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The relation between the notions of nonuniform asymptotic stability and admissibility is
considered. Using appropriate Lyapunov norms, it is showed that if any of their associated
Lp spaces, with p ∈ (1,∞], is admissible for a given evolution process, then this process is a
nonuniform (μ, ν) contraction and dichotomy. A collection of admissible Banach spaces for any
given nonuniform (μ, ν) contraction and dichotomy is provided.

1. Introduction

The study of the admissibility property has a fairly long history, and it goes back to the
pioneering work of Perron [1] in 1930. Perron concerned originally the existence of bounded
solutions of the equation

x′ = A(t)x + f(t) (1.1)

in Rn for any bounded continuous perturbation f : R
+
0 → Rn. This property can be used

to deduce the stability or the conditional stability under sufficiently small perturbations of a
given linear equation:

x′ = A(t)x. (1.2)

His result served as a starting point for many works on the qualitative theory of the solutions
of differential equations. Moreover, a simple consequence of one of the main results in that
paper stated explicitly in [2, Theorem 1] is probably the first step in the literature concerning
the study of the relation between admissibility and the notions of stability and conditional
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stability. We refer the reader to [2] for details. Relevant results concerning the extension of
Perron’s problem in the more general framework of the infinite-dimensional Banach spaces
with bounded A(t) were obtained by Daleckij and Krein [3], Massera and Schäffer [4], and
the work of Levitan and Zhikov [5] for certain cases of unbounded A(t).

Over the last decades an increasing interest can be seen in the study of the asymptotic
behavior of evolution equations in abstract spaces. In [6, 7], Latushkin et al. studied the
dichotomy of linear skew-product semiflows defined on compact spaces. Using the so-
called evolution semigroup, they expressed its dichotomy in terms of hyperbolicity of a
family of weighted shift operators. In [8–10], Preda et al. considered related problems in
the particular case of uniform exponential behavior. A large class of Schäffer spaces, which
were introduced by Schäffer in [11] (see also [4]), acted as admissible spaces for the case of
uniform exponential dichotomies. It is worth noting here the works by Huy [12–16] in the
study of the existence of an exponential dichotomy for evolution equations.

In the case of nonuniform exponential dichotomies, Preda and Megan [17] obtained
related results also for the class of Schäffer spaces, but using a notion of dichotomy
which is different from the original one motivated by ergodic theory and the nonuniform
hyperbolicity theory, as detailed, for example, in [18, 19]. In the more recent work [20],
the authors consider the same weaker notion of exponential dichotomy and obtain sharper
relations between admissibility and stability for perturbations and solutions in C0. Important
contributions in this aspect have been made by Barreira et al. [2, 18, 19, 21–25]. Particularly, in
[22], Barreira and Valls showed an equivalence between the admissibility of their associated
Lp spaces (p ∈ (1,∞]) and the nonuniform exponential stability of certain evolution families
by using appropriate adapted norms. They also establish a collection of admissible Banach
spaces for any given nonuniform exponential dichotomy in [2]. Recently, Preda et al. [26]
studied the connection between the (non)uniform exponential dichotomy of a non(uniform)
exponentially bounded, strongly continuous evolution family and the admissibility of some
function spaces, which extended those results established in [2, 22].

In the present paper, inspired by Barreira and Valls [2, 22], we give a characterization
of nonuniform asymptotic stability in terms of admissibility property. We consider a more
general type of dichotomy which is called (μ, ν) dichotomy in [21], also proposed in [27]. In
this dichotomy, not only the usual exponential behavior is replaced by an arbitrary, which
may correspond, for example, to situations when the Lyapunov exponents are all infinity
or are all zero, but also different growth rates for the uniform and nonuniform parts of the
dichotomy are considered. It extended exponential dichotomy in various ways. In [21], it
has also been showed that there is a large class of equations exhibiting this behavior. We
emphasize that the characterization in our paper is a very general one; it includes as particular
cases many interesting situations among them we can mention some results in previous
references. To some extent, our results have a certain significance to study the theory of
nonuniform hyperbolicity.

2. Admissibility for Nonuniform (μ, ν) Contractions

We first concentrate on the simpler case of admissibility for nonuniform (μ, ν) contractions,
leaving the more elaborate case of admissibility for nonuniform (μ, ν) dichotomies for the
second part of the paper. This allows us to present the results and their proofs without
some accessory technicalities. After the introduction of some basic notions, using appropriate
adapted Lyapunov norms, we show that the admissibility with respect to some spaceLp with
p ∈ (1,∞] is sufficient for an evolution process to be a nonuniform (μ, ν) contraction.
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2.1. Basic Notions

We say that an increasing function μ : R
+ → [1,+∞) is a growth rate if

μ(0) = 1, lim
t→+∞

μ(t) = +∞. (2.1)

We say that a family of linear operators T(t, s), t ≥ s ≥ 0 in a Banach space X is an
evolution process if:

(1) T(t, t) = Id and T(t, τ)T(τ, s) = T(t, s), t, τ, s > 0;

(2) (t, s, x) �→ T(t, s)x is continuous for t ≥ s ≥ 0 and x ∈ X.

In this section, we also assume that

(3) there exist ω ≥ 0, D > 0 and two growth rates μ(t), ν(t) such that

‖T(t, s)‖ ≤ D

(
μ(t)
μ(s)

)ω

νε(s), t ≥ s ≥ 0. (2.2)

We consider the new norms

‖x‖′t = sup

{
‖T(σ, t)x‖

(
μ(σ)
μ(t)

)−ω
, σ ≥ t

}
, x ∈ X, t ∈ R

+
0 . (2.3)

These satisfy

‖x‖ ≤ ‖x‖′t ≤ Dνε(t)‖x‖, x ∈ X, t ∈ R
+
0 . (2.4)

Moreover, with respect to these norms the evolution process has the following bounded
growth property.

Proposition 2.1. If T is an evolution process, then

‖T(t, s)x‖′t ≤
(
μ(t)
μ(s)

)ω

‖x‖′s (2.5)

for every t ≥ s ≥ 0 and x ∈ X.

Proof. We have

‖T(t, s)x‖′t = sup

{
‖T(σ, t)x‖

(
μ(σ)
μ(t)

)−ω
, σ ≥ t

}

≤
(
μ(t)
μ(s)

)ω

sup

{
‖T(σ, t)x‖

(
μ(σ)
μ(s)

)−ω
, σ ≥ s

}

=
(
μ(t)
μ(s)

)ω

‖x‖′s

(2.6)

which yields the desired inequality.
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Definition 2.2. We say that an evolution process T is a nonuniform (μ, ν) contraction in R
+
0 if

there exist some constants α, D > 0, ε ≥ 0 and two growth rates μ(t), ν(t) such that

‖T(t, s)‖ ≤ D

(
μ(t)
μ(s)

)−α
νε(s), t ≥ s ≥ 0. (2.7)

When ε = 0, we say that (1.2) has a uniform (μ, ν) contraction or simply a (μ, ν) contraction.

In the following, we introduce several Banach spaces that are used throughout the
paper. We first set

Lp =
{
f : R

+
0 −→ R Lebesgue-measurable :

∥∥f∥∥p < ∞
}

(2.8)

for each p ∈ [1,∞), and

L∞ =
{
f : R

+
0 −→ R Lebesgue-measurable :

∥∥f∥∥∞ < ∞} (2.9)

Respectively, with the norms

∥∥f∥∥p =
(∫∞

0

∣∣f(t)∣∣p
)1/p

,
∥∥f∥∥∞ = ess sup

t∈R
+
0

∣∣f(t)∣∣. (2.10)

Then for each p ∈ [1,∞] the set Lp of the equivalence classes [f] of functions g ∈ Lp such
that g = f Lebesgue-almost everywhere is a Banach space (again with the norms in (2.10)).

For each Banach space E = Lp, with p ∈ [1,∞], we set

E(X) =
{
f : R

+
0 −→ X Bochner-measurable : t �−→ ∥∥f(t)∥∥′t ∈ E

}
(2.11)

using the norms ‖ · ‖′t in (2.3), and we endow E(X) = Lp(X) with the norm

∥∥f∥∥′p = ‖F‖p, where F(t) =
∥∥f(t)∥∥′t. (2.12)

Repeating arguments in the proof of Theorem 3 in [22], we obtain the following
statement.

Lemma 2.3. For each p ∈ [1,∞] and E = Lp, the set E(X) is a Banach space with the norm in
(2.12), and the convergence in E(X) implies the pointwise convergence Lebesgue-almost everywhere.

Definition 2.4. We say that a Banach space E is admissible for the evolution process T if for
each f ∈ E(X) the function xf : R

+
0 → X defined by

xf(t) =
∫∞

0
T(t, τ)f(τ)dτ (2.13)

is in L∞ (see (2.11)).
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By Lemma 2.3 we know that L∞ is a Banach space with the norm

∥∥g∥∥′∞ = ess sup
t∈R

+
0

∥∥g(t)∥∥′t. (2.14)

Lemma 2.5. There exists K > 0 such that

∥∥xf

∥∥′
∞ ≤ K

∥∥f∥∥′p for every f ∈ E(X). (2.15)

Proof. We define a linear operator G : E(X) → L∞(X) by Gf = xf . We use the closed graph
theorem to show that G is bounded. For this, let us take a sequence (fn)n∈N ⊂ E(X) and
f ∈ E(X) such that fn → f in E(X)when n → ∞ and also h ∈ L∞(X) such that Gfn → h in
L∞(X) when n → ∞. We need to show that Gf = h Lebesgue-almost everywhere. For each
t ≥ 0 and n ∈ N we have

∥∥(Gfn
)
(t) − (Gf

)
(t)
∥∥′
t = sup

{∥∥∥∥∥
∫ t

0
T(σ, t)T(t, τ)

(
fn(τ) − f(τ)

)
dτ

∥∥∥∥∥
(
μ(σ)
μ(t)

)−ω
: σ ≥ t

}

= sup

{∥∥∥∥∥
∫ t

0
T(σ, τ)

(
fn(τ) − f(τ)

)
dτ

∥∥∥∥∥
(
μ(σ)
μ(t)

)−ω
: σ ≥ t

}

≤ sup

{∫ t

0

∥∥T(σ, τ)(fn(τ) − f(τ)
)∥∥(μ(σ)

μ(t)

)−ω
dτ : σ ≥ t

}

= sup

{∫ t

0

∥∥T(σ, τ)(fn(τ) − f(τ)
)∥∥(μ(σ)

μ(τ)

)−ω( μ(t)
μ(τ)

)ω

dτ : σ ≥ t

}

=
∫ t

0

∥∥fn(τ) − f(τ)
∥∥′
τ

(
μ(t)
μ(τ)

)ω

dτ

≤ μ(t)ω
∫ t

0

∥∥fn(τ) − f(τ)
∥∥′
τdτ.

(2.16)

According to Hölder’s inequality, there exists α = α([0, t]) such that

∥∥(Gfn
)
(t) − (Gf

)
(t)
∥∥′
t ≤ μ(t)ω

∫ t

0

∥∥fn(τ) − f(τ)
∥∥′
τdτ ≤ μ(t)ωα

∥∥(fn(τ) − f(τ)
)∥∥′

p. (2.17)

Therefore, for each t ≥ 0, letting n → ∞ we find that (Gfn)(t) → (Gf)(t). This shows that
Gf = h Lebesgue-almost everywhere, and by the closed graph theorem, we conclude that G
is a bounded operator. This completes the proof of the lemma.

2.2. Criterion for Nonuniform (μ, ν) Contraction

Theorem 2.6. If for some p ∈ (1,∞] the space E = Lp is admissible for the evolution process T , then
T is a nonuniform (μ, ν) contraction.
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Proof. We follow arguments in [22]. Given x ∈ X and t0 ≥ 0, we define a function f : R
+
0 → X

by

f(t) =

{
T(t, t0)x, t ∈ [t0, t0 + 1]
0, t ∈ R

+
0 \ [t0, t0 + 1].

(2.18)

We note that

∥∥f(t)∥∥′t ≤ ‖T(t, t0)x‖′tχ[t0,t0+1](t). (2.19)

Then, for each t ∈ [t0, t0 + 1] and x ∈ X, we have

‖T(t, t0)x‖′t = sup

{
‖T(σ, t)T(t, t0)x‖

(
μ(σ)
μ(t)

)−ω
, σ ≥ t

}

≤
(

μ(t)
μ(t0)

)ω

sup

{
‖T(σ, t0)x‖

(
μ(σ)
μ(t0)

)−ω
, σ ≥ t0

}

=
(

μ(t)
μ(t0)

)ω

‖x‖′t0

≤
(
μ(t0 + 1)
μ(t0)

)ω

‖x‖′t0 .

(2.20)

Therefore,

∥∥f(t)∥∥′p ≤
(
μ(t0 + 1)
μ(t0)

)ω

‖x‖′t0
∥∥χ[t0,t0+1](t)

∥∥
p =
(
μ(t0 + 1)
μ(t0)

)ω

‖x‖′t0 (2.21)

and in particular f ∈ E(X). On the other hand, according to (2.13) and (2.18), we have

xf(t) =
∫ t0+1

t0

T(t, τ)T(τ, t0)xdτ = T(t, t0)x (2.22)

for all t ≥ t0 + 1, which implies that

‖T(t, t0)x‖′t =
∥∥xf

∥∥′
t
≤ ∥∥xf

∥∥′
∞. (2.23)

By Lemma 2.5 and (2.21)–(2.23), we obtain

‖T(t, t0)x‖′t ≤
∥∥xf

∥∥′
∞ ≤ K

∥∥f∥∥′p ≤ K

(
μ(t0 + 1)
μ(t0)

)ω

‖x‖′t0 (2.24)
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for all t ≥ t0 + 1, t0 ≥ 0, and x ∈ X. We claim that

‖T(t, t0)‖′ := sup
x /= 0

‖T(t, t0)x‖′t
‖x‖′t0

≤ L, L =
(
μ(t0 + 1)
μ(t0)

)ω

max{K, 1} (2.25)

for all t ≥ t0. Indeed, for t ≥ t0 + 1 inequality (2.25) follows from (2.24), and for t ∈ [t0, t0 + 1]
the inequality follows from (2.20).

Now given x ∈ X, t0 ≥ 0, and δ > 0, we define a function g : R
+
0 → X by

g(t) =

{
T(t, t0)x, t ∈ [t0, t0 + δ]
0, t ∈ R

+
0 \ [t0, t0 + δ].

(2.26)

It follows from (2.25) that

∥∥g(t)∥∥′t ≤ ‖T(t, t0)x‖′t ≤ L‖x‖′t0 (2.27)

and thus,

g ∈ E(X),
∥∥g∥∥′p ≤ Lδ1/p‖x‖′t0 . (2.28)

On the other hand, writing y = T(t0 + δ, t0)x,

δ2

2
∥∥y∥∥′t0+δ =

∥∥∥∥∥
∫ t0+δ

t0

(τ − t0)ydτ

∥∥∥∥∥
′

t0+δ

= sup

{∥∥∥∥∥T(σ, t0 + δ)
∫ t0+δ

t0

(τ − t0)ydτ

∥∥∥∥∥
(

μ(σ)
μ(t0 + δ)

)−ω
: σ ≥ t0 + δ

}

= sup

{∥∥∥∥∥
∫ t0+δ

t0

(τ − t0)T(σ, t0)xdτ

∥∥∥∥∥
(

μ(σ)
μ(t0 + δ)

)−ω
: σ ≥ t0 + δ

}

≤ sup

{∫ t0+δ

t0

(τ − t0)‖T(σ, t0)x‖
(

μ(σ)
μ(t0 + δ)

)−ω
dτ : σ ≥ t0 + δ

}

=
∫ t0+δ

t0

(τ − t0) sup

{∥∥T(σ, t0 + δ)y
∥∥( μ(σ)

μ(t0 + δ)

)−ω
: σ ≥ t0 + δ

}
dτ

=
∫ t0+δ

t0

(τ − t0)
∥∥y∥∥′t0+δdτ

=
∫ t0+δ

t0

(τ − t0)‖T(t0 + δ, τ)T(τ, t0)x‖′t0dτ

(2.29)
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Since

xg(t) =
∫ t

0
T(t, τ)g(τ)dτ =

⎧⎪⎪⎨
⎪⎪⎩
0, t ∈ [0, t0]
(t, t0)T(t, t0)x, t ∈ [t0, t0 + δ],
δT(t, t0)x, t ∈ [t0 + δ,∞),

(2.30)

it follows from Lemma 2.5, (2.25), and (2.28) that

δ2

2
‖T(t0 + δ, t0)x‖′t0+δ ≤ L

∫ t0+δ

t0

(τ − t0)‖T(τ, t0)x‖′τdτ

= L

∫ t0+δ

t0

∥∥xg(τ)
∥∥′
τ
dτ ≤ Lδ

∥∥xg

∥∥′
∞

≤ KLδ
∥∥g∥∥′p ≤ KL2δ(p+1)/p‖x‖′t0

(2.31)

for all t0 ≥ 0, δ > 0, and x ∈ X; we thus obtain

δ2

2
‖T(t0 + δ, t0)x‖′t0+δ ≤ KL2δ(p+1)/p‖x‖′t0 (2.32)

so

‖T(t0 + δ, t0)‖′ ≤ 2KL2δ(1−p)/p (2.33)

for all t0 ≥ 0 and δ > 0. Since (1 − p)/p < 0 for p ∈ (1,∞], there exists δ0 > 0 sufficiently large
such that

K0 := 2KL2δ(1−p)/p < 1. (2.34)

Setting n = [(lnμ(t) − lnμ(t0))/δ0] for each t ≥ t0, we have

T(t, t0) = T(t, t0 + nδ0)T(t0 + nδ0, t0). (2.35)

By (2.25) and (2.33)we obtain

‖T(t, t0)‖′ ≤ L‖T(t0 + nδ0, t0)‖′

≤ L
n−1∏
i=0

‖T(t0 + (i + 1)δ0, t0 + iδ0)‖′ ≤ LKn
0

(2.36)

for t ≥ t0. By (2.34) and

n =
[
lnμ(t) − lnμ(t0)

δ0

]
≥ lnμ(t) − lnμ(t0)

δ0
− 1 (2.37)
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this implies that

‖T(t, t0)‖′ ≤ d

(
μ(t)
μ(t0)

)−α
, (2.38)

where

d =
L

K0
, α = − 1

δ0
lnK0. (2.39)

We note that d, α > 0. Since

‖T(t, t0)x‖′t ≥ ‖T(t, t0)x‖, (2.40)

and by (2.4),

‖x‖′t0 = sup

{
‖T(σ, t0)x‖

(
μ(σ)
μ(t0)

)−ω
: σ ≥ t0

}
≤ Dνε(t0)‖x‖. (2.41)

It follows from (2.38) that

‖T(t, t0)‖ = sup
x /= 0

‖T(t, t0)x‖
‖x‖ ≤ Dνε(t0)sup

x /= 0

‖T(t, t0)x‖′t
‖x‖′t0

≤ dDνε(t0)
(

μ(t)
μ(t0)

)−α
(2.42)

for any t ≥ t0. Therefore, the evolution process T is a nonuniform (μ, ν) contraction with α

and D̃ = dD. This concludes the proof of Theorem 2.6.

2.3. Admissible Spaces for Nonuniform (μ, ν) Contractions

We consider the spaces

L
p

D =
{
f : R

+
0 −→ R Lebesgue-measurable :

∥∥f∥∥p,D < ∞
}

(2.43)

for each p ∈ [1,∞), and

L∞
D =

{
f : R

+
0 −→ R Lebesgue-measurable :

∥∥f∥∥∞,D < ∞
}
, (2.44)

respectively, with the norms

∥∥f∥∥p,D =

(∫∞

0

∣∣f(t)∣∣p
(
Dνε(t)

(
μ(t)
μ′(t)

)1/q
)p)1/p

,

∥∥f∥∥∞,D = ess sup
t∈R

+
0

(∣∣f(t)∣∣Dνε(t)
μ(t)
μ′(t)

)
.

(2.45)
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In a similar manner to that in Lemma 2.3 these normed spaces induce Banach spaces Lp

D and
Lp

D(X) for each p ∈ [1,∞], the last one with norm

∥∥f∥∥′p,D = ‖F‖p,D, where F(t) =
∥∥f(t)∥∥′t. (2.46)

Theorem 2.7. If the evolution process T is a nonuniform (μ, ν) contraction, then for any p ∈ [1,∞]
the space Lp

D is admissible for T .

Proof. We first take f ∈ L∞
D . Then

∥∥xf(t)
∥∥′
t
= sup

{∥∥∥∥∥
∫ t

0
T(σ, t)T(t, τ)f(τ)dτ

∥∥∥∥∥
(
μ(σ)
μ(t)

)−ω
: σ ≥ t

}

= sup

{∥∥∥∥∥
∫ t

0
T(σ, τ)f(τ)dτ

∥∥∥∥∥
(
μ(σ)
μ(t)

)−ω
: σ ≥ t

}

≤ sup

{∫ t

0
‖T(σ, τ)‖ · ∥∥f(τ)∥∥dτ : σ ≥ t

}

≤ sup

{∫ t

0
Dντ(τ)

(
μ(σ)
μ(τ)

)−α∥∥f(τ)∥∥′τdτ : σ ≥ t

}

≤ sup

{∫ t

0
Dντ(τ)

(
μ(t)
μ(τ)

)−α∥∥f(τ)∥∥′τdτ : σ ≥ t

}

≤ ∥∥f∥∥′∞,D

∫ t

0

(
μ(t)
μ(τ)

)−α μ′(τ)
μ(τ)

dτ

≤ ∥∥f∥∥′∞,D

1 − μ(t)−α

α
≤ 1

α

∥∥f∥∥′∞,D.

(2.47)

Therefore,

∥∥xf

∥∥′
∞ = sup

t≥0

∥∥xf(t)
∥∥′
t
≤ sup

t≥0

1
α

∥∥f∥∥′∞,D < ∞ (2.48)

and L∞
D is admissible for T .
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Now we take f ∈ Lp

D(X) for some p ∈ [1,∞). Using Hölder’s inequality we obtain

∥∥xf(t)
∥∥′
t
= sup

{∥∥∥∥∥
∫ t

0
T(σ, t)T(t, τ)f(τ)dτ

∥∥∥∥∥
(
μ(σ)
μ(t)

)−ω
: σ ≥ t

}

≤ sup

{∫ t

0
Dντ(t)

(
μ(t)
μ(τ)

)−α∥∥f(τ)∥∥′τdτ : σ ≥ t

}

≤ ∥∥f∥∥′p,D
(∫ t

0

(
μ(t)
μ(τ)

)−αq μ′(τ)
μ(τ)

dτ

)1/q

≤ ∥∥f∥∥′p,D
(

1 − μ(t)−αq

αq

)1/q

≤ 1(
αq
)1/q
∥∥f∥∥′p,D,

(2.49)

where 1/p + 1/q = 1. We conclude that Lp

D is also admissible for T .

3. Admissibility for Nonuniform (μ, ν) Dichotomies

We consider in this second part admissibility for nonuniform (μ, ν) dichotomies. It
generalizes the usual notion of exponential dichotomy in several ways: besides introducing
a nonuniform term, causing that any conditional stability may be nonuniform, we consider
rates that may not be exponential as well as different rates in the uniform and nonuniform
parts. After introducing some basic notions, we show that the admissibility with respect to
some space Lp with p ∈ (1,∞] is sufficient for an evolution process to be a nonuniform (μ, ν)
dichotomy.When compared to the case of contractions, this creates substantial complications.
We also provide a collection of admissible Banach spaces for any given nonuniform (μ, ν)
dichotomy.

3.1. Basic Notions

We consider an evolution process T(t, s), t ≥ s ≥ 0 satisfied 1, 2 in Section 2.
We also consider a function P : R

+
0 → B(X), where B(X) is the set of bounded linear

operators in X, such that

(1) P(t)2 = P(t), for every t ≥ 0;

(2) (t, x) �→ P(t)x is continuous in R
+
0 ×X.

We will refer to P as a projection function. Given an evolution process T , we say that a
projection function P is compatible with T if:

(1) T(t, s)p(s) = P(t)T(t, s), for every t, τ, s > 0;

(2) the map

T(t, σ) | kerP(σ) : kerP(σ) −→ kerP(t) (3.1)

is invertible for every t ≥ s ≥ 0.
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We also assume that

(3) there exist D > 0, ω ≥ 0 and two growth rates μ(t), ν(t) such that

‖T(t, s)P(s)‖ ≤ D

(
μ(t)
μ(s)

)ω

νε(s), t ≥ s ≥ 0. (3.2)

‖T(t, s)Q(s)‖ ≤ D

(
μ(s)
μ(t)

)ω

νε(s), s ≥ t ≥ 0. (3.3)

We note that due to the invertibility assumption in condition (1.2), condition (3.3) is
simply a version of (3.2) when time goes backwards.

We always consider in the paper an evolution process T together with a projection
function P which is compatible with T (and which satisfies (3.2) and (3.3)). We write

U(t, s) = T(t, s)P(s), V (t, s) = T(t, s)Q(s), (3.4)

where Q(t) = Id − P(t) for each t ≥ 0. we consider the new norms

‖x‖′t = sup

{
‖U(σ, t)x‖

(
μ(σ)
μ(t)

)−ω
, σ ≥ t

}

+ sup

{
‖V (σ, t)x‖

(
μ(t)
μ(σ)

)−ω
, 0 ≤ σ ≤ t

}
.

(3.5)

for each x ∈ X and t ∈ R
+
0 , where V (σ, t) denotes the inverse of the map in (3.1). We have

‖x‖′t ≥ ‖P(t)x‖ + ‖Q(t)x‖ ≥ ‖P(t)x +Q(t)x‖ = ‖x‖. (3.6)

Moreover, by (3.2) and (3.3),

‖x‖′t ≤ 2Dνε(t)‖x‖, x ∈ X, t ∈ R
+
0 . (3.7)

Definition 3.1. We say that an evolution process T is a nonuniform (μ, ν) dichotomy in R
+ if

there exist a projection function P : R
+
0 → B(X) compatible with T , some constants α, D > 0,

ε ≥ 0 and two growth rates μ(t), ν(t) such that

‖T(t, s)P(s)‖ ≤ D

(
μ(t)
μ(s)

)−α
νε(s), t ≥ s ≥ 0.

‖T(t, s)Q(s)‖ ≤ D

(
μ(s)
μ(t)

)−β
νε(s), s ≥ t ≥ 0,

(3.8)

When ε = 0, we say that (1.2) has a uniform (μ, ν) dichotomy or simply a (μ, ν) dichotomy.



Abstract and Applied Analysis 13

In the following, we still consider several spaces Lp, L∞, respectively, with the norms
(2.10), which induce Banach spaces Lp for each p ∈ [1,∞]. We also set E(X) as in (2.11) but
using the norms ‖ · ‖′t in (3.5), we endow E(X) = Lp(X) with the norm in (2.12).

We also obtain easily the same statement in Lemma 2.3 for the set E(X) using the
norms ‖ · ‖′t in (3.5).

Definition 3.2. We say that a Banach space E is admissible for the evolution process T if for
each f ∈ E(X)

(1) the function

R
+
0 � τ �−→

{
V (t, τ)f(τ), τ ≥ t,

0, 0 ≤ τ < t
(3.9)

is in L1(X) for each t ≥ 0;

(2) the function xf : R
+
0 → X defined by

xf(t) =
∫ t

0
U(t, τ)f(τ)dτ −

∫∞

t

V (t, τ)f(τ)dτ (3.10)

is in L∞(X).

We note that since ‖Q(t)x‖ ≤ ‖Q(t)x‖′t for every x ∈ X, and t ≥ 0, any function in
L1(X) is also integrable in R+

0 , and thus the first condition ensures that the function xf is well
defined. By Lemma 2.3 we know that L∞(X) is a Banach space with the norm

∥∥g∥∥′∞ = ess sup
t∈R

+
0

∥∥g(t)∥∥′t. (3.11)

Lemma 3.3. If for some p ∈ [1,∞] the space E = Lp is admissible for the evolution process T , then
there exists K > 0 such that

∥∥xf

∥∥′
∞ ≤ K

∥∥f∥∥′p for every f ∈ E(X). (3.12)

Proof. We follow arguments in [2]. For each t ≥ 0, we define a map Ht : E(X) → L1(X) by

(
Htf
)
(τ) =

{
V (t, τ)f(τ), τ ≥ t,

0, 0 ≤ τ < t.
(3.13)

Clearly, Ht is linear. We use the closed graph theorem to show that Ht is bounded. For this,
let us take a sequence (fn)n∈N ⊂ E(X) and f ∈ E(X) such that fn → f in E(X)when n → ∞,
and also g ∈ L1(X) such that Htfn → g in L1(X) when n → ∞. We need to show that
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Htf = g Lebesgue-almost everywhere. By Lemma 2.3, the sequence fn converges pointwise
Lebesgue-almost everywhere. Therefore,

(
Htfn

)
(τ) = V (t, τ)fn(τ) −→ V (t, τ)f(τ) =

(
Htf
)
(τ) (3.14)

when n → ∞, for Lebesgue-almost every τ ∈ [t,+∞). On the other hand, since Htfn → g
in L1(X) when n → ∞, we also have (Htfn)(τ) → g(τ) when n → ∞, for Lebesgue-almost
every τ ∈ [t,+∞). This shows thatHtf = g Lebesgue-almost everywhere, andHt is bounded
for each t ≥ 0.

We define a linear operator G : E(X) → L∞(X) by Gf = xf . We use again the closed
graph theorem to show thatG is bounded. For this, let us take a sequence (fn)n∈N ⊂ E(X) and
f ∈ E(X) such that fn → f in E(X) when n → ∞, and also h ∈ L∞(X) such that Gfn → h
in L∞(X)when n → ∞. We write

(
G1f
)
(t) = P(t)

(
Gf
)
(t) =

∫ t

0
U(t, τ)f(τ)dτ,

(
G2f
)
(t) = Q(t)

(
Gf
)
(t) = −

∫∞

t

V (t, τ)f(τ)dτ.

(3.15)

Using the similar proof of Lemma 2.5, for each t ≥ 0 and n ∈ N we have

∥∥(G1fn
)
(t) − (G1f

)
(t)
∥∥′
t = sup

{∥∥∥∥∥
∫ t

0
U(σ, t)U(t, τ)

(
fn(τ) − f(τ)

)
dτ

∥∥∥∥∥
(
μ(σ)
μ(t)

)−ω
: σ ≥ t

}

≤ μ(t)ω
∫ t

0

∥∥fn(τ) − f(τ)
∥∥′
τdτ.

(3.16)

According to Hölder’s inequality, there exists α = α([0, t]) such that

∥∥(G1fn
)
(t) − (G1f

)
(t)
∥∥′
t ≤ μ(t)ωα

∥∥(fn(τ) − f(τ)
)∥∥′

p. (3.17)

Furthermore, we have

∥∥(G2fn
)
(t) − (G2f

)
(t)
∥∥′
t ≤ sup

{∫∞

t

∥∥V (σ, t)V (t, τ)
(
fn(τ) − f(τ)

)∥∥( μ(t)
μ(σ)

)−ω
dτ : 0 ≤ σ ≤ t

}

=
∫∞

t

sup

{∥∥V (σ, t)Ht

(
fn − f

)
(τ)
∥∥( μ(t)

μ(σ)

)−ω
: 0 ≤ σ ≤ t

}
dτ

=
∫∞

t

∥∥Ht

(
fn − f

)
(τ)
∥∥′
tdτ =

∥∥Ht

(
fn − f

)∥∥1
t .

(3.18)
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It follows from (3.17) and (3.18) that

∥∥(Gfn
)
(t) − (Gf

)
(t)
∥∥′
t ≤ μ(t)ωα

∥∥fn − f
∥∥′
p +
∥∥Ht

(
fn − f

)∥∥1
t . (3.19)

Therefore, for each t ≥ 0, letting n → ∞ we find that (Gfn)(t) → (Gf)(t). This shows
that Gf = h Lebesgue-almost everywhere, and by the closed graph theorem, we conclude
that G is a bounded operator. This completes the proof of the lemma.

3.2. Criterion for Nonuniform (μ, ν) Dichotomy

Theorem 3.4. If for some p ∈ (1,∞] the space E = Lp is admissible for the evolution process T , then
T is a nonuniform (μ, ν) dichotomy.

Proof. We first consider the space Pt0 = ImP(t0). Given x ∈ Pt0 and t0 ≥ 0, repeating argument
of the proof in Theorem 2.6, except limiting T(t, t0) on Pt0 , we obtain

‖T(t, t0) | Pt0‖′ ≤ d

(
μ(t)
μ(t0)

)−α
, (3.20)

where

d =
L

K0
, α = − 1

δ0
lnK0. (3.21)

We note that d, α > 0. For each x ∈ Pt0 , we have

‖T(t, t0)x‖′t ≥ ‖T(t, t0)x‖, (3.22)

and by (3.2),

‖x‖′t0 = sup

{
‖U(σ, t0)x‖

(
μ(σ)
μ(t0)

)−ω
: σ ≥ t0

}
≤ Dνε(t0)‖x‖. (3.23)

It follows from (3.5) and (3.20) that

‖T(t, t0) | Pt0‖ = sup
x∈Pt0\{0}

‖T(t, t0)x‖
‖x‖

≤ Dνε(t0) sup
x∈Pt0\{0}

‖T(t, t0)x‖′t
‖x‖′t0

≤ dDνε(t0)
(

μ(t)
μ(t0)

)−α

(3.24)

for any t ≥ t0.
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Now we consider the space Qt0 = KerP(t0). Given x ∈ Qt0 and t0 ≥ 0, we define a
function f : R

+
0 → X by

f(t) =

{
V (t, t0)x, t ∈ R

+
0
⋂
[t0 − 1, t0]

0, t ∈ R
+
0 \ [t0 − 1, t0].

(3.25)

Clearly, f(t) ∈ Qt for every t ≥ 0. Moreover, for each t ∈ [0, t0 − 1] (this interval may be
empty), we have

xf(t) = −
∫ t0

t0−1
V (t, τ)V (τ, t0)xdτ

= −
∫ t0

t0−1
V (t, t0)xdτ = −V (t, t0)x,

(3.26)

and it follows from Lemma 3.3 that

‖V (t, t0)x‖′t =
∥∥xf

∥∥′
∞ ≤ K

∥∥f∥∥′p (3.27)

for t ∈ [0, t0 − 1].
On the other hand, for each t ∈ [t0 − 1, t0], we have

∥∥f(t)∥∥′t = sup

{∥∥V (σ, t)f(t)
∥∥( μ(t)

μ(σ)

)−ω
, 0 ≤ σ ≤ t

}

≤ sup

{
‖V (σ, t)V (t, t0)x‖

(
μ(t)
μ(σ)

)−ω
, 0 ≤ σ ≤ t

}

≤
(
μ(t0)
μ(t)

)ω

sup

{
‖V (σ, t0)x‖

(
μ(t0)
μ(σ)

)−ω
, 0 ≤ σ ≤ t0

}

≤
(

μ(t0)
μ(t0 − 1)

)ω

‖x‖′t0 .

(3.28)

So

∥∥f∥∥′p =
∫

R
+
0
⋂
[t0−1,t0]

∥∥f(t)∥∥′tdt ≤
(

μ(t0)
μ(t0 − 1)

)ω

‖x‖′t0 (3.29)

and in particular f ∈ E(X). We thus have

‖V (t, t0)x‖′t ≤ K
∥∥f∥∥′p ≤ K

(
μ(t0)

μ(t0 − 1)

)ω

‖x‖′t0 (3.30)
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for every t ∈ [0, t0 − 1], and x ∈ Qt0 . This implies that

‖V (t, t0)‖′ := sup
x∈Qt0\{0}

‖V (t, t0)x‖′t
‖x‖′t0

≤ L, L =
(

μ(t0)
μ(t0 − 1)

)ω

max{K, 1} (3.31)

for all t ≤ t0. Indeed, for t ∈ [0, t0 − 1] inequality (3.31) follows from (3.30), and for t ∈
R

+
0
⋂
[t0 − 1, t0] the inequality follows from (3.28).
Now given x ∈ Qt0 , t0 ≥ 0, and δ > 0, we define a function g : R

+
0 → X by

g(t) =

{
V (t, t0)x, t ∈ R

+
0
⋂
[t0 − δ, t0]

0, t ∈ R
+
0 [t0 − δ, t0].

(3.32)

It follows from (3.31) that

∥∥g(t)∥∥′t ≤ ‖V (t, t0)x‖′t ≤ L‖x‖′t0 , (3.33)

and thus,

g ∈ E(X),
∥∥g∥∥′p ≤ Lδ1/p‖x‖′t0 . (3.34)

On the other hand, in a similar manner to that in (2.29),

δ2

2
‖V (t0 − δ, t0)x‖′t0−δ =

∥∥∥∥∥
∫ t0

t0−δ
(τ − t0)V (t0 − δ, t0)xdτ

∥∥∥∥∥
′

t0−δ

≤
∫ t0

t0−δ
(t0 − τ) sup

{
‖V (t0 − δ, t0)x‖′t0−δ : 0 ≤ σ ≤ t0 − δ

}
dτ

=
∫ t0

t0−δ
(t0 − τ)‖V (t0 − δ, t0)x‖′t0dτ

=
∫ t0

t0−δ
(t0 − τ)‖V (t0 − δ, τ)V (τ, t0)x‖′t0dτ.

(3.35)

Since

xg(t) = −
∫∞

t

V (t, τ)g(τ)dτ =

⎧⎪⎪⎨
⎪⎪⎩
0, t ∈ [t0,∞)
(t − t0)V (t, t0)x, t ∈ [t0 − δ, t0].
−δV (t, t0)x, t ∈ [0, t0 − δ].

(3.36)
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It follows from Lemma 3.3, (3.31), and (3.34) that

δ2

2
‖V (t0 − δ, t0)x‖′t0−δ ≤ L

∫ t0

t0−δ
(t0 − τ)‖V (τ, t0)x‖′τdτ

= L

∫ t0

t0−δ

∥∥xg(τ)
∥∥′
τ
dτ ≤ Lδ

∥∥xg

∥∥′
∞

≤ KLδ
∥∥g∥∥′p ≤ KL2δ(p+1)/p‖x‖′t0

(3.37)

for all t0 ≥ 0, δ > 0, and x ∈ Qt0 ; we thus obtain

δ2

2
‖V (t0 − δ, t0)x‖′t0−δ ≤ KL2δ(p+1)/p‖x‖′t0 (3.38)

so

‖V (t0 − δ, t0)‖′ ≤ 2KL2δ(1−p)/p (3.39)

for all t0 ≥ 0 and δ > 0. Taking the same δ0 as before, and setting n = [(lnμ(t0) − lnμ(t))/δ0]
for each t ≤ t0, we have

V (t, t0) = V (t, t0 − nδ0)V (t0 − nδ0, t0). (3.40)

By (3.31) and (3.39)we obtain

‖V (t, t0)‖′ ≤ L‖V (t0 − nδ0, t0)‖′

≤ L
n−1∏
i=0

‖V (t0 − (i + 1)δ0, t0 − iδ0)‖′ ≤ LKn
0

(3.41)

for t ≤ t0, where K0 := 2KL2δ
(1−p)/p
0 < 1. Since

n =
[
lnμ(t0) − lnμ(t)

δ0

]
≥ lnμ(t0) − lnμ(t)

δ0
− 1, (3.42)

this implies that

‖V (t, t0)‖′ ≤ d

(
μ(t)
μ(t0)

)α

, (3.43)

where

d =
L

K0
, α = − 1

δ0
lnK0. (3.44)
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We note that d, α > 0. By (3.6)

‖V (t, t0)x‖′t ≥ ‖V (t, t0)x‖, (3.45)

and by (3.3),

‖x‖′t0 = sup

{
‖V (σ, t0)x‖

(
μ(t0)
μ(σ)

)−ω
: 0 ≤ σ ≤ t0

}
≤ Dνε(t0)‖x‖ (3.46)

for x ∈ Qt0 . It follows from (3.43) that

‖V (t, t0) | Qt0‖ = sup
x∈Qt0\{0}

‖V (t, t0)x‖
‖x‖

≤ Dνε(t0) sup
x∈Qt0\{0}

‖V (t, t0)x‖′t
‖x‖′t0

≤ dDνε(t0)
(

μ(t)
μ(t0)

)α

(3.47)

for any t ≤ t0. To show that T is a nonuniform exponential dichotomy, we note that setting
t = s in (3.2) and (3.3) yields

‖P(s)‖ ≤ Dνε(s), ‖Q(s)‖ ≤ Dνε(s) (3.48)

for every s ≥ 0. Together with (3.24) and (3.47) this implies that

‖T(t, s)P(s)‖ ≤ ‖T(t, s) | Ps‖‖P(s)‖

≤ dD2
(
μ(t)
μ(s)

)−α
ν2ε(s), t ≥ s ≥ 0.

‖T(t, s)Q(s)‖ ≤ ‖T(t, s) | Qs‖‖P(s)‖

≤ dD2
(
μ(s)
μ(t)

)−α
ν2ε(s), s ≥ t ≥ 0.

(3.49)

This shows that T is a nonuniform (μ, ν) dichotomy with α, α, dD2 and 2ε.

3.3. Admissible Spaces for a Nonuniform (μ, ν) Dichotomy

We consider the spaces

L
p

D =
{
f : R

+
0 −→ R Lebesgue-measurable :

∥∥f∥∥p,D < ∞
}

(3.50)
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for each p ∈ [1,∞), and

L∞
D =

{
f : R

+
0 −→ R Lebesgue-measurable :

∥∥f∥∥∞,D < ∞
}
, (3.51)

respectively, with the norms

∥∥f∥∥p,D =

(∫∞

0

∣∣f(t)∣∣p
(
Dνε(t)

(
μ(t)
μ′(t)

)1/q
)p)1/p

,

∥∥f∥∥∞,D = ess sup
t∈R

+
0

(∣∣f(t)∣∣Dνε(t)
μ(t)
μ′(t)

)
.

(3.52)

In a similar manner to Lemma 2.3 these normed spaces induce Banach spaces Lp

D andLp

D(X)
for each p ∈ [1,∞], the last one with norm

∥∥f∥∥′p,D = ‖F‖p,D, where F(t) =
∥∥f(t)∥∥′t. (3.53)

Theorem 3.5. If the evolution process T is a nonuniform (μ, ν) dichotomy, then for any p ∈ [1,∞]
the space Lp

D is admissible for T .

Proof. We first take f ∈ L∞
D . Then

∥∥xf(t)
∥∥′
t
= sup

{∥∥∥∥∥
∫ t

0
U(σ, t)U(t, τ)f(τ)dτ

∥∥∥∥∥
(
μ(σ)
μ(t)

)−ω
: σ ≥ t

}

+ sup

{∥∥∥∥
∫∞

t

V (σ, t)V (t, τ)f(τ)dτ
∥∥∥∥
(

μ(t)
μ(σ)

)−ω
: 0 ≤ σ ≤ t

}

≤ sup

{∫ t

0
‖U(σ, τ)‖ · ∥∥f(τ)∥∥

(
μ(σ)
μ(t)

)−ω
dτ : σ ≥ t

}

+ sup

{∫∞

t

‖V (σ, τ)‖ · ∥∥f(τ)∥∥
(

μ(t)
μ(σ)

)−ω
dτ : 0 ≤ σ ≤ t

}

≤ sup

{∫ t

0
Dνε(τ)

(
μ(σ)
μ(τ)

)−α∥∥f(τ)∥∥dτ : σ ≥ t

}

+ sup

{∫∞

t

Dνε(τ)
(
μ(σ)
μ(τ)

)β∥∥f(τ)∥∥dτ : 0 ≤ σ ≤ t

}

≤ sup

{∫ t

0
Dνε(τ)

(
μ(t)
μ(τ)

)−α∥∥f(τ)∥∥′τdτ : σ ≥ t

}

+ sup

{∫∞

t

Dνε(τ)
(
μ(t)
μ(τ)

)β∥∥f(τ)∥∥′τdτ : 0 ≤ σ ≤ t

}
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≤ ∥∥f∥∥′∞,D

∫ t

0

(
μ(t)
μ(τ)

)−α μ′(τ)
μ(τ)

dτ +
∥∥f∥∥′∞,D

∫∞

t

(
μ(t)
μ(τ)

)β μ′(τ)
μ(τ)

dτ

=
1
α

∥∥f∥∥′∞,D

(
1 − μ(t)−α

)
+
1
β

∥∥f∥∥′∞,D

≤
(
1
α
+
1
β

)∥∥f∥∥′∞,D.

(3.54)

Therefore,

∥∥xf

∥∥′
∞ = sup

t≥0

∥∥xf(t)
∥∥′
t
≤ sup

t≥0

(
1
α
+
1
β

)∥∥f∥∥′∞,D < ∞ (3.55)

and L∞
D is admissible for T .
Now we take f ∈ Lp

D(X) for some p ∈ [1,∞). Using Hölder’s inequality we obtain

∥∥xf(t)
∥∥′
t
= sup

{∥∥∥∥∥
∫ t

0
U(σ, t)U(t, τ)f(τ)dτ

∥∥∥∥∥
(
μ(σ)
μ(t)

)−ω
: σ ≥ t

}

+ sup

{∥∥∥∥
∫∞

t

V (σ, t)V (t, τ)f(τ)dτ
∥∥∥∥
(

μ(t)
μ(σ)

)−ω
: 0 ≤ σ ≤ t

}

≤ sup

{∫ t

0
Dνε(τ)

(
μ(t)
μ(τ)

)−α∥∥f(τ)∥∥′τdτ : σ ≥ t

}

+ sup

{∫∞

t

Dνε(τ)
(
μ(t)
μ(τ)

)β∥∥f(τ)∥∥′τdτ : 0 ≤ σ ≤ t

}

≤ ∥∥f∥∥′p,D
(∫ t

0

(
μ(t)
μ(τ)

)−αq μ′(τ)
μ(τ)

dτ

)1/q

+
∥∥f∥∥′p,D

(∫∞

t

(
μ(t)
μ(τ)

)βq μ′(τ)
μ(τ)

dτ

)1/q

=
∥∥f∥∥′p,D

(
1 − μ(t)−αq

αq

)1/q

+
(

1
βq

)1/q∥∥f∥∥′p,D

≤
(

1(
αq
)1/q +

1(
βq
)1/q
)∥∥f∥∥′p,D,

(3.56)

where 1/p + 1/q = 1. We conclude that Lp

D is also admissible for T .
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