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This paper deals with an inverse problem for identifying multiparameters in 1D space fractional
advection dispersion equation (FADE) on a finite domain with final observations. The parameters
to be identified are the fractional order, the diffusion coefficient, and the average velocity
in the FADE. The forward problem is solved by a finite difference scheme, and then an
optimal perturbation regularization algorithm is introduced to determine the three parameters
simultaneously. Numerical inversions are performed both with the accurate data and noisy data,
and several factors having influences on realization of the algorithm are discussed. The inversion
solutions are in good approximations to the exact solutions demonstrating the efficiency of the
proposed algorithm.

1. Introduction

Many diffusion processes in nature and engineering, such as contaminants transport in the
soil, oil flow in porous media, long distance transport of pollutants in the groundwater, and
so forth, are referred to as anomalous diffusion, where the particle plume spreads faster or
slower than predicted by the classical diffusionmodel. In recent two decades, the space FADE
has been found to be an efficient mathematical model to describe such anomalous diffusion
phenomena (see [1–8], e.g.). If the usual second-order derivative ∂2/∂x2 in space is replaced
by a fractional derivative of order 1 < α < 2, denoted as ∂α/∂xα, we get the space FADE
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given as

∂c

∂t
= D

∂αc

∂xα
− v

∂c

∂x
+ S(x, t), (1.1)

where c = c(x, t) denotes concentration of the solute in space point x and time t, 1 < α <
2 denotes the order of the fractional derivative, D > 0 is the dispersion coefficient, v > 0
denotes the average velocity, and S(x, t) is a source term. The derivative ∂αc/∂xα here denotes
a fractional derivative at space point x from the left hand-side of the domain in the meaning
of Grünwald-Letnikov or Riemann-Liouville (see [9], e.g.).

There are quite a few research works on the fractional differential equations, refer to
[10–16] for numerical methods and model simulations on (1.1), and there are still a few
studies in the time fractional diffusion equations recently (see [17–22], e.g.). However,
research on inverse problems for the space FADE has not been paid much attention to
our knowledge. Wei et al. [23] studied an inverse source problem in the spatial fractional
diffusion equation and solved the inverse problem numerically based on the best pertur-
bation method with Tikhonov regularization. Chi et al. [24] considered an inverse problem
of determining the space-dependent source function f(x) in (1.1) in the case of S(x, t) =
e−tf(x) with final observations and presented numerical inversions by applying the optimal
perturbation regularization algorithm.

In this paper, we will deal with an inverse problem of simultaneously determining
the fractional order, the diffusion coefficient, and the average velocity in (1.1) on a finite
domain also with the final observations. Rodrigues et al. [25] considered an inverse problem
of simultaneously determining the diffusion coefficient and the source term in 1D integer-
order diffusion equation by the conjugate gradient method with aids of an adjoint problem,
and there seem to have few similar works reported in the known literatures especially for
the space fractional diffusion equations. It is noticeable that the inversion problem here
for simultaneously identifying these three kinds of model parameters becomes difficult
as compared with those problems of determining a single unknown, and regularization
strategies have to be utilized to overcome the ill-posedness. The forward problem is solved
numerically by utilizing an implicit difference scheme based on the shifted Grünwall formula
which was discussed in [10, 12, 24]. In regard of simultaneous inversion for the three
kinds of parameters, we will apply the optimal perturbation regularization algorithm which
was developed in [26–29]. However, since the inverse problem is different, the inversion
algorithm has to be changed in detail so as to get effective solutions. The inversion algorithm
is performed not only in the case of using the accurate data, but also with the random
noisy data. The inversion solutions give good approximations to the exact solutions showing
that the inversion algorithm is stable and suitable for the inverse problem of determining
multiparameters in the FADE. The paper is arranged as follows.

In Section 2, an implicit finite difference scheme for solving the forward problem is
given, and a numerical example is presented to support the numerical method. Section 3
gives the inverse problem of determining the parameters of the fractional order, the diffusion
coefficient, and the flow velocity simultaneously by final observations, and the optimal
perturbation regularization algorithm is introduced. In Section 4, numerical inversions
both with the accurate data and noisy data are implemented, and the factors influencing
realization of the inversion algorithm are discussed. Finally, several concluding remarks are
given in Section 5.
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2. Numerical Solution to the Forward Problem

2.1. The Implicit Difference Scheme

For 0 < x < l and 0 < t < T , consider an initial boundary value problem for the FADE given
by (1.1), where the initial boundary value conditions are given as

c(x, 0) = g(x), 0 ≤ x ≤ l,

c(0, t) = c(l, t) = 0, 0 ≤ t ≤ T,
(2.1)

where the function g(x) is assumed to be continuous on [0, l] and g(0) = g(l) = 0.
Let the space step be h = l/M and the time step be r = T/N, with xi = ih and tn = nr

for i = 0, 1, . . . ,M and n = 0, 1, . . . ,N. According to standard Grünwald formula (see [9],
e.g.,), a discrete approximation to the fractional derivative is given as follows:

∂αc(x, t)
∂xα

= lim
h−→0

h=x/M

1
hα

M∑

k=0

(−1)k
(
α
k

)
c(x − kh, t), (2.2)

with which a modified approximation which is called the shifted Grünwald formula is
obtained with the help of Gamma function (see [10, 12], e.g.)

∂αc(x, t)
∂xα

=
1
hα

M∑

k=0

Γ(k − α)
Γ(−α)Γ(k + 1)

c(x − (k − 1)h, t) +O(h). (2.3)

Then we have a difference scheme by (1.1) with the initial boundary value conditions (2.1)

cn+1i − cni
r

= −vc
n+1
i − cn+1i−1

h
+D

1
hα

i+1∑

k=0

Γ(k − α)
Γ(−α)Γ(k + 1)

cn+1i−k+1 + Sn+1
i ,

cn0 = 0, cnM = 0, c0i = g(xi),

(2.4)

where cni ≈ c(xi, tn), Sn
i ≈ S(xi, tn) for i = 0, 1, . . . ,M and n = 0, 1, . . . ,N − 1.

Denote

gk =
Γ(k − α)

Γ(−α)Γ(k + 1)
, (2.5)

and p = vr/h and q = Dr/hα, then this can be rearranged to yield

−qg0cn+1i+1 +
(
1 + p − qg1

)
cn+1i − (

p + qg2
)
cn+1i−1 − q

i+1∑

k=3

gkc
n+1
i−k+1 = cni + rSn+1

i , (2.6)
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for i = 1, 2, . . . ,M − 1 and n = 0, 1, . . . ,N − 1. Let cn = (cn1 , c
n
2 , . . . , c

n
M−1)

T , Sn = (Sn
1 , S

n
2 , . . . ,

Sn
M−1)

T , and A = (aij) is the coefficient matrix given by (2.6), where the coefficients aij are
defined by

aij =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

0, j > i + 1,
−qg0, j = i + 1,
1 + p − qg1, j = i,

−p − qg2, j = i − 1,
−qgi−j+1, j < i − 1,

(2.7)

for i = 1, 2, . . . ,M − 2 and j = 1, 2, . . . ,M − 1, and

aM−1,j =

⎧
⎪⎪⎨

⎪⎪⎩

−qgM−j , j = 1, 2, . . . ,M − 3,
−p − qg2, j = M − 2,
1 + p − qg1, j = M − 1,

(2.8)

for i = M − 1, respectively. Thus, we get the implicit finite difference scheme in matrix form
given as follows:

Acn+1 = cn + rSn+1, n = 0, 1, . . . ,N − 1. (2.9)

For the above difference scheme, similarly as done in [10, 12], it is not difficult to get
its convergence and stability with the help of spectrum analysis to the coefficient matrix.

Lemma 2.1 (see [10, 12]). The implicit difference scheme defined by (2.9) is unconditionally stable,
and the difference solution is convergent to the exact solution of the forward problem as h, r → 0 for
finite time domain.

2.2. Numerical Testification

In this subsection, an example is presented to show effectiveness of the finite difference
scheme (2.9) for solving the forward problem numerically. For the forward problem (1.1)-
(2.1), set l = π , T = 1, and take the initial function as g(x) = x(π − x), the source term as

S(x, t) = e−t
[
x(x − π) + v(π − 2x) −D

(
πΓ(2)
Γ(2 − α)

x1−α − Γ(3)
Γ(3 − α)

x2−α
)]

, (2.10)

and utilize the definition of Grünwald-Letnikov fractional derivative; the α-order fractional
derivatives of the functions x and x2 are given as

∂αx

∂xα
=

Γ(2)
Γ(2 − α)

x1−α,

∂α
(
x2)

∂xα
=

Γ(3)
Γ(3 − α)

x2−α,

(2.11)
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Table 1: Errors in the solutions at t = 0.4 with number of grids.

M(N) 20 40 80 100 200 400
Err 0.0088 0.0055 0.0031 0.0026 0.0014 6.97e − 4

Table 2: Errors in the solutions at t = 0.8 with number of grids.

M(N) 20 40 80 100 200 400
Err 0.0165 0.0105 0.0060 0.0049 0.0026 0.0014

respectively, then the exact solution of the froward problem can be obtained which is given
as c(x, t) = x(π − x)e−t.

In the numerical simulation, we will take α = 1.6 as example, and set the diffusion
coefficient D = 0.1, the velocity v = 1; numerical results are listed in Tables 1 and 2,
respectively, where M = N denotes the number of space and time grids, respectively, and
Err denotes relative error in the exact and numerical solutions at the given time. Moreover,
the exact and numerical solutions at t = 0.4 and at t = 0.8 for M = N = 40 are plotted in
Figure 1, respectively.

From Tables 1 and 2 and Figure 1, we can see that the difference scheme given by
(2.9) is of numerical convergence; and the numerical solutions are in good agreement with
the exact solution. In what follows, numerical inversions can be performed based on the the
above numerical method given by (2.9) by applying the optimal perturbation regularization
algorithm.

3. The Inverse Problem and the Inversion Algorithm

In many cases for the anomalous diffusion model given by (1.1), the fractional order,
the diffusion coefficient, and other physical quantities are often unknown and cannot be
measured easily. However, these physical quantities can be identified from some known data
which can be observed or measured easily based on the forward problem. The method of
obtaining these quantities is considered as an inverse problem. Suppose that the fractional
order α, the diffusion coefficient D, and the flow velocity v in (1.1) are all unknown, and we
have final observation as the additional information given as

c(x, T) = θ(x), 0 ≤ x ≤ l. (3.1)

Thus, an inverse problem of simultaneously determining these three parameters α, D, and
v is formulated by (1.1) and the initial boundary value conditions (2.1) with the additional
condition (3.1). In what follows, we are to deal with the above multiparameters identification
problem from numerics by utilizing an optimal perturbation algorithm.

As we know, most of inversion algorithms are based on regularization strategies so as
to overcome ill-posedness of the inverse problem, and different kinds of inverse problems
could need different approximate methods on the basis of conditional well-posedness
analysis (see [25, 30–33], e.g.). It is noted that the optimal perturbation algorithm has been
attested to be effective for identifying model parameters at least for the ordinary integer-
order diffusion equations (see [26–29, 34], e.g.), and it is also efficient for determining source
functions in the FADE (see [23, 24], e.g.). In this section, we will also employ it to determine
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Figure 1: The exact and numerical solutions withM = N = 40.

the three parameters α, D, and v simultaneously in the FADE. The inversion algorithm is
given as follows.

Denote a = (α,D, v) = (a1, a2, a3), and suppose that c(x, t; a) is the unique solution
of the forward problem for any prescribed a ∈ R3; then a feasible way to solve the inverse
problem here is to solve the minimization problem

min
a∈R3

{
‖c(x, T ; a) − θ(x)‖22 + μ‖a‖22

}
, (3.2)

where μ > 0 is the regularization parameter, c(x, T ; a) is the computational output obtained
by the solution taking values at t = T , and θ(x) is the final observation referred to (3.1).

Suppose that

aj+1 = aj + δaj , j = 0, 1, . . . , (3.3)

here δaj is called a perturbation for given aj . Thus, in order to get aj+1 from the given aj , we
only need to get an optimal perturbation δaj . In what follows, for convenience of writing,
aj and δaj are abbreviated as a and δa, respectively. Then, we only need to work out an
perturbation vector

δa = (δa1, δa2, δa3). (3.4)

Taking Taylor’s expansion for c(x, T ; a + δa) at a and ignoring higher order terms, we
can get

c(x, T ; a + δa) ≈ c(x, T ; a) +∇Tc(x, T ; a) · δa. (3.5)
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Noting to (3.2), and with the help of (3.5), we define an error functional given as follows:

F(δa) =
∥∥∥∇Tc(x, T ; a) · δa − [θ(x) − c(x, T ; a)]

∥∥∥
2

2
+ μ‖δa‖22. (3.6)

Now, discretizing the space domain [0, l] with 0 = x1 < x2 < · · · < xK = l, where K denotes
the number of grids, the above L2 norm can then be reduced to the discrete Euclidean norm
given as

F(δa) =
∥∥B δa − (

η − ξ
)∥∥2

2 + μ‖δa‖22, (3.7)

where

B = (bks)K×3, bks =
c(xk, T ; a + τes) − c(xk, T ; a)

τ
, s = 1, 2, 3, (3.8)

and τ is the numerical differentiation step, and e1 = (1, 0, 0), e2 = (0, 1, 0), and e3 = (0, 0, 1),
and

ξ = (c(x1, T ; a), c(x2, T ; a), . . . , c(xK, T ; a)), η = (θ(x1), θ(x2), . . . , θ(xK)). (3.9)

It is not difficult to testify that minimizing functional (3.7) is equivalent to the solving
of the following normal equation (see [35], e.g.)

(
μI + BTB

)
δa = BT(η − ξ

)
. (3.10)

So, an optimal perturbation can be solved via the formula:

δa =
(
μI + BTB

)−1
BT(η − ξ

)
, (3.11)

with which an optimal inversion solution can be approximated by the iteration procedure
(3.3) as long as the perturbation is satisfying a given precision. Obviously, it lies in suitable
choices of the regularization parameter, the numerical differential step, the initial iteration,
and the convergent precision to perform the above inversion algorithm. In the next section,
numerical inversions will be performed by employing the above inversion algorithm.

4. Numerical Inversion

Taking the space domain as [0, π], the final time as T = 1, the source term as S(x, t) = xe−t,
and the initial function as g(x) = x2(π − x), we will carry out numerical simulations in this
section. For the given exact parameters α,D, and v in (1.1), the forward problem is solved by
the difference scheme (2.9) with M = 100, N = 20, and then the additional data are obtained
with which the inversion algorithm is performed to reconstruct the exact parameters. All
computations are finished in a PC of Tsinghua Tongfang.
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Table 3: Influence of regularization parameter on the algorithm with τ = 0.1.

μ ainv Err Tcpu/j

1 (1.5998012, 1.0004052, 1.0003096) 2.5630155e − 4 10.190/59
8e − 1 (1.5998300, 1.0003477, 1.0002653) 2.1975589e − 4 9.516/52

6e − 1 (1.5998732, 1.0002609, 1.0001987) 1.6463489e − 4 8.281/45

5e − 1 (1.5998862, 1.0002350, 1.0001787) 1.4814645e − 4 7.156/41

3e − 1 (1.5999263, 1.0001542, 1.0001167) 9.6913294e − 5 6.000/33

1e − 1 (1.5999617, 1.0000825, 1.0000618) 5.1475320e − 5 4.250/24

1e − 2 (1.5999665, 1.0000747, 1.0000552) 4.6246166e − 5 3.391/19

1e − 4 (1.5999779, 1.0000495, 1.0000365) 3.0598630e − 5 3.375/19

1e − 6 (1.5999780, 1.0000493, 1.0000364) 3.0467546e − 5 3.406/19

1e − 8 (1.5999780, 1.0000492, 1.0000364) 3.0466238e − 5 3.344/19

1e − 10 (1.5999780, 1.0000492, 1.0000364) 3.0466225e − 5 3.157/19

0 Divergent

4.1. Influence of Regularization Parameter on the Algorithm

It is important to choose an optimal regularization parameter by theoretical analysis in
solving inverse problems, where regularization methods are needed. However, it is still a
feasible approach to the choice of regularization parameter by trial and error especially
for moderate ill-posed inverse problems. The regularization parameter here is selected by
numerical testification, and its influence on the inversion algorithm for given differential step
is discussed in this subsection.

Suppose that the fractional order is α = 1.6, the diffusion coefficient is D = 1, and
the average velocity is v = 1, that is, a = (1.6, 1, 1) is regarded as the exact solution in this
subsection. In the concrete implementation of the inversion algorithm, set initial iteration as
a0 = (1.1, 0, 0), numerical differential step as τ = 0.1, and convergent criterion as ‖δa‖2 ≤ 1e−4.
The computational results are listed in Table 3, where μ denotes the regularization parameter,
ainv denotes the inversion solution, Tcpu/I is the CPU time of each iteration, Tcpu is the total
CPU time for each inversion, j denotes the number of iterations, and Err = ‖ainv − a‖2/‖a‖2 is
the relative error in the solutions.

It is noticeable that the inversion results have little changes if utilizing any positive
regularization parameters smaller than 1e − 10, and the solutions error still remain Err =
3.0466225e−5 even with very small regularization parameter μ = 1e−36. The inversion errors
varying with regularization parameters in this case are plotted in Figure 2(a). Furthermore, if
taking numerical differential step as τ = 0.01, and other inversion parameters unchanged, the
computational results are listed in Table 4, where μ, ainv , Err, and Tcpu/j all denote the same
meanings as used in Table 3.

From Tables 3 and 4 and Figure 2(a), we can find that regularization parameter has
important impact on the inversion algorithm for given numerical differential step, and
the regularization parameter must be chosen large for small numerical differential step.
However, the inversion algorithm can be performed smoothly with any small regularization
parameters strictly greater than zero if choosing large numerical differential steps.
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Figure 2: The solutions errors with regularization parameter and differential step.

Table 4: Influence of regularization parameter on the algorithm with τ = 0.01.

μ ainv Err Tcpu /j

5 (1.6015151, 0.99697413, 0.99767406) 1.9229322e − 3 32.657/176
4.5 (1.6013808, 0.99724171, 0.99787964) 1.7528679e − 3 29.687/163
4 (1.6012283, 0.99754585, 0.99811333) 1.5595733e − 3 27.704/150
3.5 (1.6010527, 0.99789612, 0.99838251) 1.3369560e − 3 24.703/137
3 (1.6009217, 0.99815749, 0.99858340) 1.1708440e − 3 22.500/122
2.5 (1.6007547, 0.99849085, 0.99883965) 9.5898118e − 4 20.094/108
2.4 (1.6007389, 0.99852247, 0.99886397) 9.3887868e − 4 19.313/105
2.3 (1.6006934, 0.99861329, 0.99893378) 8.8116322e − 4 18.985/103
2.2 (1.6006824, 0.99863531, 0.99895072) 8.6716578e − 4 18.469/100
2.1 (1.6006235, 0.99875285, 0.99904107) 7.9247157e − 4 17.640/96
≤2 Divergent

4.2. Influence of Numerical Differential Step on the Algorithm

By the above computations together with (3.8), we find that numerical differentiation is
another key point in the realization of the inversion algorithm, and suitable differential
steps are necessary in order to realize a successful inversion. As done for the regularization
parameter, we will investigate the influence of the differential step on the algorithm by
testification.

Also set the exact solution to be a = (1.6, 1, 1), and take the regularization parameter as
μ = 0.1, and other inversion parameters also unchanged as used in the above. The inversion
results are listed in Table 5, where τ denotes the numerical differential step, and ainv, Err, and
Tcpu/j all denote the same meanings as referred in the above. Moreover, the errors in the
solutions varying with the numerical differential steps for μ = 0.1 are plotted in Figure 2(b).

From Table 5 and Figure 2(b), we can see that the numerical differential step plays a
similar role as to that of the regularization parameter in the realization of the algorithm. The
inversion algorithm could be a failure in case of using large or small differential steps. The
differential steps should fall in the interval of (0.03, 0.9) in this example.
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Table 5: Influence of numerical differential step on the algorithm with μ = 0.1.

τ ainv Err Tcpu/j

≥0.9 Divergent
0.85 (1.6001245, 0.99973957, 0.99978970) 1.6724819e − 4 6.563/36
0.8 (1.6001340, 0.99969424, 0.99977646) 1.8814739e − 4 6.453/35
0.7 (1.6001260, 0.99971463, 0.99979024) 1.7604399e − 4 6.172/34
0.6 (1.6001232, 0.99972209, 0.99979564) 1.7153187e − 4 5.937/32
0.5 (1.6001146, 0.99974254, 0.99981050) 1.5903046e − 4 5.359/29
0.4 (1.6000995, 0.99977749, 0.99983595) 1.3759274e − 4 3.672/20
0.3 (1.5999046, 1.0002119, 1.0001567) 1.3124502e − 4 4.984/27
0.2 (1.5999303, 1.0001532, 1.0001138) 9.5146183e − 5 5.203/28
0.1 (1.5999617, 1.0000825, 1.0000618) 5.1475320e − 5 4.375/24
0.05 (1.5999773, 1.0000477, 1.0000361) 2.9959973e − 5 4.484/24
0.04 (1.5999772, 1.0000475, 1.0000360) 2.9877074e − 5 5.344/29
≤0.03 Divergent

Table 6: Influence of fractional order on the inversion algorithm.

α a ainv Err Tcpu /j

1.9 (1.9, 1, 1) (1.90000, 1.00000, 1.00000) 1.7848e − 7 3.547/21
1.8 (1.8, 1, 1) (1.80000, 1.00000, 1.00000) 1.6868e − 7 3.859/23
1.7 (1.7, 1, 1) (1.70000, 1.00000, 1.00000) 3.4783e − 7 4.344/26
1.6 (1.6, 1, 1) (1.60000, 1.00000, 1.00000) 4.9312e − 7 5.500/33
1.5 (1.5, 1, 1) (1.50000, 1.00000, 1.00000) 9.7401e − 7 7.797/47
1.4 (1.4, 1, 1) (1.40000, 1.00000, 1.00000) 2.6188e − 6 13.031/79
1.3 (1.3, 1, 1) (1.30000, 1.00001, 1.00001) 9.5267e − 6 24.437/148
1.2 (1.2, 1, 1) (1.24150, 0.838272, 0.845473) 0.1227 87.734/531

4.3. Influence of Fractional Order on the Algorithm

In this subsection, we will investigate influence of the fractional order on the inversion
algorithm with the convergent criterion given as ‖δa‖2 ≤ 10−6. By the above computations,
the regularization parameter here is μ = 0.1, the differential step is τ = 0.1, and the initial
iteration is a0 = (1.1, 0, 0) as before. The computational results are listed in Table 6, where a
denotes the exact solution, α denotes the fractional order, and ainv, Err, and Tcpu/j also refer
to the same notations as used in the above.

From Table 6, we find that the inversion results are not so good when the fractional
order is smaller than 1.2, which demonstrates that ill-posedness of the inversion problem
could become severe if coping with small fractional orders.

4.4. Inversion with Noisy Data

It is difficult to perform an inversion algorithm in the case of using random noisy data,
especially for inverse problems arising from the fractional diffusion. Noting computational
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Table 7: Inversion results with regularization parameters for ε = 1%.

μ a inv Err T cpu j

0.01 (1.4992660, 1.0017420, 1.0015202) 1.1766681e − 3 7.2 39.9
0.1 (1.4992650, 1.0017420, 1.0015203) 1.1768453e − 3 8.7 47
0.5 (1.4992640, 1.0017427, 1.0015217) 1.1776617e − 3 13.8 75.1

errors and data noises, the additional information utilized for real inverse problems is often
given as

θε(x) = θ(x) + εζ, (4.1)

where θ(x) is the accurate additional information given by (3.1), ε > 0 is noise level, and ζ is
a random vector ranged in [−1, 1]. In the following, we will take the fractional order α = 1.5
as example, that is, the exact solution in this subsection is given as a = (1.5, 1, 1).

Generally speaking, in case of using regularization strategy to damp the noises, an
optimal regularization parameter should be chosen according to the noise level. However, the
situation becomes simple for the inverse problem considered here. Without loss of generality,
we set the noise levels be ε = 1% and ε = 5% and we choose regularization parameter as
μ = 0.5, μ = 0.1 and μ = 0.01, respectively, and other inversion parameters also unchanged as
in the above. The average inversion results by ten-time computations are listed in Tables 7
and 8 respectively, where ε denotes the noise level, a inv denotes the average inversion
solution of the ten-time computations, Err = ‖a inv − a‖2/‖a‖2 denotes the average relative
error in the solutions, and T cpu with j denote the average CPU time and iteration number of
the inversion, respectively.

From Tables 7 and 8, we can see clearly that for the given noise level, the inversion
solutions are almost unchanged, although the number of iterations and the corresponding
CPU time increase to some extent when using large regularization parameters. Furthermore,
Table 9 gives inversion results by using regularization parameter as μ = 0.1 with different
noise levels, where ε also denotes the noise level and a inv , Err, and T cpu with j denote the
same meanings as used in the above.

From Table 9, it can be seen that the inversion results are satisfactory in the case of
using noisy data, and the error in the solutions becomes small and approaches to zerowith the
noise level goes to zero demonstrating that the inversion algorithm is of numerical stability.

5. Conclusion

(i) An inverse problem for identifying multiparameters of the fractional order, the diffusion
coefficient, and the average velocity simultaneously in the FADE with final observations
is investigated. An implicit finite difference scheme is employed to solve the forward
problem, and an optimal perturbation regularization algorithm is applied to reconstruct the
three parameters. By the numerical simulations, we conclude that the optimal perturbation
regularization algorithm is of numerical stability, and it is efficient for multiparameters
identification problem arising from the FADE.
(ii) There are few factors that have influences on the inversion algorithm, but the
regularization parameter and the numerical differential step here seem to play a much more
important role in the realization of the algorithm. The inversion algorithm can be performed
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Table 8: Inversion results with regularization parameters for ε = 5%.

μ a inv Err T cpu j

0.01 (1.4947065, 1.0158355, 1.0141558) 1.0618188e − 2 8.4 42.0
0.1 (1.4947063, 1.0158360, 1.0141562) 1.0618514e − 2 8.3 49.1
0.5 (1.4947055, 1.0158378, 1.0141577) 1.0619698e − 2 13.1 79.0

Table 9: Inversion results with random noises using μ = 0.1.

ε a inv Err T cpu j

10% (1.4841, 1.0568, 1.0515) 0.0380 11.9 58.3
5% (1.4947, 1.0158, 1.0142) 0.0106 8.3 49.1
3% (1.4973, 1.0073, 1.0065) 0.0049 8.8 47.4
1% (1.4993, 1.0017, 1.0015) 0.0012 8.7 47.0
0.5% (1.4997, 1.0008, 1.0007) 5.33e − 4 8.4 46.8
0.1% (1.4999, 1.0001, 1.0001) 9.87e − 5 8.1 46.9
0.01% (1.5000, 1.0000, 1.0000) 1.03e − 5 8.1 47.0

successfully for the regularization parameter and the numerical differential step belonging
to suitable intervals, respectively. However, the inversion algorithm may be a failure if the
numerical differential step is taking too small values. In addition, it seems to be insensitive
to the choice of the regularization parameter in concrete realization of the algorithm showing
that the inverse problem discussed here is of moderate ill-posedness.
(iii) By the inversion computations, we find that the fractional order in the FADE has some
influence on the forward problem and the inverse problem. If the fractional order α goes to 2,
the solutions error becomes small and the computational complexity is reduced; however, if
α is less than 1.2, the ill-posedness of the inverse problem becomes severe, and the inversion
results could be unacceptable. We will deal with the forward problem and the corresponding
inverse problem with the fractional order smaller than 1.2 in our sequent works.
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