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We introduce and consider a new class of complementarity problems, which is called the
absolute value complementarity problem. We establish the equivalence between the absolute
complementarity problems and the fixed point problem using the projection operator. This
alternative equivalent formulation is used to discuss the existence of a solution of the absolute
value complementarity problem. A generalized AOR method is suggested and analyzed for
solving the absolute the complementarity problems. We discuss the convergence of generalized
AOR method for the L-matrix. Several examples are given to illustrate the implementation and
efficiency of the method. Results are very encouraging and may stimulate further research in this
direction.

1. Introduction

Complementarity theory introduced and studied by Lemke [1] and Cottle and Dantzig [2]
has enjoyed a vigorous growth for the last fifty years. It is well known that both the linear
and nonlinear programs can be characterized by a class of complementarity problems. The
complementarity problems have been generalized and extended to study a wide class of
problems, which arise in pure and applied sciences; see [1–24] and the references therein.
Equally important is the variational inequality problem, which was introduced and studied in
the early sixties. The theory of variational inequality has been developed not only to study the
fundamental facts on the qualitative behavior of solutions but also to provide highly efficient
new numerical methods for solving various nonlinear problems. For the recent applications,
formulation, numerical results, and other aspects of the variational inequalities, see [13–22].
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Motivated and inspired by the research going on in these areas, we introduced and
consider a new class of complmenetarity problems, which is called the absolute value
complmenetarity problem. Related to the absolute value complementarity problem, we
consider the problem of solving the absolute value variational inequality. We show that if the
under lying set is a convex cone, then both these problems are equivalent. If the underlying
set is the whole space, then the absolute value problem is equivalent to solving the absolute
value equations, which have been studied extensively in recent years.

We use the projection technique to show that the absolute value complementarity
problems are equivalent to the fixed point problem. This alternative equivalent form is
used to study the existence of a unique solution of the absolute value complementarity
problems under some suitable conditions. We again use the fixed point formulation to suggest
and analyze a generalized AOR method for solving the absolute value complementarity
problems. The convergence analysis of the proposed method is considered under some
suitable conditions. Some examples are given to illustrate the efficiency and implementation
of the proposed iterative methods. Results are very encouraging. The ideas and the technique
of this paper may stimulate further research in these areas.

Let Rn be an inner product space, whose inner product and norm are denoted by 〈·, ·〉
and ‖ · ‖, respectively. For a given matrix A ∈ Rn×n, a vector b ∈ Rn, we consider the problem
of finding x ∈ Rn such that

x ∈ K, Ax − |x| − b ∈ K∗, 〈Ax − |x| − b, x〉 = 0, (1.1)

where K∗ = {x ∈ Rn : 〈x, y〉 ≥ 0, ∀y ∈ K} is the polar cone of a closed and convex cone K,
A ∈ Rn×n, b ∈ Rn, and |x| will denote the vector in Rn with absolute values of components of
x ∈ Rn.

We remark that the absolute value complementarity problem (1.1) can be viewed as
an extension of the complementarity problem considered by Lemke [1]. To solve the linear
complementarity problems, several methods were proposed. These methods can be divided
into two categories, the direct and indirect (iterative) methods. Lemke [1] and Cottle and
Dantzig [2] developed the direct methods for solving linear complementarity problems based
on the process of pivoting, whereas Mangasarian [10], Noor [14, 15], and Noor et al. [20–22]
considered the iterative methods. For recent applications, formulations, numerical methods,
and other aspects of the complementarity problems and variational inequalities, see [1–24].

Let K be a closed and convex set in the inner product space Rn. We consider the
problem of finding x ∈ K such that

〈
Ax − |x| − b, y − x

〉 ≥ 0, ∀y ∈ K. (1.2)

The problem (1.2) is called the absolute value variational inequality, which is a special form
of the mildly nonlinear variational inequalities, introduced and studied by Noor [13] in 1975.

If K = Rn, then the problem (1.2) is equivalent to find x ∈ Rn such that

Ax − |x| − b = 0, (1.3)

which are known as the absolute value equations. These equations have been considered and
studied extensively in recent years; see [7–12, 17–20, 23, 24]. We would like to emphasize that
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Mangasarian [1, 2, 4–11] has shown that the absolute value equations (1.3) are equivalent
to the complementarity problems (1.1). Mangasarian [7–11] has used the complementarity
approach to solve the absolute value equations (1.3). For other methods, see [7–12, 20–24]
and the references therein.

In this paper, we suggest a generalized AOR method for solving absolute complemen-
tarity problem, which is easy to implement and gives almost exact solution of (1.3).

We also need the following definitions and concepts.

Definition 1.1. B ∈ Rn×n is called an L-matrix if bii > 0 for i = 1, 2, . . . , n, and bij ≤ 0 for
i /= j, i, j = 1, 2, . . . , n.

Definition 1.2. A matrix A ∈ Rn×n is said to be positive definite matrix, if there exists a constant
γ > 0, such that

〈Ax, x〉 ≥ γ‖x‖2, ∀x ∈ Rn, (1.4)

and bounded if there exists a constant β > 0 such that

‖Ax‖ ≤ β‖x‖, ∀x ∈ Rn. (1.5)

2. Iterative Methods

To propose and analyze algorithm for absolute complementarity problems, we need the
following well-known results.

Lemma 2.1 (see [16]). Let K be a nonempty closed convex set in Rn. For a given z ∈ Rn, u ∈ K
satisfies the inequality

〈u − z, u − v〉 ≥ 0, v ∈ K, (2.1)

if and only if

u = PKz, (2.2)

where PK is the projection of Rn onto the closed convex set K.

Lemma 2.2. If K is the positive cone in Rn, then x ∈ K is a solution of absolute value variational
inequality (1.2) if and only if x ∈ K solves the absolute value complementarity problem (1.1).

Proof. Let x ∈ K be the solution of (1.2). Then

〈
Ax − |x| − b, y − x

〉 ≥ 0, ∀y ∈ K. (2.3)

Since K is a cone, taking y = 0 ∈ K and y = 2x ∈ K, we have

〈Ax − |x| − b, x〉 = 0. (2.4)
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From inequality (1.2), we have

0 ≤ 〈Ax − |x| − b, y − x
〉
=
〈
Ax − |x| − b, y

〉 − 〈Ax − |x| − b, x〉,
=
〈
Ax − |x| − b, y

〉
, ∀y ∈ K,

(2.5)

from which it follows that Ax − |x| − b ∈ K∗. Thus we conclude that x ∈ K is the solution of
absolute complementarity problems (1.1).

Conversely, let x ∈ K be a solution of (1.1). Then

x ∈ K, Ax − |x| − b ∈ K∗, 〈Ax − |x| − b, x〉 = 0. (2.6)

From (2.5) and (2.6), it follows that

〈
Ax − |x| − b, y − x

〉 ≥ 0, ∀y ∈ K. (2.7)

Hence x ∈ K is the solution of absolute variational inequality (1.2).

From Lemma 2.1, it follows that both the problems (1.1) and (1.2) are equivalent.
In the next result, we prove the equivalence between the absolute value variational

inequality (1.2) and the fixed point.

Lemma 2.3. Let K be closed convex set in Rn. Then, for a constant ρ > 0, x ∈ K satisfies (1.2) if
and only if x ∈ K satisfies the relation

x = PK

(
x − ρ[Ax − |x| − b]

)
, (2.8)

where PK is the projection of Rn onto the closed convex set K.

Proof. Let x ∈ K be the solution of (1.2). Then, for a positive constant ρ > 0,

〈
x − (x − ρ(Ax − |x| − b)

)
, y − x

〉 ≥ 0, ∀y ∈ K. (2.9)

Using Lemma 2.1, we have

x = PK

(
x − ρ[Ax − |x| − b]

)
, (2.10)

which is the required result.

Now using Lemmas 2.2 and 2.3, we see that the absolute value complementarity
problem (1.1) is equivalent to the fixed point problem of the following type:

x = PK

(
x − ρ[Ax − |x| − b]

)
. (2.11)

We use this alternative fixed point formulation to study the existence of a unique solution of
the absolute value complementarity problem. Equation (1.1) and this is the main motivation
of our next result.
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Theorem 2.4. Let A ∈ Rn×n be a positive definite matrix with constant α > 0 and continuous with
constant β > 0. If 0 < ρ < 2(γ − 1)/(β2 − 1), γ > 1, then there exists a unique solution x ∈ K such
that

〈
Ax − |x| − b, y − x

〉 ≥ 0, ∀y ∈ K, (2.12)

where K is a closed convex set in Rn.

Proof. Uniqueness: Let x1 /=x2 ∈ K be two solutions of (1.2). Then

〈
Ax1 − |x1| − b, y − x1

〉 ≥ 0, ∀y ∈ K,
〈
Ax2 − |x2| − b, y − x2

〉 ≥ 0, ∀y ∈ K.
(2.13)

Taking y = x2 ∈ K in (2.13) and y = x1 ∈ K in (2.6), we have

〈−Ax1 + |x1| + b, x1 − x2〉 ≥ 0,

〈Ax2 − |x2| − b, x1 − x2〉 ≥ 0.
(2.14)

Adding the previous inequalities, we obtain

〈A(x1 − x2) − |x1| + |x2|, x1 − x2〉 ≤ 0, (2.15)

which implies that

〈A(x1 − x2), x1 − x2〉 − ‖x1 − x2‖2 ≤ 0. (2.16)

Since A is positive definite, from (2.16), we have

(
γ − 1

)‖x1 − x2‖2 ≤ 0. (2.17)

As γ > 1, therefore from (2.17) we have

‖x1 − x2‖2 ≤ 0, (2.18)

which contradicts the fact that ‖x1 − x2‖2 ≥ 0; hence x1 = x2.

Existence

Let x ∈ K be the solution of (1.2). Then

〈
Ax − |x| − b, y − x

〉 ≥ 0, ∀y ∈ K. (2.19)
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From Lemma 2.3, we have

x = PK

(
x − ρ[Ax − |x| − b]

)
. (2.20)

Define a mapping

F(x) = x = PK

(
x − ρ[Ax − |x| − b]

)
. (2.21)

To show that the mapping F(x) defined by (2.21) has a fixed point, it is enough to prove that
F(x) is a contraction mapping. For x1 /=x2 ∈ K, consider

‖F(x1) − F(x2)‖ =
∥
∥PK

[
x1 − ρ(Ax1 − |x1| − b)

] − PK

[
x2 − ρ(Ax2 − |x2| − b)

]∥∥

≤ ∥∥[x1 − ρ(Ax1 − |x1| − b)
] − [x2 − ρ(Ax2 − |x2| − b)

]∥∥

≤ ∥∥x1 − x2 − ρ(Ax1 −Ax2)
∥∥ + ρ‖|x1| − |x2|‖

=
∥∥x1 − x2 − ρA(x1 − x2)

∥∥ + ρ‖x1 − x2‖,

(2.22)

where we have used the fact that PK is nonexpansive. Now using positive definiteness of A,
we have

∥∥x1 − x2 − ρA(x1 − x2)
∥∥2 =

〈
x1 − x2 − ρA(x1 − x2), x1 − x2 − ρA(x1 − x2)

〉

≤ ‖x1 − x2‖2 − 2ργ〈x1 − x2, A(x1 − x2)〉 + ρ2β2‖x1 − x2‖2

=
(

1 − 2αρ + β2ρ2
)
‖x1 − x2‖2.

(2.23)

From (2.22) and (2.23), we have

‖F(x1) − F(x2)‖ ≤ θ‖x1 − x2‖, (2.24)

where θ = (ρ +
√

1 − 2γρ + β2ρ2). Form 0 < ρ < 2(γ − 1)/(β2 − 1) and ρ < 1, we have θ < 1.
This shows that F(x) is a contraction mapping and has a fixed point x ∈ K satisfying

the absolute value variational inequality (1.2).

For the sake of simplicity, we consider the special case, when K = [0, c] is a closed
convex set in Rn and we define the projection PKx as

(PKx)i = min{max(0, xi), ci}, i = 1, 2, . . . , n. (2.25)

We recall the following well-known result.

Lemma 2.5 (see [3]). For any x and y in Rn, the projection PKx has the following properties:

(i) PK(x + y) ≤ PKx + PKy,

(ii) PKx − PKy ≤ PK(x − y),
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(iii) x ≤ y ⇒ PKx ≤ PKy,

(iv) PKx + PK(−x) ≤ |x|, with equality, if and only if − c ≤ x ≤ c.

We now suggest the iterative methods for solving the absolute value complmentarity
problems (1.1). For this purpose, we decompose the matrix A as,

A = D + L +U, (2.26)

where D is the diagonal matrix, and L and U are strictly lower and strictly upper triangular
matrices, respectively. Let Ω = diag(ω1, ω2, . . . , ωn) with ωi ∈ R+ and let α be a real number.

Algorithm 2.6.

Step 1. Choose an initial vector x0 ∈ Rn and a parameter Ω ∈ R+. Set k = 0.

Step 2. Calculate

xk+1 = PK

(
xk −D−1[αΩLuk+1 + (ΩA − αΩL)uk −Ω(|xk| + b)]

)
. (2.27)

Step 3. If xk+1 = xk, then stop. Else, set k = k + 1 and go to Step 2.

Now we define an operator g : Rn → Rn such that g(x) = ξ, where ξ is the fixed point
of the system

ξ = PK

(
x −D−1[αΩLξ + (Ω A − αΩL)x −Ω(|x| + b)]

)
. (2.28)

We also assume that the set

ϕ = {x ∈ Rn : x ≥ 0, Ax − |x| − b ≥ 0} (2.29)

of the absolute value complementarity problem is nonempty.

To prove the convergence of Algorithm 2.6, we need the following result.

Theorem 2.7. Consider the operator g : Rn → Rn as defined in (2.28). Assume thatA ∈ Rn×n is an
L-matrix. Also assume that 0 < ωi ≤ 1, 0 ≤ α ≤ 1. Then, for any x ∈ ϕ, the following holds:

(i) g(x) ≤ x,

(ii) x ≤ y ⇒ g(x) ≤ g(y),

(iii) ξ = g(x) ∈ ϕ.

Proof. To prove (i), we need to verify that ξi ≤ xi, i = 1, 2, . . . , n hold with ξi satisfying

ξi = PK

⎛

⎝xi − a−1
ii

⎡

⎣αωi

i−1∑

j=1

Lij

(
ξj − xj

)
+ωi(Ax − |x| − b)i

⎤

⎦

⎞

⎠. (2.30)
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To prove the required result, we use mathematical induction. For this let i = 1,

ξ1 = PK

(
x1 − a−1

11ω1(Ax − |x| − b)1

)
. (2.31)

Since Ax − |x| − b ≥ 0, ωi > 0, therefore ξ1 ≤ x1. For i = 2, we have

ξ2 = PK

(
x2 − a−1

22 [αω2L21(ξ1 − x1) +ω2(Ax − |x| − b)2]
)
. (2.32)

Here Ax − |x| − b ≥ 0, ωi > 0, L21 ≤ 0, and ξ1 − x1 ≤ 0. This implies that ξ2 ≤ x2.
Suppose that

ξi ≤ xi for i = 1, 2, . . . , k − 1. (2.33)

We have to prove that the statement is true, for i = k, that is,

ξk ≤ xk. (2.34)

Consider

ξk = PK

⎛

⎝xk − a−1
kk

⎡

⎣αωk

k−1∑

j=1

Lkj

(
ξj − xj

)
+ωk(Ax − |x| − b)k

⎤

⎦

⎞

⎠,

= PK

(
xk − a−1

kk[αωk(Lk1(ξ1 − x1) + Lk2(ξ2 − x2) + · · · + Lkk−1(ξk−1 − xk−1))

+ωk(Ax − |x| − b)k]
)
.

(2.35)

Since Ax − |x| − b ≥ 0, ωk > 0, Lk1, Lk2, . . . , Lkk−1 ≤ 0, and ξi ≤ xi for i = 1, 2, . . . , k − 1, from
(2.35) we can write ξk ≤ xk. Hence (i) is proved.

Now we prove (ii). For this let us suppose that ξ = g(x) and φ = g(y). We will prove

x ≤ y =⇒ ξ ≤ φ. (2.36)

As

ξ = PK

(
x −D−1[αΩLξ + (ΩA − αΩL)x −Ω(|x| + b)]

)
, (2.37)
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so ξi can be written as

ξi= PK

⎛

⎜
⎜
⎝xi − a−1

ii

⎡

⎢⎢
⎣αωi

i−1∑

j=1

Lijξj +ωiaiixi + (1 − α)ωi

i−1∑

j=1

Lijxj +ωi

n∑

j=1
j /= i

Uijxj −ωi|xi| − ωibi

⎤

⎥⎥
⎦

⎞

⎟
⎟
⎠

= PK

⎛

⎜
⎜
⎝(1 −ωi)xi − a−1

ii

⎡

⎢⎢
⎣αωi

i−1∑

j=1

Lijξj + (1 − α)ωi

i−1∑

j=1

Lijxj +ωi

n∑

j=1
j /= i

Uijxj −ωi|xi| −ωibi

⎤

⎥⎥
⎦

⎞

⎟
⎟
⎠.

(2.38)

Similarly, for φi, we have

φi = PK

⎛

⎜⎜
⎝(1 −ωi)yi − a−1

ii

⎡

⎢⎢
⎣αωi

i−1∑

j=1

Lijφj + (1 − α)ωi

i−1∑

j=1

Lijyj +ωi

n∑

j=1
j /= i

Uijyj −ωi

∣∣yi

∣∣ −ωibi

⎤

⎥⎥
⎦

⎞

⎟⎟
⎠,

(2.39)

and for i = 1,

φ1 = PK

⎛

⎜⎜
⎝(1 −ω1)y1 − a−1

11ω1

⎡

⎢⎢
⎣

n∑

j=1
j /= i

U1jyj − ∣∣y1
∣∣ − b1

⎤

⎥⎥
⎦

⎞

⎟⎟
⎠

≥ PK

⎛

⎜⎜
⎝(1 −ω1)x1 − a−1

11ω1

⎡

⎢⎢
⎣

n∑

j=1
j /= i

U1jxj − |x1| − b1

⎤

⎥⎥
⎦

⎞

⎟⎟
⎠

= ξ1.

(2.40)

Since y1 ≥ x1, therefore −|y1| ≤ −|x1|. Hence it is true for i = 1. Suppose it is true for
i = 1, 2, . . . k − 1; we will prove it for i = k; for this consider

φk =PK

⎛

⎜⎜
⎝(1 −ωk)yk−a−1

kk

⎡

⎢⎢
⎣αωk

k−1∑

j=1

Lkjφj + (1−α)ωk

k−1∑

j=1

Lkjyj+ωk

n∑

j=1
j /= i

Ukjyj−ωk

∣∣yk

∣∣ −ωkbk

⎤

⎥⎥
⎦

⎞

⎟⎟
⎠

≥PK

⎛

⎜⎜
⎝(1 −ωk)xk−a−1

kk

⎡

⎢⎢
⎣αωk

k−1∑

j=1

Lkjξj + (1−α)ωk

k−1∑

j=1

Lkjxj+ωk

n∑

j=1
j /= i

Ukjxj−ωk|xk| −ωkbk

⎤

⎥⎥
⎦

⎞

⎟⎟
⎠

= ξk.

(2.41)
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Since x ≤ y, and ξi ≤ φi for i = 1, 2, . . . k − 1, hence it is true for k and (ii) is verified.
Next we prove (iii), that is,

ξ = g(x) ∈ ϕ. (2.42)

Let λ = g(ξ) = PK(ξ −D−1Ω[αL(λ − ξ) +Aξ − |ξ| − b]) from (i) g(ξ) = λ ≤ ξ. Also by definition
of g, ξ = g(x) ≥ 0 and λ = g(ξ) ≥ 0.

Now

λi = PK

⎛

⎝ξi − a−1
ii

⎡

⎣αωi

i−1∑

j=1

Lij

(
λj − ξj

)
+ωi(Aξ − |ξ| − b)i

⎤

⎦

⎞

⎠. (2.43)

For i = 1, ξ1 ≥ 0 by definition of g. Suppose that (Aξ − |ξ| − b)i < 0, so

λ1 = PK

(
ξ1 − a−1

11ω1(Aξ − |ξ| − b)1

)

> PK(ξ1) = ξ1,
(2.44)

which contradicts the fact that λ ≤ ξ. Therefore, (Aξ − |ξ| − b)i ≥ 0.
Now we prove it for any k in i = 1, 2, . . . , n. Suppose the contrary (Aξ − |ξ| − b)i < 0;

then

λk = PK

⎛

⎝ξk − a−1
kk

⎡

⎣αωk

k−1∑

j=1

Lkj

(
λj − ξj

)
+ωk(Aξ − |ξ| − b)k

⎤

⎦

⎞

⎠. (2.45)

As it is true for all α ∈ [0, 1], it should be true for α = 0. That is,

λk = PK

(
ξk − a−1

kkωk(Aξ − |ξ| − b)k
)

> PK(ξk) = ξk,
(2.46)

which contradicts the fact that λ ≤ ξ. So (Aξ − |ξ| − b)k ≥ 0, for any k in i = 1, 2, . . . , n. Hence
ξ = f(x) ∈ ϕ.

We now consider the convergence criteria of Algorithm 2.6 and this is the main
motivation of our next result.

Theorem 2.8. Assume that A ∈ Rn×n is an L-matrix. Also assume that 0 < ωi ≤ 1, 0 ≤ α ≤ 1.
Then for any initial vector x0 ∈ ϕ, the sequence {xk}, k = 0, 1, 2, . . ., defined by Algorithm 2.6 has
the following properties:

(i) 0 ≤ xk+1 ≤ xk ≤ x0; k = 0, 1, 2, . . .,

(ii) limk→∞xk = x∗ is a unique solution of the absolute value complementarity problem (1.1).
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Table 1: Computational results.

n m Number of iterations TOC Error

10 1 4 0.001 1.8204 × 10−8

10 40 0.011 7.4875 × 10−9

50 1 4 0.003 1.2595 × 10−7

10 40 0.016 1.3834 × 10−7

100 1 4 0.014 9.5625 × 10−7

10 41 0.031 6.6982 × 10−7

500 1 5 0.203 1.3142 × 10−7

10 49 2.075 1.5168 × 10−7

1000 1 6 1.076 7.2231 × 10−9

10 60 11.591 8.3961 × 10−9

Proof. Since x0 ∈ ϕ, by (i) of Theorem 2.7, we have x1 ≤ x0 and x1 ∈ ϕ. Recursively using
Theorem 2.7 we obtain

0 ≤ xk+1 ≤ xk ≤ x0; k = 0, 1, 2, . . . . (2.47)

From (i) we observe that the sequence {xk} is monotone bounded; therefore, it converges to
some x∗ ∈ Rn

+ satisfying

x∗ = PK

(
x∗ −D−1[αΩLx∗ + (ΩA − αΩL)x∗ −Ω(|x∗| + b)]

)

= PK

(
x∗ −D−1[ΩAx∗ −Ω|x∗| −Ωb]

)
.

(2.48)

Hence x∗is the solution of the absolute value complementarity problem (1.1).

3. Numerical Results

In this section, we consider several examples to show the efficiency of the proposed method.
The convergence of the generalized AOR method is guaranteed for L-matrices only but it is
also possible to solve different types of systems. The elements of the diagonal matrix Ω are
chosen from the interval [a, b] such that

ωi = a +
(b − a)i

n
, i = 1, 2, . . . , n, (3.1)

where ωi is the ith diagonal element of Ω. All the experiments are performed with Intel(R)
Core(TM) 2 × 2.1 GHz, 1 GB RAM, and the codes are written in Matlab 7.

Example 3.1. We test Algorithm 2.6 on m consecutively generated solvable random problems
A ∈ Rn×n, and n ranging from 10 to 1000. We chose a random matrix A from a uniform
distribution on [0, 1], such that whose all diagonal elements are equal to 1000 and x is
chosen randomly from a uniform distribution on [0, 1]. The constant vector is computed as
b = Ax − |x|. The computational results are shown in Table 1.
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Example 3.2. Consider the ordinary differential equation:

d2x

dt2
− |x| =

(
1 − x2

)
, 0 ≤ x ≤ 1, x(0) = 0, x(1) = 1. (3.2)

The exact solution is

x(t) =

⎧
⎨

⎩
0.7378827425 sin(t) − 3 cos(t) + 3 − x2, x < 0,

−0.7310585786e−x − 0.2689414214ex + 1 + x2, x > 0.
(3.3)

We take n = 10; the matrix A is given by

ai,j =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−242, for j = i,

121, for

⎧
⎨

⎩
j = i + 1, i = 1, 2, . . . , n − 1,

j = i − 1, i = 2, 3, . . . , n,

0, otherwise.

(3.4)

The constant vector b is given by

b =
(

120
121

,
117
121

,
112
121

,
105
121

,
96
121

,
85

121
,

72
121

,
57
121

,
40

121
,
−14620

121

)T

. (3.5)

Here A is not L-matrix. The comparison between the exact solution and the approximate
solutions is given in Figure 1.
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Table 2: Computational results.

Order Iterative method [21] AOR method
Number of iterations TOC Number of iterations TOC

4 10 0.0168 10 0.001
8 11 0.018 11 0.001
16 11 0.143 11 0.002
32 12 3.319 11 0.008
64 12 7.145 11 0.082
128 12 11.342 11 0.330
256 12 25.014 11 2.298
512 12 98.317 11 19.230
1024 13 534.903 11 158.649

Example 3.3. Let the matrix A be given by

ai,j =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

8, for j = i,

−1, for

{
j = i + 1, i = 1, 2, . . . , n − 1,
j = i − 1, i = 2, 3, . . . , n,

0, otherwise.

(3.6)

Let b = (6, 5, 5, . . . , 5, 6)T , the problem size n ranging from 4 to 1024. The stopping criteria
are ‖Ax − |x| − b‖ < 10−6. We choose initial guess x0 as x0 = (0, 0, . . . , 0)T . The computational
results are shown in Table 2.

In Table 2 TOC denotes total time taken by CPU. The rate of convergence of AOR
method is better than iterative method [21].

4. Conclusion

In this paper, we have introduced a new class of complementarity problems, known as the
absolute value complementarity problems. We have used the projection technique to establish
the equivalence between the absolute value variational inequalities, fixed point problems,
and the absolute value complementarity problems. This equivalence is used to discuss the
existence of a unique solution of the absolute value problems under some suitable conditions.
We have also used this alternative equivalent formulation to suggest and analyze an iterative
method for solving the absolute value complementarity problems. Some special cases are also
discussed. The results and ideas of this paper may be used to solve the variational inequalities
and related optimization problems. This is another direction for future research.
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