrelation function and power spectral density of the noise. Since
differentiation is used in edge detection, we also study stochastic properties of differentiated
speckle noise. Section 3 is devoted to estimating the signal-to-noise ratio for bar code signals
corrupted by speckle noise. As a toy model, we study signals obtained by scanning a single
edge and an infinite sequence of edges. In Section 4, we address the problem of finding the
edge localization error. We derive a first-order approximation of the error in terms of the
power spectral density of speckle noise. We show that the standard deviation of the error
depends on spectral characteristics of the noise and on relative locations of edges in a bar code
symbol. This result is used to study susceptibility of different bar code symbols to edge local-
ization error. Finally, we discuss how the theoretical analysis presented here can be used in
system design. In particular, we propose a new criterion for estimating the working range of
a scanner based on the combined effect of convolution distortion and edge localization error.

2. Statistical Properties of Speckle Noise

2.1. Statistics of Speckle Patterns

This section summarizes the basic properties of speckle relevant to applications in bar code
scanning. Consider the free space propagation geometry shown in Figure 3. A focused laser
beam is incident on a diffuse surface, and the scattered wave is captured by a photodetector
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Figure 3: Free-space propagation model of scattered light. U(ξ, η) is the incident optical field in the
scattering plane, and T(eiφU) (x, y) is the optical field of the interference pattern in the observation plane.
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Figure 4: (a) Gaussian beam with optical fieldU(ξ, η) = U0 exp[−(ξ/ω)2 − (η/ω)2] and beam radius ω. (b)
Speckle pattern in the photodetector plane generated by a Gaussian beam.

in the observation plane. A speckle pattern formed in the observation plane results from
interference of EM waves reflected from a large number of microscopic scatterers randomly
distributed in the illuminated region. The pattern is characterized by a multitude of tiny
spots (speckle) of varying size and intensity. Figure 4 shows a Gaussian beam incident on
the scattering surface and the resulting speckle pattern. A comprehensive review of speckle
properties can be found in Goodman’s chapter in [28]. More recent developments in the field
have been discussed in [29, 30].

In our analysis, we assume the same conventional model of the scattering surface as in
[28]. LetU ∈ L2(R2) be a complex-valued function which describes the scalar components of
the EM field of the laser beam. A description of only one component is sufficient to describe
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the properties of the beam. The scattered waves are randomly dephased; hence, the EM field
transforms according to

U
(
ξ, η
) �−→ eiφ(ξ,η)U

(
ξ, η
)
, (2.1)

where φ(ξ, η) is a random phase acquired at the point (ξ, η) in the scattering plane. We make
the following assumptions about the random function φ(ξ, η):

(i) the phase φ(ξ, η) is uniformly distributed in [−π,π] at each point (ξ, η) ∈ R
2,

(ii) φ(ξ1, η1) is uncorrelated with φ(ξ2, η2) for all (ξ1, η1)/= (ξ2, η2).

The EM field in the observation plane is given by the Fresnel integral transformation [31]

T
(
eiφU

)(
x, y
)
=
∫

R2
eiφ(ξ,η)U

(
ξ, η
)
K
(
x − ξ, y − η

)
dξ dη, (2.2)

where K is the convolution kernel

K
(
x, y
)
=

eikz

iλz
exp
[
i

(
k

2z

(
x2 + y2

))]
, (2.3)

k = 2π/λ, λ is the optical wavelength, and z is the distance between the scattering and
observation planes. The transformation T : L2(R2) → L2(R2) is a bounded operator with
unit norm ‖T‖ = sup{‖T(u)‖ | u ∈ L2(R2), ‖u‖ = 1} where ‖ · ‖ denotes the L2-norm on R

2,

‖u‖ = (
∫
R2 |u(x, y)|2dx dy)

1/2
. The intensity of a speckle pattern in the observation plane is

given by

Is
(
x, y
)
=
∣∣∣T
(
eiφU

)(
x, y
)∣∣∣

2
. (2.4)

Assumptions (i) and (ii) imply that Is = {Is(x, y) | (x, y) ∈ R
2} is a weakly stationary random

process. Hence, the expected value E[Is(x, y)] is independent of the observation point. It is
related to the physical characteristics of the system by

E
[
Is
(
x, y
)]

= ρP
cos (θ)
πz2

, (2.5)

where P = ‖U‖2 is the power of the optical field, ρ ∈ (0, 1] is the reflectance of the scattering
surface, and θ is the angle between the direction of specular reflection and direction of
observation [32]. Let us denote E[Is(x, y)] = 〈Is〉. The probability density function of Is(x, y)
follows the negative exponential law [28]

p(Is) =
1

〈Is〉 exp
(
− Is
〈Is〉
)
, (2.6)
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and the variance is given by

σ2
s = E

[(
Is
(
x, y
) − 〈Is〉

)2] = 〈Is〉2. (2.7)

Thus, the contrast σs/〈Is〉 of a speckle pattern is always unity.
Since the process Is is weakly stationary, the autocorrelation function Rs(x1, y1;x2,

y2) = E[Is(x1, y1)Is(x2, y2)] depends only on separation between the observation points
(x1, y1) and (x2, y2). It can be shown that Rs is given by [28]

Rs

(
x1, y1;x2, y2

)
= 〈Is〉2

(
1 +
∣
∣μ
(
x2 − x1, y2 − y1

)∣∣2
)
, (2.8)

where μ is the complex coherence function of the optical fieldU defined by

μ
(
x, y
)
=

1

‖U‖2
∫

R2

∣∣U
(
ξ, η
)∣∣2 exp

(
i
2π
λz

(
xξ + yη

)
)
dξ dη. (2.9)

The function μ is related to the average speckle size in the following way. Intuitively, if the
correlation between intensity levels Is(x1, y1) and Is(x2, y2) is high, then the points (x1, y1)
and (x2, y2) belong to the same speckle cell. For a fixed point (x1, y2), it is reasonable to define
the speckle correlation area (average speckle size) as

Sc =
∫

R2
ρ
(
Is
(
x1, y1

)
, Is
(
x1 + x, y1 + y

))
dx dy, (2.10)

where ρ is the correlation coefficient

ρ
(
Is
(
x1, y1

)
, Is
(
x2, y1

))
=

cov
(
Is
(
x1, y1

)
, Is
(
x2, y2

))

σ2
s

. (2.11)

Here, cov(X1, X2) = E[X1X2] − E[X1]E[X2] is the covariance of the random variables
X1 and X2. Using (2.7) and (2.8), we find

ρ
(
Is
(
x1, y1

)
, Is
(
x2, y2

))
=
∣∣μ
(
x2 − x2, y2 − y1

)∣∣2. (2.12)

Hence, the speckle correlation area is given by

Sc =
∫

R2

∣∣μ
(
x, y
)∣∣2dx dy. (2.13)

Since the complex coherence function is proportional to the Fourier transform of the
beam intensity I(ξ, η) = |U(ξ, η)|2, one can use the Parseval’s identity to obtain

Sc = (λz)2
∫
R2 I

2(ξ, η
)
dξ dη

(∫
R2 I
(
ξ, η
)
dξ dη

)2 . (2.14)
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2.2. Power Spectral Density of Speckle Noise

In the preceding subsection, we discussed statistical properties of static speckle patterns.
Next, we consider time-varying speckle which arises when a laser beam scans a surface
of constant reflectance (e.g., white paper), as shown in Figure 3. Early analysis of speckle
noise in laser scanning systems and comparison of theoretical results with experiment were
given in [33]. The scattered light is converted to an electrical signal f(t) by a photodetector.
Temporal changes in the speckle pattern intensity induce random fluctuations, called speckle
noise, about the average value of f(t). The signal is a continuous time random process
f = {f(t) | t ∈ R}where

f(t) = R
∫

R2
A
(
x, y
)
Is
(
x, y, t

)
dx dy. (2.15)

Here, Is(x, y, t) is the speckle intensity at instant t, R is optical-to-electrical signal
conversion factor, and the function 0 < A(x, y) ≤ 1 characterizes the photodetector response.
A description of statistical properties of dynamic speckle can be found in [30]. We assume that
A has compact support bounded by the photodetector aperture. Since the surface reflectance
is constant, the expected value of Is(x, y, t) is independent of both space and time coordinates,
that is, E[Is(x, y, t)] = 〈Is〉where 〈Is〉 is given by (2.5). It follows from (2.15) that the expected
value of f(t) is given by

E
[
f(t)
]
= RAd〈Is〉, (2.16)

where Ad =
∫
R2 A(x, y)dx dy. Let us denote 〈f〉 = RAd〈Is〉. In view of (2.5), 〈f〉 can be

expressed as

〈
f
〉
= ρPRΩd, (2.17)

where Ωd = Ad cos(θ)/(πz2) represents the fraction of the scattered power of the beam
captured by the detector aperture.

Important statistical properties of f can be derived from the autocorrelation function
Rf(t1, t2) = E[f(t1)f(t2)]. In view of (2.15), we find

Rf(t1, t2) = R2
∫

R4
A
(
x1, y1

)
A
(
x2, y2

)
Rds

(
x1, y1, x2, y2, t1, t2

)
dx1dy1dx2dy2, (2.18)

where Rds(x1, y1, x2, y2, t1, t2) = E[Is(x1, y1, t1)Is(x2, y2, t2)] is the autocorrelation of dynamic
speckle. Without loss of generality, we assume that the optical field U moves in the ξ-
direction. The function Rds can be found by considering Rds to be the cross-correlation
function of two static speckle patterns at instants t = t1 and t = t2. Using this argument,
one can express Rds in terms of the complex coherence function μd of the moving optical field
as

Rds

(
x1, y1, x2, y2, t1, t2

)
= 〈Is〉2

(
1 +
∣∣μd

(
x2 − x1, y2 − y1, t2 − t1

)∣∣2
)
, (2.19)
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where

μd

(
x, y, τ

)
=

1

‖U‖2
∫

R2
U
(
ξ, η
)
U∗(ξ − Vτ, η

)
exp
(
i
2π
λz

(
ξx + ηy

)
)
dξ dη, (2.20)

and U∗ denotes the complex conjugate of U. We note that for τ = 0 we have μd(x, y, 0) =
μ(x, y). Thus, Rds = Rs when the two speckle patterns overlap. The behaviour of the complex
coherence function μd for different optical fields is described in [32]. Substituting (2.19) into
(2.18), we obtain

Rf(t1, t2) = R2〈Is〉2
∫

R4
A
(
x1, y1

)
A
(
x2, y2

)(
1+
∣
∣μd

(
x2 − x1, y2 − y1, t2 − t1

)∣∣2
)
dx1dy1dx2dy2.

(2.21)

Introducing the variables x = x2 − x1, y = y2 − y1, and τ = t2 − t1, the above integral takes the
form

Rf(τ) =
〈
f
〉2
(

1 +
1
A2

d

∫

R2
RA

(
x, y
)∣∣μd

(
x, y, τ

)∣∣2
)

dx dy, (2.22)

where

RA

(
x, y
)
=
∫

R2
A
(
x1, y1

)
A
(
x1 + x, y1 + y

)
dx1dy1, (2.23)

is the autocorrelation of the weighting function A. In many cases of practical interest, the
magnitude of |μd(x, y, τ)|2 tends to zero very rapidly as |x| and |y| increase, that is,

max
τ∈R

∣∣μd

(
x, y, τ

)∣∣2 � 1 ∀|x|, ∣∣y∣∣ > δ, (2.24)

where δ > 0 is small compared to the size of a detector aperture. Then, the integral in (2.22)
can be approximated by

∫

R2
RA

(
x, y
)∣∣μd

(
x, y, τ

)∣∣2dx dy ≈ RA(0, 0)
∫

R2

∣∣μd

(
x, y, τ

)∣∣2dx dy, (2.25)

which largely simplifies the calculation of Rf(τ). Validity of this approximation is justified by
the example in Section 2.4. Using the approximation (2.25), we obtain

Rf(τ) =
〈
f
〉2
(
1 +

1
Ae

∫

R2

∣∣μd

(
x, y, τ

)∣∣2dx dy

)
, (2.26)

where

Ae =
Ad

RA(0, 0)
=

(∫
R2 A
(
x, y
)
dx dy

)2
∫
R2 A2

(
x, y
)
dx dy

, (2.27)
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is the effective aperture area. We note that if A(x, y) is the characteristic function of the
aperture, then Ae = Ad, the physical area of the aperture.

The autocorrelation Rf(τ) can be conveniently expressed in terms of the intensity
distribution I(ξ, η) = |U(ξ, η)|2 of the laser beam. Using (2.20) and applying the Parseval’s
identity, we find

∫

R2

∣
∣μd

(
x, y, τ

)∣∣2dx dy =
(λz)2

‖U‖4
∫

R2

∣
∣U
(
ξ, η
)∣∣2∣∣U

(
ξ − Vτ, η

)∣∣2dξ dη. (2.28)

Hence, (2.26) becomes

Rf(τ) =
〈
f
〉2
(

1 +
(λz)2

Ae

∫
R2 I
(
ξ, η
)
I
(
ξ − Vτ, η

)
dξ dη

(∫
R2 I
(
ξ, η
)
dξ, dη

)2

)

. (2.29)

Therefore, the autocorrelation function of the signal f(t) is completely determined by the
intensity distribution of the scanning beam. Amore intuitive expression forRf(τ) is provided
by substituting the speckle correlation area (2.14) into (2.29),

Rf(τ) =
〈
f
〉2
(

1 +
Sc

Ae

1

‖I‖2
∫

R2
I
(
ξ, η
)
I
(
ξ − Vτ, η

)
dξ dη

)

. (2.30)

Note that the ratio Ae/Sc represents the average number of speckle correlation cells in the
photodetector aperture (speckle density).

One can readily show that if the initial speckle pattern is a superposition of N statis-
tically independent patterns, I(x, y, t) =

∑N
k=1 Ik(x, y, t), with expected value E[Ik(x, y, t)] =

〈Is〉/N, then Rf(τ) is modified according to

Rf(τ) =
〈
f
〉2
(

1 +
Sc

NAe

1

‖I‖2
∫

R2
I
(
ξ, η
)
I
(
ξ − Vτ, η

)
dξ dη

)

. (2.31)

This observation is important because when a polarized laser beam is scattered from a
dielectric surface, it gets depolarized. The resulting speckle pattern is then equivalent to a
superposition of N = 2 independent patterns.

Since E[f(t)] and Rf(t1, t2) are invariant under time translation, the process f is
weakly stationary. By the Wiener–Khinchin theorem [34, 35], the power spectral density
(PSD) of f is the Fourier transform of the autocorrelation function Rf(τ),

Sf(ν) =
∫

R

Rf(τ) exp(i2πντ)dτ, (2.32)

provided Rf(τ) is continuous at τ = 0. The PSD describes the distribution of the signal power
in the frequency domain. The total power is given by

Pf =
∫

R

Sf(ν)dν = Rf(0). (2.33)
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Hence, (2.31) yields

Pf =
〈
f
〉2
(
1 +

Sc

NAe

)
. (2.34)

Speckle noise represents random fluctuations about the average signal value 〈f〉. Thus, the
speckle noise power is the variance σ2

f of the process f . For weakly stationary processes, we

have Pf = 〈f〉2 + σ2
f , which in view of (2.34) yields

σ2
f =
〈
f
〉2 Sc

NAe
. (2.35)

Relation (2.35) shows that the noise power is multiplicative in the sense that it is proportional
to the average signal power 〈f〉2. Consequently, speckle noise cannot be made relatively
smaller by increasing the signal power. We also note that the noise power is proportional
to Sc. Therefore, the noise can be reduced by reducing the average speckle size. This is
intuitively clear since smaller speckle induces smaller fluctuations in the detector signal.

Let us now derive an explicit expression for the power spectral density (2.32).
Substituting (2.31) into (2.32), we have

Sf(ν) =
〈
f
〉2
[

δ(ν) +
Sc

NAe

1

‖I‖2
∫

R3
I
(
ξ, η
)
I
(
ξ − Vτ, η

)
exp(i2πντ)dξ dη dτ

]

, (2.36)

where δ(ν) is the Dirac delta function. Very often laser beams are symmetric in the scanning
direction, that is, I(−ξ, η) = I(ξ, η). In this case, the PSD can be simplified as

Sf(ν) =
〈
f
〉2
[

δ(ν) +
Sc

VNAe

1

‖I‖2
∫

R

(∫

R

I
(
ξ, η
)
exp
(
i
2πν
V

ξ

)
dξ

)2

dη

]

. (2.37)

Expressed in this form, the PSD can be easily computed using FFT and a numerical
integration algorithm, which is important from the standpoint of applications.

2.3. Statistical Properties of Differentiated Speckle Noise

In the conventional approach to edge detection using Canny’s algorithm, the signal f(t) is
differentiated in order to enhance edges. Since differentiation amplifies high frequencies, it
is important to understand the statistical properties of differentiated speckle noise. Let f ′

denote the random process {f ′(t) | t ∈ R} where f ′(t) is the derivative of f(t). Since f ′ is also
weakly stationary, the power spectral densities of f and f ′ are related by [34]

Sf ′(ν) = 4π2ν2Sf(ν). (2.38)
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Using (2.36), we find

Sf ′(ν) = 4π2〈f
〉2 Sc

NAe

1

‖I‖2
∫

R3
I
(
ξ, η
)
I
(
ξ − Vτ, η

)
ν2 exp(i2πντ)dξ dη dτ. (2.39)

The total power of the process f ′ is now given by

Pf ′ =
∫

R

Sf ′(ν)dν = 4π2〈f
〉2 Sc

NAe

1

‖I‖2
∫

R4
I
(
ξ, η
)
I
(
ξ − Vτ, η

)
ν2 exp(i2πντ)dξ dη dτ dν.

(2.40)

The above expression can be simplified to a double integral provided the intensity distribu-
tion satisfies

lim
|ξ|,|η|→∞

I
(
ξ, η
)
= 0, sup

(ξ,η)∈R2

∣∣∣∣
∂I

∂ξ

∣∣∣∣ < ∞. (2.41)

These conditions are met in all applications since I(ξ, η) has bounded partial derivatives, and
it rapidly tends to zero away from the beam centre (this is easily verified for Gaussian beams).
Assuming conditions (2.41), let us define the function Hξ,η(τ) = I(ξ − Vτ, η). Then

∫

R2
I
(
ξ − Vτ, η

)
ν2ei2πντdτ dν =

∫

R

ν2Ĥξη(ν)dν, (2.42)

where Ĥξη(ν) =
∫
R
Hξ,η(τ) exp(i2πντ)dτ is the Fourier transform of Hξ,η(τ). Substituting the

identity

d2Hξ,η

dτ2
= −4π2

∫

R

ν2Ĥξη(ν) exp(−i2πντ)dν, (2.43)

into (2.42), we find

∫

R2
I
(
ξ − Vτ, η

)
ν2 exp(i2πντ)dτ dν = − 1

4π2

d2Hξ,η

dτ2

∣∣∣∣∣
τ=0

= − V 2

4π2

∂2I

∂ξ2
. (2.44)

Then the integral in (2.40) becomes

∫

R4
I
(
ξ, η
)
I
(
ξ − Vτ, η

)
ν2 exp(i2πντ)dξ dη dτ dν = − V 2

4π2

∫

R2
I
(
ξ, η
)∂2I
∂ξ2

dξ dη. (2.45)

Using conditions (2.41), a partial integration yields

∫

R

I
(
ξ, η
)∂2I
∂ξ2

dξ = −
∫

R

(
∂I

∂ξ

)2

dξ. (2.46)
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Finally, combining (2.40), (2.45), and (2.46), we obtain

Pf ′ =
〈
f
〉2
V 2 Sc

NAe

1

‖I‖2
∥
∥
∥
∥
∂I

∂ξ

∥
∥
∥
∥

2

. (2.47)

We refer to (2.47) as the total power of differentiated speckle noise. Since E[f ′(t)] = 0, the
power Pf ′ equals the variance σ2

f ′ of the process f ′.

2.4. Example: Elliptical Gaussian Illumination

Many lasers emit beam whose optical field can be approximated by the elliptical Gaussian
function

U
(
ξ, η
)
=

√
2P

πωxωy
exp

[

−
(

ξ2

ω2
x

+
η2

ω2
y

)]

, (2.48)

where ωx and ωy are the beam radii in the ξ and η directions, and P =
∫
R2 |U(ξ, η)|2dξ dη

is the beam power. Diffraction causes light waves to spread transversely to the direction of
propagation. For a Gaussian beam propagating in free space, the beam size is minimum at
some point along the axis, called the beam waist. If ω0x and ω0y are the beam radii at the
waist, then at some distance z′ measured from the waist, the beam size is given by [36]

ωx = ω0x

√√√
√1 +

(
λz′

πω2
0x

)2

, ωy = ω0y

√√√
√1 +

(
λz′

πω2
0y

)2

. (2.49)

Let us calculate the average size of speckle generated by a Gaussian beam. Substituting
the beam intensity I(ξ, η) = |U(ξ, η)|2 from (2.48) into (2.14), we find that the speckle
correlation cells have elliptical shape of average area

Sc = π

(
λz

πωx

)(
λz

πωy

)

. (2.50)

It is interesting to note that using geometrical considerations, Ennos [37] estimated the
average speckle diameter to be d = 1.2λz/D where D is the diameter of the laser beam.
For a circular Gaussian beam with ωx = ωy = ω, the speckle correlation area Sc corresponds
to a circle with diameter

dc = 2

√
Sc

π
=

2λz
πω

≈ 1.27
λz

2ω
. (2.51)

This is indeed very close to the estimated value derived in [37]with D = 2ω.
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The complex coherence function (2.20) of the moving field is given by

∣
∣μd

(
x, y, τ

)∣∣2 = exp

[

−
(
Vτ

ωx

)2
]

exp
[
−
( π

λz

)2(
(ωxx)2 +

(
ωyy
)2)
]
. (2.52)

The maximum value of |μd(x, y, τ)|2 is attained at x = y = 0. For a fixed value of τ > 0, the
“support” of |μd(x, y, τ)|2 can be defined as the subset Ω ⊂ R

2 such that

sup
(x,y)∈Ω

∣
∣μd

(
x, y, τ

)∣∣2 ≤ 1
e2
∣
∣μd(0, 0, τ)

∣
∣2. (2.53)

It is easily seen that Ω is the elliptical region defined by

(x
a

)2
+
(y
b

)2
≤ 1, (2.54)

where a =
√
2λz/(πωx) and b =

√
2λz/(πωy). Thus, Ω has the area

|Ω| = 2π
(

λz

πωx

)(
λz

πωy

)

= 2Sc, (2.55)

where Sc = (λz)2/(πωxωy) is the average speckle size. Since a typical detector aperture
contains a large number of speckle cells, the support of μd is much smaller than the aperture.
This justifies the approximation made in (2.25).

The autocorrelation function (2.30) is given by

Rf(τ) =
〈
f
〉2
(

1 +
Sc

NAe
exp

[

−
(
Vτ

ωx

)2
])

. (2.56)

Now, the PSD of the processes f and f ′ are found to be

Sf(ν) =
∫

R

Rf(τ) exp(i2πντ)dτ =
〈
f
〉2
(
δ(ν) +

√
π

Sc

NAe

ωx

V
exp
[
−
(πωx

V

)2
ν2
])

, (2.57)

Sf ′(ν) = 4πν2Sf(ν) = 4π5/2〈f
〉2 Sc

NAe

ωx

V
ν2 exp

[
−
(πωx

V

)2
ν2
]
. (2.58)

Integrating (2.58) over the real line, we obtain the power of differentiated speckle noise

Pf ′ = 2
〈
f
〉2
(

V

ωx

)2 Sc

NAe
, (2.59)

where Sc is given by (2.50).
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Figure 5: Derivative of a signal corrupted by speckle noise obtained by scanning the bar code in Figure 1.

3. Signal-to-Noise Ratio

Thus far, we considered only signals corrupted by speckle noise when a laser beam scans
a surface of uniform reflectance. Next, we turn our attention to signals that result from
scanning different configurations of edges. As a toy model, we consider a single edge and an
infinite sequence of edges. An edge is defined as a boundary between two regions of different
reflectance. The higher reflectance is normalized to one, and the lower reflectance is denoted
by ρ ∈ [0, 1). The gray level of a sequence of bars and spaces is modeled by a piecewise
constant function B(ξ). The photodetector signal is now given by

f(t) = s(t) + n(t), (3.1)

where s(t) is the noise-free signal, and n(t) is speckle noise. The noise-free signal is the con-
volution

s(t) = f0

∫

R

B(V t − ξ)L(ξ)dξ, (3.2)

where

L(ξ) =
1
P

∫

R

I
(
ξ, η
)
dη (3.3)

is the line spread function of the beam, and P =
∫
R2 I(ξ, η)dξ dη is the beam power. Note that

if the reflectance is constant, B(ξ) = ρ, then 〈f〉 = s(t) = f0ρ; hence, f0 is the maximum value
of 〈f〉 corresponding to ρ = 1. In view of (2.17), we have f0 = PRΩd.

Information about edges is extracted from the derivative of f(t). Figure 5 shows the
derivative of a signal corrupted by speckle noise obtained by scanning the bar code in
Figure 1. Suppose for the moment that the signal is noise-free, that is, f(t) = s(t). Then
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Figure 6: Derivative of a photodetector signal (– –) generated by a Gaussian beam scanning a single edge
at ξ = 0.

the local extrema of s′(t) above a certain threshold correspond to edges, as illustrated in
Figures 6 and 7. Thus, it is appropriate to define the signal S by

S = max
t

∣∣s′(t)
∣∣. (3.4)

Accordingly, we define the signal-to-noise ratio (SNR) to be

SNR =
(

S

σn′

)2

, (3.5)

where σ2
n′ denotes the power of differentiated speckle noise. We are interested in obtaining a

lower bound for SNRwhen the speckle noise power is maximal. This happenswhen the beam
is scattered from the region of higher reflectance ρ = 1 in which case 〈f〉 = f0. Combining
(2.14) and (2.47), we can express σ2

n′ as

σ2
n′ = f2

0V
2 (λz)

2

NAe

1
P 2

∥∥
∥∥
∂I

∂ξ

∥∥∥∥

2

. (3.6)

Let us now consider specific examples.

3.1. One Edge

The gray level of a single edge is given by

B(ξ) = ρ +
(
1 − ρ

)
H(ξ), (3.7)

where H(ξ) is the Heaviside step function: H(ξ) = 0 if ξ < 0 and H(ξ) = 1 if ξ ≥ 0. Then
B′(ξ) = (1 − ρ)δ(ξ); hence, (3.2) leads to

s′(t) =
(
1 − ρ

)
f0VL(V t). (3.8)
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Figure 7: Derivative of a photodetector signal (– –) generated by a Gaussian beam scanning an infinite
sequence of edges.

The line spread function has a global maximum at its centre, and thus, the signal S yields

S = max
t

∣∣s′(t)
∣∣ =
(
1 − ρ

)
f0VL(0). (3.9)

Therefore, a lower bound for SNR is given by

SNR1 =
(

S

σn′

)2

=
(
1 − ρ

)2
P 2 NAe

(λz)2
L2(0)

‖∂I/∂ξ‖2
. (3.10)

3.2. Infinite Sequence of Edges

Consider an infinite sequence of black and white bars of widthDwhere the middle of a white
bar is placed at ξ = 0, as shown in Figure 7. The gray level is represented by

B(ξ) = ρ +
(
1 − ρ

) ∞∑

k=−∞
(−1)k+1H

(
ξ − (2k + 1)

D

2

)
. (3.11)

The distributional derivative of B(ξ) is the generalized function

B′(ξ) =
(
1 − ρ

) ∞∑

k=−∞
(−1)k+1δ

(
ξ − (2k + 1)

D

2

)
, (3.12)

which together with (3.2) yields

s′(t) =
(
1 − ρ

)
f0V

∞∑

k=−∞
(−1)k+1L

(
V t − (2k + 1)

D

2

)
. (3.13)
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We show that under certain mild assumptions which are satisfied in applications, the maxi-
mum of |s′(t)| is attained at the point V t = D/2. Let us expand B′(ξ) into generalized Fourier
series

B′(ξ) = i
1 − ρ

D

∞∑

k=−∞
(−1)k exp

(
i2π

2k + 1
2D

ξ

)
, (3.14)

where i =
√−1. Using relation (3.14), we find that the signal derivative is given by

s′(t) = i
(
1 − ρ

)f0V
D

∞∑

k=−∞
(−1)k exp

(
i2π

2k + 1
2D

V t

)
L̂

(
−2k + 1

2D

)
, (3.15)

where

L̂(ν) =
∫

R

L(ξ) exp(i2πνξ)dξ (3.16)

is the Fourier transform of L(ξ). If the laser beam is symmetric in the scanning direction, then
L(ξ) is an even function which implies L̂(−ν) = L̂(ν). One can use the symmetry of L̂(ν) to
obtain

s′(t) = 2
(
1 − ρ

)f0V
D

∞∑

k=0

(−1)k+1 sin
(
π(2k + 1)

V t

D

)
L̂

(
2k + 1
2D

)
. (3.17)

Most often laser beams used in scanning applications have a nearly Gaussian profile. Thus,
the Fourier transform of the line spread function may be assumed to be nonnegative, L̂(ν) ≥ 0
for all ν ∈ R. Since sin((π/2)(2k + 1)) = (−1)k, it follows from (3.17) that the maximum value
of |s′(t)| is attained at V t = D/2, which yields

S = max
t

∣∣s′(t)
∣∣ = 2

(
1 − ρ

)f0V
D

∞∑

k=0

L̂

(
2k + 1
2D

)
. (3.18)

Finally, using (3.6) and (3.18), we find a lower bound for SNR to be

SNR∞ =
(

S

σ ′
n

)2

= 4
(
1 − ρ

)2
P 2 NAe

(λz)2
1
D2

[∑∞
k=0 L̂((2k + 1)/2D)

]2

‖∂I/∂ξ‖2
. (3.19)
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3.3. SNR for Gaussian Optical Field

In the following, we illustrate the estimates of SNR for a beam with Gaussian intensity. We
also describe qualitative dependence of SNR on the scan distance z. The line spread function
of the Gaussian field (2.48) is given by

L(ξ) =

√
2
π

1
ωx

exp

[

−2
(

ξ

ωx

)2
]

, (3.20)

and the L2-norm of ∂I/∂ξ is

∥
∥
∥
∥
∂I

∂ξ

∥
∥
∥
∥

2

=
2
π

P 2

ω3
xωy

. (3.21)

Substituting (3.20) and (3.21) into (3.10), we find

SNR1 =
(
1 − ρ

)2 NAe

(λz)2
ωxωy. (3.22)

In order to find SNR∞, we need the Fourier transform of the line spread function L(ξ),

L̂(ν) = exp
(
−1
2
(πωx)2ν2

)
. (3.23)

Then, (3.19) yields

SNR∞ = 2π
(
1 − ρ

)2
ωxωy

(ωx

D

)2 NAe

(λz)2

[ ∞∑

k=0

exp

(

−π
2

8

(ωx

D

)2
(2k + 1)2

)]2
. (3.24)

We note that SNR∞ depends on the spot-to-bar ratio r = 2ωx/D which plays an important
role in bar code signal analysis. In most cases, 1 ≤ r ≤ 3; hence, the series in (3.24) converges
very quickly, and it suffices to keep only the first few terms. This is intuitively clear since the
edges far away from the beam do not contribute to the SNR. Figure 8 shows dependence of
SNR∞ on the spot-to-bar ratio r ∈ [1, 3]. It is apparent that SNR∞ is maximum when r = 1
which implies that narrow beams (r = D) have better SNR than wide beams (r = 3D).

3.4. Dependence of SNR on Scan Distance

Recall that the beam size changes along the propagation axis according to (2.49). Thus, the
SNR is a function of the scan distance z, which we investigate next. Suppose the beam waist
is at a distance zw from the photodetector. Since the laser is placed next to the photodetector,
the scan distance can be written as z = zw + z′ where z′ is the distance from the waist to
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.

the scattering plane. For simplicity, we assume that the beam is circular, that is, ω0x = ω0y =
ω0. Then in view of (2.49),

ωx = ωy = ω0

√√√
√1 +

(
λz′

πω2
0

)2

. (3.25)

Let us define the dimensionless variables u = λz′/ω2
0 and uw = λzw/ω

2
0. Substituting (3.25)

into (3.22) and rearranging terms, we obtain

SNR1 =
(
1 − ρ

)2NAe

ω2
0

f(u), (3.26)

where

f(u) =
1 + (u/π)2

(u + uw)2
, −uw < u < ∞. (3.27)

For a particular scanner, the waist location zw is fixed (it is close to the output surface of
the laser). Thus, (3.26) provides dependence of SNR1 on the scan distance z = zw + z′. The
function f(u) is decreasing for −uw < u < π2/uw and increasing for u > π2/uw. It has a
local minimum at umin = π2/uw, that is, at z′min = π2ω4

0/(λ
2zw). The lowest value of SNR1 is

attained at zmin = z′min + zw and

(SNR1)min =
(
1 − ρ

)2NAe

ω2
0

1

π2 + (λzw/ω2
0)

2
. (3.28)

Typical values of the wavelength and spot size are λ = 670 · 10−9 m, ω0 ≈ 10−3 m, and zw ≈
10−1 m. For these values of λ, ω0, and zw, we have zmin � zw; hence, the minimum occurs
far beyond the working range of a scanner. Consequently, for application purposes, we may
consider SNR1 simply a decreasing function of z, which implies that better SNR is achieved
at shorter scan distances.
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The same qualitative behaviour can also be deduced by analyzing SNR∞. Let us define
Q = exp[−(π2/8)(r/2)2] where r = 2ωx/D is the spot-to-bar ratio at distance z. Then (3.24)
can be written as

SNR∞ = 2π
(
1 − ρ

)2
ωxωy

(ωx

D

)2 NAe

(λz)2

[ ∞∑

k=0

Q(2k+1)2
]2
. (3.29)

We wish to find an approximate expression for SNR∞. Define Q0 = exp[−(π2/8)(r0/2)
2]

where r0 = 2ω0/D is the spot-to-bar ratio at the waist. It is easily seen that for r0 ∈ [1, 3], we
can make the approximation

[ ∞∑

k=0

Q
(2k+1)2

0

]2
= Q2

0 + 2Q10
0 + higher-order terms ≈ Q2

0. (3.30)

Since ω0 ≤ ωx, we have 0 < Q ≤ Q0 < 1; hence, the approximation (3.30) also holds for
Q. Therefore, SNR∞ can be approximated by

SNR∞ = 2π
(
1 − ρ

)2
ωxωy

(ωx

D

)2 NAe

(λz)2
Q2, (3.31)

for all r0 ∈ [1, 3]. Now, substituting (3.25) into (3.31), we find

SNR∞ = 2π
(
1 − ρ

)2NAe

D2
g(u), (3.32)

where

g(u) =
1

(u + uw)2

[

1 +
(
u

π

)2
]2

exp

[

−π
2

4

(r0
2

)2
(

1 +
(
u

π

)2
)]

. (3.33)

The behaviour of g(u) is more complex than f(u), and it depends on the exact values of the
parameters uw = λzw/ω

2
0 and r0 = 2ω0/D. For typical values of λ, ω0, and zw as given above,

the function g(u) is monotonically decreasing for all r0 ∈ [1, 3]. This means that SNR is larger
at shorter scan distances. Since a laser beam spreads as it propagates, this is in agreement
with earlier finding that a better SNR is achieved for smaller spot-to-bar ratios r = 2ωx/D.

4. Edge Localization Error

In this section, we investigate the edge localization error in bar code signals caused by speckle
noise. Suppose the edges are located at X1 < X2 < · · · < Xn, so the gray level of a bar code is
represented by

B(ξ) = ρ +
(
1 − ρ

) n∑

k=1

(−1)k+1H(ξ −Xk). (4.1)
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Figure 9:Noise-free signal s′(t) (– –) generated by different scanning beams: (a) Gaussian beam with ωx =
1 and ωx = 3, (b) beam with intensity distribution given by (4.2).

As explained earlier, the observed signal is given by (3.1), and the edges are detected
by finding the local extrema of f ′(t). There are several difficulties related to this approach.
First, a local extremum of f ′(t) may represent a noised edge, which is clearly seen in
Figure 5. Second, even in noise-free conditions, an edge may be erroneously detected due
to convolution distortion (blur), or due to a specific shape of the line spread function.
Figure 9(a) shows a single bar with gray level B(ξ) = H(ξ + 1) − H(ξ − 1) scanned by the
Gaussian beam (2.48) at two different scales:ωx = 1 andωx = 3. It is evident that the distance
between the local extrema of s′(t) increases with ωx, which distorts the apparent bar width.
In general, the neighbouring edges interact with each other, and the convolution distortion
becomes more complicated. For a modification of the standard technique for edge detection
which deals with severely blurred bar codes, see [20] and [38]. If the line spread function is
not Gaussian, then the local extrema of s′(t) may lead to false edges as in Figure 9(b). This
figure shows a single bar scanned by the beam with intensity

I
(
ξ, η
)
= I0 exp

(

−2 r2

ω2

)

J20

(
2π
λ

θr

)
, (4.2)

where r =
√
ξ2 + η2, and J0 is the zero-order Bessel function of the first kind. Due to its slow

divergence, this kind of beam is used in some scanners for long-range applications. These
two effects combined together make edge detection even more difficult.

In our analysis, we assume that the convolution distortion is sufficiently small, and we
focus our attention on edge localization error caused by speckle noise only. Suppose that the
signal f(t) = s(t)+n(t) is given by (3.1)–(3.3). In the preprocessing stage, the derivative f ′(t) is
filtered by a linear filter with impulse response h(t). An algorithm for selecting optimal filter
scale based on the narrow element estimate is presented in [2]. Applications of multiscale
algorithms in edge detection can be found in [13–15, 39]. After filtering, the observed signal
becomes

g(t) =
∫

R

h(t − τ)s′(τ)dτ +
∫

R

h(t − τ)n′(τ)dτ. (4.3)
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We denote g0(t) = (h ∗ s′)(t) and gn(t) = (h ∗ n′)(t) where ∗ is the convolution operator
(x ∗ y)(t) =

∫
R
x(t − τ)y(τ)dτ . Since the derivative of speckle noise is a weakly stationary

process, so is the process gn = {gn(t) | t ∈ R}. Now, we pose the following problem: given
spectral characteristics of the process n = {n(t) | t ∈ R} estimate the error in locating
the edges in (4.1). In general, this is a fairly complicated problem, so we introduce several
simplifying assumptions. Let us examine more closely the noise-free signal g0(t) = (h ∗ s′)(t).
By substituting (4.1) into (3.2), we obtain

g0(t) = f0
(
1 − ρ

)
V

n∑

k=1

(−1)k+1(h ∗ LV )(t − Tk), (4.4)

where LV (t) = L(V t) and Tk = Xk/V are the edge positions in time domain. The edge
locations in noise-free conditions are approximated by solutions of the nonlinear equation
g ′
0(t) = 0, that is,

n∑

k=1

(−1)k+1(h ∗ LV )
′(t − Tk) = 0. (4.5)

The number of solutions tk of (4.5) is usually greater than the number of edges, depending on
the exact shape of the line spread function. Furthermore, tk /= Tk due to convolution distortion.
In our analysis, we will assume that the data {tk}nk=1 is given and is sufficient to perform
decoding, that is, tk+1 − tk ≈ Tk+1 − Tk for all k. This is true if the support of L(ξ) is comparable
in size with mink|Xk+1 −Xk|, the smallest bar or space.

If the signal is corrupted by noise, we are interested in solutions of the equation

g ′
0(t) + g ′

n(t) = 0, (4.6)

which represent small random perturbations of the noise-free solutions {tk}nk=1. Let t be a
solution of (4.6), and let ek = t−tk be a random error associated to tk. The statistical properties
of the random variable ek depend on the process n = {n(t) | t ∈ R}. It is shown in [40] that
for small errors the expected value of ek is E[ek] = 0. Furthermore, the second moment of ek
is given by

E
[
e2k

]
=

(
4π2

f0
(
1 − ρ

)
V

)2
∫
R
ν4
∣∣∣ĥ(ν)

∣∣∣
2
Sn(ν)dν

[∑n
i=1 (−1)i+1(h ∗ LV )

′′(tk − Ti)
]2 , (4.7)

where ĥ(ν) is the Fourier transform of h(t), and Sn(ν) is the power spectral density of n. We
define the edge position error to be the standard deviation

δk = V
√
E
[
e2
k

] − E2[ek] =
4π2

f0
(
1 − ρ

)

[∫
R
ν4
∣∣∣ĥ(ν)

∣∣∣
2
Sn(ν)dν

]1/2

∣∣∣
∑n

i=1 (−1)i+1(h ∗ LV )
′′(tk − Ti)

∣∣∣
. (4.8)
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The above relation shows that δk depends on the spectral characteristics of the noise n as well
as the positions of edges in a bar code symbol. The function (h ∗ LV )

′′(t) often decays rapidly
to zero as |t| grows, that is, (h ∗ LV )

′′(tk −Ti) ≈ 0 when |tk −Ti| is large. Hence, only the nearest
neighbours of edge k contribute to the error δk.

4.1. Speckle Noise and Edge Localization Error for Gaussian Optical Field

As noted earlier, the laser beam profile most often used in scanning is approximately the
Gaussian function. Hence, it is instructive to study the edge localization error when the
optical field is given by (2.48). We assume that the filer impulse response is given by

h(t) =
1√
2πσ

exp

[

−1
2

(
t

σ

)2
]

. (4.9)

This type of filter acts as a low-pass filter and is commonly used in Canny’s algorithm for
edge detection [19]. It is known that the Gaussian filter does not create false edges as the
scale σ increases [41]. The frequency response of the filter is given by ĥ(ν) = exp[−2(πσν)2].
Furthermore, the PSD of speckle noise is given by Sn(ν) = Sf(ν) − 〈f〉2δ(ν); hence, in view
of (2.57),

Sn(ν) = f2
0

√
π

Sc

NAe

ωx

V
exp
[
−
(πωx

V

)2
ν2
]
. (4.10)

A straightforward computation yields

∫

R

ν2
∣∣∣ĥ(ν)

∣∣∣
2
Sn(ν)dν =

3
4π4

f2
0

Sc

NAe

(
V

ωx

)4 1
β5

, (4.11)

where β =
√
1 + 4(Vσ/ωx)

2. By convolving the impulse response h(t) with the line spread
function (3.20), we obtain

(h ∗ LV )(t) =

√
2
π

1
βωx

exp

[

−2
(

V t

βωx

)2
]

. (4.12)

This leads immediately to

(h ∗ LV )
′′(t) =

√
8
π

V 2

(
βωx

)3H2

(√
2
V t

βωx

)
exp

[

−2
(

V t

βωx

)2
]

, (4.13)
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whereH2(x) = 4x2−2 is the Hermite polynomial of degree two. Substituting (4.11) and (4.13)
into (4.8), we find

δk =
1

1 − ρ

√
3πSc

2NAe

√
βωx∣

∣
∣
∑n

i=1 (−1)i+1H2

(√
2
(
xk −Xi/βωx

))
exp
[
−2(xk −Xi/βωx

)2]∣∣
∣
, (4.14)

where xk = V tk and Xk = VTk. Recall that {Xk}nk=1 are true edge positions and that {xk}nk=1
are solutions of (4.5)which in our case yields

n∑

k=1

(−1)k+1(t − Tk) exp

[

−2
(

V

βωx

)2

(t − Tk)2
]

= 0. (4.15)

This equation has exactly n distinct solutions t1 < t2 < · · · < tn. Convolution distortion is
negligible if βωx ≤ mink|Xk+1 − Xk|, the smallest bar or space. In this case, tk ≈ Tk to a very
good approximation; otherwise, (4.15)must be solved numerically.

The factor β is responsible for deviations of δk from the value it would have in the
absence of a filter. Indeed, limσ→ 0+δk = δ

(0)
k where

δ
(0)
k =

1
1 − ρ

√
3πSc

2NAe

ωx∣∣∣
∑n

i=1 (−1)i+1H2

(√
2(xk −Xi)/ωx

)
exp
[
−2((xk −Xi)/ωx)

2
]∣∣∣

(4.16)

is the error obtained from (4.8) if h(t) is replaced by the Dirac function δ(t).

4.2. Susceptibility of Bar Code Symbols to Edge Localization Errors

Relation (4.16) is very useful in studying the distribution of edge localization errors caused by
speckle noise in different bar code symbols. When convolution distortion is small, that is, xk ≈
Xk for all k, the edge localization errors in a given bar code symbol can be analyzed as follows.

The width of a bar or space in a symbol is a multiple of a unit widthD, called module.
We may assume that the edges are located at

X1 = 0, X2 = p1D, X3 =
(
p1 + p2

)
D, . . . , Xn =

(
n−1∑

k=1

pk

)

D. (4.17)

A message stored in a bar code is encoded in the digital bar pattern S = (p1, p2, . . . , pn−1). As
explained earlier, the possible values of pk in the UPCA symbology are pk = 1, 2, 3, 4. Each
integer between 0 and 9 is encoded as a sequence (p1, p2, p3, p4) where

∑4
k=1 pk = 7. Table 1

shows encodation patterns for integers 0, 1, . . . , 9. For more details on different symbologies,
see [1]. For convenience, we define dk =

∑k−1
i=1 pi, 2 ≤ k ≤ n, and set d1 = 0. Then the distance

between a pair of edges is Xk −Xi = (dk −di)D. We introduce the spot-to-bar ratio r = 2ωx/D
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as a measure of the beam size 2ωx relative to the smallest bar or space. Using (4.16), the edge
localization error relative to the module size can be written as

δ
(0)
k

D
=

1
1 − ρ

√
3πSc

8NAe

r
∣
∣
∣
∑n

i=1 (−1)i+1H2

(√
8(dk − di)/r

)
exp
[
−8((dk − di)/r)

2
]∣∣
∣
, (4.18)

where we have used xk = Xk.
The relative error δ(0)

k
/D can be used to define susceptibility of a bar code symbol to

edge localization errors. Here, we should take into account that a large error in the position
of a single edge can make the entire bar code unreadable. This suggests that susceptibility
should be defined by

‖S‖ = max
k

∣
∣
∣∣∣∣

δ
(0)
k

D

∣
∣
∣∣∣∣
. (4.19)

Note that ‖S‖ is proportional to (1 − ρ)−1
√
3πSc/(8NAe)which depends only on the physical

characteristics of the system. Hence, we introduce susceptibility which is intrinsic to the bar
code symbol alone by ‖S‖0 = maxk|Ek(S)|where

Ek(S) = r
∣∣∣
∑n

i=1 (−1)i+1H2

(√
8(dk − di)/r

)
exp
[
−8((dk − di)/r))

2
]∣∣∣
. (4.20)

Themeasure ‖S‖0 depends only on the relative positions of edges, that is, themessage content
of the bar code, and the spot-to-bar ratio r. Figure 10 shows the distribution of errors Ek(S)
when S encodes the message “012345678905.” Investigation of the error distributions for a
large number of UPCA symbols reveals that this is a typical result: the errors Ek(S) cluster
around the values 0.5, 0.35, and 0.27. Hence, all UPCA symbols have approximately the same
maximum error ‖S‖0 = 0.5 which is about twice as large as the minimum error. One can
similarly study the distribution of errors in other popular symbologies, such as code 39 and
code 128, and for different beam profiles. We remark that if the approximation xk ≈ Xk is not
valid, then the apparent edge positions xk must be computed numerically from (4.15).

5. Applications to System Design and Open Problems

The theoretical analysis presented here can be used as a guide in system design. Here, we
discuss several possibilities that will be investigated in future work. Performance of a bar
code scanner greatly depends on how the laser beam is focused. Beam focusing is guided by
two key requirements imposed on the scanning device:

(i) bar code density, that is, the smallest bar code a scanner can read,

(ii) working range within which bar codes can be decoded.

The working range is estimated by using the modulation transfer function (MTF) of the
scanning beam. Let L(ξ) be the line spread function of the beam, and let ν0 be the spatial
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Figure 10: Edge position errors Ek(S) for UPCA symbol encoding the message “012345678905.”

frequency of the smallest bar or space we wish to read (ν0 = 1/(2D)). For symmetric beams,
the MTF is given by MTF = |L̂(ν0)|. Since the beam intensity changes with scan distance
z, so does the MTF. By plotting the MTF as a function of z, one can estimate the region
of decoding as the interval in which the MTF is greater than some predefined value. This
analysis, however, takes into account only degradation of the image due to finite size of the
beam.

We propose an alternative approachwhich also takes into account the effects of speckle
noise on decoding process. Bar code decoding is based on the distance between two adjacent
edges. Suppose the edges are located at xk and xk+1, where xk = V tk are solutions of (4.5).
The convolution distortion of a bar (space) between the edges Xk and Xk+1 is defined by

Ck = (xk+1 − xk) − (Xk+1 −Xk) = Δxk −ΔXk. (5.1)

A bar code can be decoded if the maximum error of a detected bar (space) width is less than
some value σB, usually σB = B/2. Then, in noise-free conditions, we demand that

max
k

|Ck| ≤ σB. (5.2)

Now, suppose the signal is corrupted by speckle noise. Then the edge position xk becomes a
random variable xk = xk + ek where ek is the error in space domain associated with speckle
noise (i.e., ek = Vek). The detected bar (space) width is given by Δxk = xk+1 − xk = Δxk +
ek+1 − ek. Since E[ek] = 0, the variance of the detected width is

var(Δxk) = E
[
(ek+1 − ek)

2
]
. (5.3)

Using the Cauchy-Schwartz inequality E2[ek+1ek] ≤ E[e2k+1]E[e
2
k], we obtain var(Δxk) ≤

(δk+1 + δk)
2 where δk is the edge position error defined by (4.8). Therefore, the standard
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deviation of Δxk is bounded by δk+1 + δk. This suggests that the condition (5.2) should be
replaced by

max
k

(|Ck| + δk+1 + δk) ≤ σB. (5.4)

The above criteria for bar code decoding also takes into account the effect of filtering since
both Ck and δk depend on the filter impulse response h(t).

As seen in Section 2, the intensity of a laser beam depends on the scan distance z.
The change in the scan distance affects the convolution distortion and the edge position error
caused by speckle noise. Therefore, the quantity defined by Jk(z) = |Ck(z)| + δk+1(z) + δk(z)
is a function of z. It follows that the working range of a scanner can be defined as the interval
[z1, z2] such that

max
k

Jk(z) ≤ σB ∀z ∈ [z1, z2]. (5.5)

Another possible use of the above inequality is beam focusing. Since Jk(z) depends on the
beam intensity I(ξ, η), for a desired interval [z1, z2], one should try to design a beam such
that (5.5) holds. This condition can also be used to optimize the filter impulse response h(t).
These considerations lead to certain variational problems that warrant further investigation.

6. Conclusion

In this paper, we reviewed the effects of speckle noise on bar code decoding. We have shown
that when the scattering surface has uniform reflectance, speckle noise is a weakly stationary
random process. We derived expressions for the autocorrelation function and power spectral
density of the noise in terms of intensity distribution of the scanning beam. We have also
derived estimates for a lower bound of signal-to-noise ratio when the signal is obtained by
scanning a single edge and an infinite sequence of edges. In the last part of the paper, we
investigated the edge localization error caused by speckle noise. We derived a first-order
approximation of the error and showed that it depends on the spectral characteristics of the
noise as well as relative positions of the edges in a bar code symbol. The results derived
here are used to propose alternative criteria for system optimization. We have also pointed
to some open problems in systems design that could be studied using the presented analysis.
Throughout the paper, the theory was illustrated by analytical examples when a scanning
beam has Gaussian intensity.

List of Symbols

‖ · ‖: L2-norm on R
2

A(x, y): Photodetector response function
Ae: Effective aperture area
B(ξ): Gray level of a bar code
Ck: Convolution distortion
D: Bar code module
δk: Standard deviation of edge position error
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ek: Edge position error
f(t): Photodetector signal
I(ξ, η): Intensity distribution of incident beam
Is(x, y): Intensity distribution of a static speckle

pattern
Ids(x, y, t): Intensity distribution of a dynamic

speckle pattern
〈Is〉: Expected value of Is(x, y)
L(ξ): Line spread function
λ: Optical wavelength
μ(x, y): Complex coherence function of a static

optical field
μd(x, y, τ): Complex coherence function of a

moving optical field
P : Beam power
Pf : Total power of photodetector signal
R: Optical-to-electrical signal conversion

factor
Rs(x1, y1;x2, y2): Autocorrelation function of Is(x, y)
Rds(x1, y1;x2, y2; t2, t1): Autocorrelation function of Ids(x, y; t)
Rf(t1, t2): Autocorrelation function of the

photodetector signal f(t)
RA(x, y): Autocorrelation function of the

photodetector response A(x, y)
S: Digital bar pattern
Sf(ν): Power spectral density of photodetector

signal
Sf ′(ν): Power spectral density of differentiated

speckle noise
Sc: Speckle correlation area
σ2
f
: Speckle noise power

σ2
f ′ : Differentiated speckle noise power

SNR: Signal-to-noise ratio
U(ξ, η): EM field in the scattering plane
Xk: Edge positions in space domain.
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