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In addition to leachate and gas emission analysis, temperature variations in municipal solid waste
landfills are routinely monitored for safety and health reasons, such as the increased production
of biogas or the danger of spontaneous combustion phenomena if the temperature exceeds 70–
75◦C. The increasing constraints on greenhouse gas emissions and the convenience of fuel and heat
recovery have helped develop a global approach to landfills’ operation andmaintenance, generally
referred to as bioreactor landfill management. The heat recovery piping we are presently designing
can be a significant part of this approach. The heat gained by a fluid circulated in a closed network
through the landfill is transferred to an external heat exchanger or used directly as warm water.
Additionally, it can help reduce landfill temperature levels and control biogas generation. Since
the pipes diameter is large enough to allow for a radial temperature gradient, this information can
be used for an inverse estimation of the temperature profile in the landfill which constitutes the
boundary conditions of the resulting heat transfer problem. In this paper, we describe an algorithm
for regularising the resulting ill-posed free boundary estimation problem using sampled data of
the heat recovery fluid on exiting the landfill.

1. Introduction

A new approach to landfills’ operation and maintenance, generally referred to as “bioreactor
landfill management,” is expected to reduce the amount of leachate and to increase the
production of biogas, while reducing the amount of necessary land.

For the achievement of this result, leachate and gas emissions of municipal solid waste
landfills are accurately analysed, whereas temperature variations are routinely monitored
for safety and health reasons, such as the increased production of biogas or the danger of
spontaneous combustion phenomena if the temperature exceeds 70–75◦C [1].

Significant amounts of heat are produced in municipal landfills due to decomposition
of organic solid wastes. While leachate and gas emissions have been the object of several
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studies [2–4], less information is available on heat recovery technologies. However, they
could be a significant part in the general bioreactor landfill management, as the heat gained
by a fluid circulated in a closed network through the landfill can be transferred to an external
heat exchanger or used directly as warm water adding to the overall energy saving strategy.
Additionally, the heat removed can contribute to a reduction of temperature levels inside the
landfill and to an alleviation of spontaneous combustion risks.

Since the diameter of the pipes carrying the heat recovery fluid is large enough to allow
for a radial temperature gradient, this information can be used for an inverse estimation of the
temperature profile in the landfill which constitutes the boundary conditions of the resulting
heat transfer problem. This information can be combined with the measurements provided
by in situ sensors (including thermocouples, thermistors, and vibrating wire piezometers)
which have to withstand a corrosive aggressive environment and strong mechanical stresses.
The simultaneous use of direct measurements provided by sensors and of estimates resulting
from inverse temperature profile reconstructions can improve the overall thermal control in
landfills.

The inverse estimation of the boundary conditions of a partial differential equations is
known to be an ill-posed problem which requires suitable regularisation techniques to obtain
stable and physically acceptable solutions.

In this paper, we employ a piecewise linear approximation to the unknown profile
combined with a traditional Tikhonov regularisation technique [5]. The piecewise linear
approximation of a boundary condition was first employed by the authors in the estimation
of diffusivities in solids [6], where it was used in conjunction with separable least squares.
In this paper, the method is extended to the thermal energy transfer of a fluid in stationary
motion.

Exact simulated data are generated from an assumed smooth temperature profile with
a spike to indicate the presence of a hot spot which might turn into a landfill fire. A Gaussian
distributed error with zero mean and a standard deviation equal to the measurement
precision is added to the exact data.

The reconstructions obtained by using different values for the number of intervals
of the piecewise linear approximation and Tikhonov’s regularisation parameter show the
usefulness and the limitations of the method developed.

2. Theoretical Development

The temperature profile inside the pipes is determined by the transfer of heat from the soil to
the fluid flowing in the pipes.

Assuming radial symmetry about the axis of the pipe and a flat velocity distribution
across the section of pipe (which is a reasonable assumption due to the turbulent motion of
the fluid), the energy balance can be written as [7]

ρcpu
∂T

∂x
= K

1
r

∂

∂r

(
r
∂T

∂r

)
, (2.1)

(
∂T

∂r

)
r=0

= 0, (2.2)

T(0, r) = T0, (2.3)

−K
(
∂T

∂r

)
r=R

= H
[
T(x,R) − ϕ(x)], (2.4)



Journal of Applied Mathematics 3

where ρ is the density, cP is the specific heat at constant pressure, u is the speed, and K is the
conductivity of the fluid. R is the radius of the pipe, and x indicates the direction of motion.
H is the heat transfer coefficient from the soil to the fluid (including wall resistance), and
ϕ(x) is the unknown temperature profile of the soil.

Setting k = K/(ρ cP u), (2.1) becomes
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This equation is formally equal to the transient heat conduction in an infinite circular cylinder
[8].

The general analytical solution of (2.1)–(2.4) can be determined by applying
Duhamel’s principle [9] to the particular solution obtained assuming a constant temperature
profile along the x direction.

Indeed, if the soil temperature profile is constant along x (ϕ(x) = T ∗), the analytical
solution is provided by the infinite series [8]
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where A = RH, J0 is the Bessel function of order zero, and βn are the roots of
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Combining this equation with Duhamel’s principle, we obtain the general solution
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Thus, if the temperature of the fluid T(r, x) is measured at the exit of the landfill (x = L), the
unknown soil temperature profile ϕ(x) can be estimated.

Following the method developed in [6], let us approximate the profile by a continuous
piecewise function ψ(x) in the range [0, L] divided intoM equal intervals of width h = L/M,

ψ(x) = T0 + h
k−1∑
i=1

ci + ck(x − xk−1), xk−1 ≤ x ≤ xk, (2.9)

where ck is the angular coefficient of the linear approximation in the interval xk−1 ≤ x ≤ xk.
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The integrals in the infinite series can now be approximated by
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where Pn and Rin can be evaluated by comparison.
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to any predefined accuracy, let us analyse first the infinite series
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Let us consider the first series in (2.16).
Since βn > β1 + 3(n − 1),
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Setting x = 0 in (2.8), we can verify that for all r/R,
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where ε is any predetermined accuracy.
The same truncation index N can be used to estimate a sufficient number of terms in

the second series.
Indeed, let us rewrite
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and letN be the index such that
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consequentlyN is a conservative estimate also for the second series.
It can be shown that using a similar procedure, the same truncation index can be used

also for the series
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All the previous algebraic expressions can be combined to provide the final relationship
between the radial distribution of temperatures in a section of the pipe at a distance L from
the point where heat transfer with the soil starts
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where ε is typically 10−6.
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For any data set,

yj = T
(
rj , L
) − T0 −ω(rj), (2.27)

we can estimate the slopes of the piecewise linear temperature distribution of the soil from
the system of linear equations

yj =
M∑
i=1

ξijci. (2.28)

The usual least-squares estimation procedure provides the well-known relationship

ĉ = (Γ∗Γ)−1Γ∗y, (2.29)

where ĉ is the vector of the estimated slopes and Γ = ‖ξij‖.
Since this estimation problem is an ill-posed problem, the accuracy of the estimates ĉ

does not depend continuously on the experimental errors on the data.
The results obtained applying Tikhonov’s regularisation method to this problem will

be discussed in the next sections using simulated data generated by a smooth temperature
profile with a spike representing a hot spot in the landfill.

3. Regularisation Technique

Reducing the unknown soil temperature function to a finite-dimensional vector ĉ changes
the theoretically ill-posed problem into a numerically ill-conditioned one, reflected by near
singularity of the matrix Γ∗Γ.

Thus, the most frequently used regularisation method consists in the modification
and/or elimination of the eigenvalues of Γ∗Γ that are too small.

A possible way to do this is reducing the dimension of the matrix (which in our
case implies reducing the number of intervals over which the temperature of the soil is
approximately linear). For this approach to be effective, the dimension of the vector ĉ has
frequently to be reduced so severely as to result in an unacceptably poor reconstruction.

A more efficient technique is the one proposed by Tikhonov and Arsenine [5] and
based on the statistical properties of the experimental errors on the set of measured variables
y.

To illustrate it, let us suppose that measured y
′
and exact (unknown) values y of the

experimental data are related by the relationship

∥∥y − y′
∥∥2 ≤ δ, (3.1)

where δ is determined by the variance of the statistical distribution of the experimental error.
Tikhonov’s regularisation method consists in replacing the original minimisation

problem

∥∥Γĉ − y′
∥∥2 = min, (3.2)
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Table 1

Parameter Value Symbol
Fluid speed 1m/s u
Pipe diameter 0.4m 2R
Fluid density 1000Kg/m3 ρ

Fluid conductivity 0.6397 W/(sm ◦K) K
Heat transfer coefficient∗ 90.36 J/(sm2 ◦K) H

∗
Data taken from [11] (“Ground Source Heat Pumps: Design of Geothermal Systems for Commercial and Institutional
Buildings”), ASHRAE (2008).

with the minimisation problem

∥∥∥Γĉ − y
′
∥∥∥2 + α‖ĉ‖2 = min, (3.3)

where the positive constant α is chosen so that

∥∥∥Γĉ − y
′
∥∥∥2 = δ. (3.4)

Combining (3.3) and (3.4) provides the reconstructed vector ĉ,

ĉ = (Γ∗Γ + αI)−1Γ∗y
′
, (3.5)

with α being determined by Morozov’s discrepancy method [10], that is, iteratively
increasing the value of α until (3.4) is satisfied.

Clearly the eigenvalues of Γ∗Γ are now increased by an amount α, which being positive
regularises the solution vector ĉ at the price of smoothing it. The compromise between
regularisation and accuracy is given by (3.4), which being rooted in statistics provides a
theoretical framework for an optimal offset.

However, caution is warranted when considering automatic acceptance of the solution
obtained. Indeed, the value of δ (related to the statistical distribution of the experimental
error) might be only approximately known. Additionally, the variance of the sample can
differ substantially from the theoretical one, thus leading to a biased value of δ.

Therefore, solution vectors ĉ obtained by letting α vary around the optimal Tikhonov’s
value (typically an order of magnitude above and below) should be examined for the
detection of possible over- or undersmoothing effects.

4. A Numerical Example

Exact simulated data have been generated using a smooth parabolic temperature profile with
a spike to indicate the presence of a hot spot whichmight turn into a landfill fire. The profile of
the physical model is plotted in Figure 1. The geometrical and physical-chemical parameters
used are reported in Table 1.

Since the fluid used is water, both fluid density and fluid conductivity can be estimated
with a very high degree of accuracy. Consequently the first four parameters can be assumed to
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Figure 1

be accurately known. On the other hand, the heat transfer coefficient depends on the nature
of soil. Since the goal of this paper is to show the reliability of the general procedure, the
literature value (recommended by the American Society of Heating and Air-Conditioning
for ordinary soil) has been used.

More accurate values (based on an experimental campaign) should be employedwhen
real life cases are considered. Additionally, the uncertainties resulting from the standard
deviation of the estimate of the heat transfer coefficient should be taken into account. To this
purpose, a preliminary parameter sensitivity analysis is carried out in this paper by letting
the parameterH vary by 10% about the value recommended by the ASHRAE.

The computation of data was carried out using (2.8). The truncation index was
evaluated using the procedure described previously, whereas the integrals were computed
analytically.

A Gaussian distributed error with zero mean and a standard deviation equal to the
measurement precision (10−3◦C)was added to the exact simulated data.

The soil temperature profile was reconstructed using 10, 12, 15, and 20 equally spaced
intervals in each of which the temperature profile was assumed linear. The regularisation
parameter was estimated using Tikhonov’s stabilisation method based on the statistical
assumptions.

The corresponding graphs are plotted in Figures 2, 3, 4, and 5, respectively.
In all reconstructions, there is no clear identification of a peak, rather a smooth “bump”

appears in all reconstructions at approximately the right place. Thus, the number of intervals
does not seem to significantly affect the reconstruction of the temperature profile.

On the other hand, if Tikhonov’s parameter is reduced by a factor 2, the presence of
a temperature peak at the right position is more clearly visible. The value of the peak is also
estimated with good accuracy as shown in the 15-interval reconstruction plotted in Figure 6.

The increased accuracy in position and intensity of the peak value is offset by more
marked oscillations, as could be expected owing to the reduction of the smoothing factor.

As expected, increasing Tikhonov’s parameter by a factor 2 smooths the temperature
profile further and blurs the shape of the peak, as shown in Figure 7.

In all reconstructions, there is a hint that a hot spot with a larger-than-expected
temperature is present in the landfill. The position is also predicted with reasonable accuracy.
Reducing the value of Tikhonov’s parameter below its theoretically optimal value provides
an excellent estimation of position and intensity of the temperature peak. Thus, combining
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Figure 2: Ten intervals—Tikhonov’s regularisation factor.
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Figure 3: Twelve intervals—Tikhonov’s regularisation factor.
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Figure 4: Fifteen intervals—Tikhonov’s regularisation factor.



12 Journal of Applied Mathematics

0 100 200 300 400 500 600 700 800 900 1000
20

30

40

50

60

70

80

Distance along the landfill (m)

T
em

pe
ra

tu
re

 (°
C

)

Exact and reconstructed soil temperature profile 

Original profile
Reconstructed profile

Figure 5: Twenty intervals—Tikhonov’s regularisation factor.
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Figure 6: Fifteen intervals—Half Tikhonov’s regularisation factor.
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Figure 7: Fifteen intervals—double Tikhonov’s regularisation factor.
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Figure 8: Fifteen intervals—Tikhonov’s regularisation factor-assumed heat transfer coefficient equal to 90%
of the value used to generate the simulated data.
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Figure 9: Fifteen intervals—Tikhonov’s regularisation factor-assumed heat transfer coefficient equal to
110% of the value used to generate the simulated data.

Tikhonov’s regularisation method with a strategy of exploring additional reconstructions
by letting the regularisation parameter vary around its theoretical value provides valuable
information for the overall monitoring process.

As mentioned before, the only parameter subject to a certain degree of uncertainty is
the heat transfer coefficient. Even if good estimates can be obtained through a limited number
of measurements in a well-designed experimental campaign, it is important to verify the
consequences of the use of an incorrect heat transfer coefficient on the reconstruction of the
temperature profile.

To this purpose, a simple sensitivity analysis has been performed by examining
reconstructed profiles when the heat transfer coefficient employed in the regression analysis
differs by 10% from the corresponding value used in the generation of the simulated data.

The heat transfer coefficientH is directly proportional to the variableA. Furthermore,
it follows from the relation βJ1(β) = AJ0(β) that the variables βn are increasing functions ofA.
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Thus, bothω and ξ (and consequently the vector y’ and thematrix Γ) are decreasing functions
of the heat transfer coefficient used in the reconstruction. Therefore a higher value of H is
equivalent to an increased weight of the regularisation term in the minimisation problem
(3.3) and consequently to a more marked smoothing effect.

This is confirmed by the two further reconstructions obtained using 15 equally spaced
intervals, the theoretical Tikhonov’s regularisation factor, and values of the heat transfer
coefficient equal to 90% and 110% of the original value, respectively. As shown in Figures 8
and 9, even a 10% deviation from the true value (which can be regarded as an upper estimate
error) does not affect to any significant degree the analysis made.

Furthermore, it can prove difficult to distinguish between over- (under)smoothing due
to larger- (smaller-) than-optimal value of Tikhonov’s factor and a wrong estimate of the heat
transfer coefficient. This can be regarded as an added reason for considering a reasonably
wide range of values of this factor.

5. Conclusions

If and when the heat generated in a landfill is extracted by the circulation of a heat recovery
fluid, some additional information on temperature distribution inside the landfill will be
available as an added benefit.

The reconstruction technique described in this paper is not intended to replace
the traditional monitoring, but rather to complement it, making it possible to reduce the
number of sensors and/or to detect potential combustion phenomena at places where
no sensor is installed. Furthermore, mobile temperature monitoring equipment can be
more efficiently allocated following the indications provided by the implementation of the
algorithm developed in this paper.

Notation

Symbols

ci: Slope of temperature in the interval i (◦C/m)
cp: Specific heat of heat recovery fluid
h: Interval of linear dependance of temperature on distance (m)
H: Soil heat transfer coefficient (J/(s·m2 · ◦K))
J0: Bessel function of order zero
J1: Bessel function of order one
K: Heat conduction coefficient of heat recovery fluid (W/(s ·m ·◦C))
L: Distance travelled by the fluid in the landfill (m)
M: Number of equally spaced intervals in L
N: Number of terms in the infinite series necessary to achieve a relative accuracy ε
u: Speed of heat recovery fluid (m/s)
r: Radial variable in the pipe cross section (m)
R: Pipe radius (m)
T: Temperature (◦C)
T0: Ambient temperature (◦C)
x: Variable in the direction of fluid motion (m)
y: Experimental data set
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α: Tikhonov’s regularisation parameter
ε: Relative accuracy in the evaluation of series
λ: Dummy integration variable
ρ: Density of heat recovery fluid (Kg/m3)
ϕ: Unknown exact soil temperature profile (◦C).

Symbols Defined by Equations

A: R ·H
k: K/(ρ · cp · u)
Pn, Rin: Defined by the equation

∫L
0 e

(β2n/R
2)kλϕ(λ)dλ = Pn +

∑M
i=1 ciRin

βn: nth root of the equation βJ1(β) = AJ0(β)
Γ: Matrix whose elements are ξij
δ: Parameter determined by the variance of the statistical distribution of the

experimental error
ξ, ω: Defined by the equation T(r, L) = T0 +ω(r) +

∑M
i=1 ciξi(r).

Superscripts

,: Experimental value
:̂ Estimated value.
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