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We introduce the notion of hypergroupoids (HBin(X),�), and show that (HBin(X),�) is a
super-semigroup of the semigroup (Bin(X),�) via the identification x ↔ {x}. We prove that
(HBin∗(X),�, [∅]) is a BCK-algebra, and obtain several properties of (HBin∗(X),�).

1. Introduction

The notion of the semigroup (Bin(X),�) was introduced by Kim and Neggers [1]. Fayoumi
[2] introduced the notion of the centerZBin(X) in the semigroup Bin(X) of all binary systems
on a set X, and showed that if (X, •) ∈ ZBin(X), then x /=y implies {x, y} = {x • y, y • x}.
Moreover, she showed that a groupoid (X, •) ∈ ZBin(X) if and only if it is a locally zero
groupoid. Y. Imai and K. Iséki introduced two classes of abstract algebras: BCK-algebras and
BCI-algebras [3, 4]. Neggers and Kim introduced the notion of d-algebras which is another
useful generalization of BCK-algebras, and then investigated several relations between
d-algebras and BCK-algebras as well as several other relations between d-algebras and
oriented digraphs [5]. The present authors [6] defined several special varieties of d-algebras,
such as strong d-algebras, (weakly) selective d-algebras, and pre-d-algebras, discussed the
associative groupoid product (X;�) = (X; ∗)�(X; ◦), where x�y = (x ∗ y) ◦ (y ∗ x). They
showed that the squared algebra (X;�, 0) of a pre-d-algebra (X; ∗, 0) is a strong d-algebra if
and only if (X; ∗, 0) is strong.

Zhan et al. [7] defined the T -fuzzy n-ary sub-hypergroups by using a norm T and
obtained some related properties. Zhan, and Liu [8] introduced the notion of f-derivation of
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a BCI-algebras. They gave some characterizations of a p-semisimple BCI-algebras by using
the idea of a regular f-derivation. Zhan et al. [9] defined the notion of hyperaction of a hyper-
group as a generalization of the concept of action of a group. Recently, Davvaz and Leoreanu
[10] published a beautiful book, Hyperring Theory and Applications, and provided useful infor-
mation on the theory of the hypertheory.

In this paper we introduce the notion of hypergroupoids (HBin(X),�), and show
that (HBin(X),�) is a super-semigroup of the semigroup (Bin(X),�) via the identification
x ↔ {x}. We prove that (HBin∗(X),�, [∅]) is a BCK-algebra, and obtain several properties of
(HBin∗(X),�).

2. Preliminaries

Given a nonempty set X, we let Bin(X) the collection of all groupoids (X, ∗), where ∗ : X ×
X → X is a map and where ∗(x, y) is written in the usual product form. Given elements
(X, ∗) and (X, •) of Bin(X), define a product “�” on these groupoids as follows:

(X, ∗)�(X, •) = (X,�), (2.1)

where

x � y =
(
x ∗ y) • (y ∗ x), (2.2)

for any x, y ∈ X. Using the notion, H. S. Kim and J. Neggers showed the following theorem.

Theorem 2.1 (see [1]). (Bin(X),�) is a semigroup, that is, the operation “�” as defined in general
is associative. Furthermore, the left zero semigroup is an identity for this operation.

3. Hypergroupoid Semigroups

Instead of a groupoid (X, ∗) on X, we may also consider a hypergroupoid (X,ϕ) on X, where
ϕ : X × X → P ∗(X) is a hyperproduct with P ∗(X), the set of all non-empty subsets of X. We
denote the set of all hypergroupoids (X,ϕ) on X byHBin(X), that is,

H Bin(X) :=
{(
X,ϕ

) | ϕ : a hypergroupoid on X
}
. (3.1)

The product “�” discussed in Bin(X) can be generalized in HBin(X) as follows: given
(X,ϕ), (X,ψ) ∈ HBin(X), for any x, y ∈ X,

xy :=
(
xϕy

)
ψ
(
yϕx

)
. (3.2)

If we identify x ∈ X with {x} ∈ P ∗(X), then we have an inclusion: X ⊆ P ∗(X) and thus for
ϕ(x, y) = xϕy ∈ P ∗(X), we have xϕy ⊆ X and hence also xϕy ⊆ P ∗(X) via this identification.

If A,B ⊆ X, then for the groupoid (X, ∗) ∈ Bin(X), we have

A ∗ B := {a ∗ b | a ∈ A, b ∈ B}, (3.3)
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hence {a}∗{b} = {a∗b} in a natural way. Similarly, given a hypergroupoid (X,ϕ) ∈ HBin(X),
AϕB is defined by AϕB = ∪{xϕy | x ∈ A, y ∈ B}.

Given hypergroupoids (X,ϕ), (X,ψ), we let (X, θ) := (X,ϕ)�(X,ψ). Then, for any x,
y ∈ X, we have

xθy =
(
xϕy

)
ψ
(
yϕx

)

= ∪{aψb | a ∈ xϕy, b ∈ yϕx}.
(3.4)

Suppose that (X, ∗) and (X, •) are groupoids and that we determine the following:

xθy =
(
x ∗ y) • (y ∗ x)

= ∪{a • b | a ∈ {
x ∗ y}, b ∈ {

y ∗ x}}

=
{(
x ∗ y) • (y ∗ x)}

=
{
x�y

}
= x�y,

(3.5)

via the identification x ↔ {x}. Hence (X, ∗)�(X, •) is the same as a product of groupoids or
as a product of hypergroupoids.

It can be shown that (Bin(X),�) → (HBin(X),�) is an injection (an into homomor-
phism) via the identification x ↔ {x} and the associated identification xθy = {x�y} = x�y.

Example 3.1. Let X := R2 and for any x, y ∈ X, let xϕy denote the undirected line segment
connecting x with y. Then xϕx = {x} and xϕy = yϕx. Let (X, θ) := (X,ϕ)�(X,ϕ). Then
xθy = ∪{aϕb | a ∈ xϕy, b ∈ yϕx} for any x, y ∈ X. Since xϕy = yϕx, aϕb ⊆ xθy for any
a, b ∈ xϕy. Since x, y ∈ xϕy, xϕy ⊆ xθy. We claim that xθy ⊆ xϕy. If α ∈ xθy, then α ∈ aϕb
for some a ∈ xϕy and b ∈ yϕx. Since xϕy = yϕx, α ∈ aϕb for some a, b ∈ xϕy, which shows
that α ∈ xϕy. This proves that (X,ϕ) = (X, θ) = (X,ϕ)�(X,ϕ), that is, (X,ϕ) is an idempotent
hypergroupoid in (HBin(X),�).

Theorem 3.2. (HBin(X),�) is a supersemigroup of the semigroup (Bin(X),�) via the identification
x ↔ {x}.

Proof. Suppose that (X,ϕ), (X,ψ) and (X,ω) are hypergroupoids and let (X, α) :=
(X,ψ)�(X,ω) and (X, β) := (X,ϕ)�(X,ψ). Then for any x, y ∈ X, we have xαy =
(xψy)ω(yψx) and xβy = (xϕy)ψ(yϕx). Let (X, θ) := [(X,ϕ)�(X,ψ)]�(X,ω). Then (X, θ) =
(X, β)�(X,ω) and hence we obtain the following

xθy =
(
xβy

)
ω
(
yβx

)

=
[(
xϕy

)
ψ
(
yϕx

)]
ω
[(
yϕx

)
ψ
(
xϕy

)]
.

(3.6)
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If we let (X, μ) := (X,ϕ)�[(X,ψ)W(X,ω)], then (X, μ) = (X,ϕ)�(X, α) and hence xμy =
(xϕy)α(yϕx) for any x, y ∈ X. Let p := xϕy, q := yϕx. Then

xμy = pαq

=
(
pψq

)
ω
(
qψp

)

=
[(
xϕy

)
ψ
(
yϕx

)]
ω
[(
yϕx

)
ψ
(
xϕy

)]
.

(3.7)

This proves that (X, θ) = (X, μ), that is, (HBin(X),�) is a semigroup.

Proposition 3.3. The left-zero-semigroup (X, ∗), that is, x ∗ y = x for any x, y ∈ X, is an identity of
the semigroup (HBin(X),�).

Proof. Let (X, ∗) be a left-zero-semigroup. Then (X, ∗) ∈ Bin(X). By the identification x ↔
{x}, we have (X, ∗) ∈ (HBin(X),�). Given (X, ν) ∈ HBin(X), let (X, θ) := (X, ∗)�(X, ν).
Then for any x, y ∈ X, we have

xθy =
(
x ∗ y)ν(y ∗ x)

= {x}ν{y}

= ∪{aνb | a ∈ {x}, b ∈ {
y
}}

= xνy,

(3.8)

that is, (X, θ) = (X, ν). This proves that (X, ∗) is a left identity onHBin(X).
Similarly, if we let (X, θ) = (X, ν)�(X, ∗), then for any x, y ∈ X,

xθy =
(
xνy

) ∗ (yνx)

=
{
a ∗ b | a ∈ xνy, b ∈ yνx}

=
{
a | a ∈ xνy}

= xνy,

(3.9)

that is, (X, θ) = (X, ν). This proves that (X, ∗) is a right identity onHBin(X).

Given an element (X,ϕ) ∈ HBin(X), xϕy ∈ P ∗(X), that is, ∅/=xϕy ⊆ X. We extend
(X,ϕ) to (P ∗(X), ϕ̂) as

ϕ̂ : P ∗(X) × P ∗(X) −→ P ∗(P ∗(X)) (3.10)

by ϕ̂(A,B) := Aϕ̂B, where Aϕ̂B = ∪{aϕb | a ∈ A, b ∈ B}. In particular,

{x}ϕ̂{y} = ∪{aϕb | a ∈ {x}, b ∈ {
y
}}

= xϕy.
(3.11)
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This produces a mapping π : HBin(X) → BinP ∗(X). Let (X, θ) := (X,ϕ)�(X,ψ). Then xθy =
∪{aψb | a ∈ xϕy, b ∈ yϕx} for any x, y ∈ X. Since xϕy, yϕx ∈ P ∗(X), we have

(
xϕy

)
ψ̂
(
yϕx

)
= ∪{aψb | a ∈ xϕy, b ∈ yϕx}

= xθy.
(3.12)

Since xϕy = {x}ϕ̂{y} via the identification x ↔ {x}, we obtain

xθy =
(
xϕy

)
ψ̂
(
yϕx

)

=
({x}ϕ̂{y})ψ̂({y}ϕ̂{x})

= xθ̂y,

(3.13)

where (P ∗(X), θ̂) = (P ∗(X), ϕ̂)�(P ∗(X), ψ̂) in (BinP ∗(X),�). We claim that π is a homomor-
phism. In fact, π((X,ϕ)�(X,ψ)) = π((X, θ)) = (P ∗(X), θ̂) = (P ∗(X), ϕ̂)�(P ∗(X), ψ̂) =
π((X,ϕ))�π((X,ψ)).

GivenHBin(X), we may order it according to the rule

(
X,ϕ

) ≤ (
X,ψ

) ⇐⇒ xϕy ⊆ xψy, ∀x, y ∈ X. (3.14)

We define a mapping [∅] : X × X → P(X) by [∅](x, y) := ∅ for all x, y ∈ X. If we let
HBin∗(X) := HBin(X) ∪ {(X, [∅])}, then (X, [∅]) is the minimal element of (HBin∗(X),≤).

Proposition 3.4. Let (X,ϕ) ∈ HBin(X) and (X, ∗) ∈ Bin(X). If (X,ϕ) ≤ (X, ∗), then (X,ϕ) =
(X, ∗).

Proof. If (X,ϕ) ≤ (X, ∗), then ∅/=xϕy ⊆ {x∗y} for any x, y ∈ X. It follows that xϕy = {x∗y} =
x ∗ y, proving that (X,ϕ) = (X, ∗).

Proposition 3.5. Let (X, ∗), (X, •) ∈ Bin(X). If (X, ∗) ≤ (X, •), then (X, ∗) = (X, •), that is, Bin(X)
is an antichain in (HBin∗(X),≤).

Proof. If (X, ∗) ≤ (X, •), then {x ∗y} ⊆ {x •y} for any x, y ∈ X. It follows that x ∗y = x •y for
any x, y ∈ X, proving that (X, ∗) = (X, •).

4. BCK-Algebras on HBin∗(X)

In this section we discuss BCK-algebras on HBin∗(X) by introducing a binary operation as
follows: given hypergroupoids (X,ϕ), (X,ψ) ∈ HBin∗(X), we define a binary operation “�”
by

(
X,ϕ

) � (
X,ψ

)
:=

(
X,ϕ \ ψ), (4.1)

where x(ϕ \ ψ)y := xϕy \ xψy for any x, y ∈ X.
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Theorem 4.1. (HBin∗(X),�, [∅]) is a BCK-algebra.

Proof. For any (X,ϕ) ∈ HBin∗(X), since x[∅]y \ xϕy = ∅ for any x, y ∈ X, we have (X, [∅]) �
(X,ϕ) = (X, [∅]).

Given (X,ϕ) ∈ HBin∗(X), since xϕy\xϕy = ∅ for any x, y ∈ X, we have (X,ϕ)�(X,ϕ) =
(X, [∅]).

Assume that (X,ϕ)�(X,ψ) = (X, [∅]) = (X,ψ)�(X,ϕ). Then xϕy\xψy = ∅, xψy\xϕy =
∅ for any x, y ∈ X, which shows that xϕy = xψy for any x, y ∈ X, that is, (X,ϕ) = (X,ψ).

Given (X,ϕ), (X,ψ) ∈ HBin∗(X), since [xϕy \ [xϕy \xψy]] \xψy = ∅ for any x, y ∈ X,
we obtain [(X,ϕ) � [(X,ϕ) � (X,ψ)]] � (X,ψ) = (X, [∅]).

Given (X,ϕ), (X,ψ), (X, δ) ∈ HBin∗(X), since [(xϕy\xψy)\(xϕy\xδy)]\(xδy\xψy) =
∅ for any x, y ∈ X, we obtain [((X,ϕ) � (X,ψ)) � ((X,ϕ) � (X, δ)] � [(X, δ) � (X,ψ)] = (X, [∅]).
This proves the theorem.

5. Several Properties on HBin(X)

In this section, we discuss some properties onHBin(X).

Proposition 5.1. The product “�” is order-preserving, that is, if (X,ϕ) ≤ (X, ξ), (X,ψ) ≤ (X,ω),
then (X,ϕ)�(X,ψ) ≤ (X, ξ)�(X,ω).

Proof. Let (X,ϕ) ≤ (X, ξ), (X,ψ) ≤ (X,ω) in HBin(X). If we let (X, θ) := (X,ϕ)�(X,ψ) and
(X, ρ) := (X, ξ)�(X,ω), then for any x, y ∈ X,

xθy =
(
xϕy

)
ψ
(
yϕx

)

⊆ (
xξy

)
ψ
(
yξx

)

⊆ (
xξy

)
ω
(
yξx

)

= xρy,

(5.1)

proving that (X, θ) ≤ (X, ρ).

We define a mapping [X] : X × X → P(X) by [X](x, y) := X for all x, y ∈ X. Then
(X, [X]) is the maximal element of (HBin∗(X),≤). Given (X,ϕ) ∈ HBin(X), if we let (X, θ) :=
(X, [X])�(X,ϕ), then xθy = (x[X]y)ϕ(y[X]x) = XϕX = ∪{aϕb | a, b ∈ X} for any x, y ∈ X.

Proposition 5.2. If (X,ϕ) ∈ HBin(X), then (X,ϕ)�(X, [X]) = (X, [X]).

Proof. Let (X, θ) := (X,ϕ)�(X, [X]). Then, for any x, y ∈ X, we have

xθy =
(
xϕy

)
[X]

(
yϕx

)

= ∪{a[X]b | a ∈ xϕy, b ∈ yϕx}

= X,

(5.2)

proving that (X, θ) = (X, [X]).
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Given (X,ϕ) ∈ HBin∗(X), we define a hypergroupoid (X,ϕC) by xϕCy := X \ xϕy, for
any x, y ∈ X. We call it the complementary hypergroupoid of (X,ϕC).

For example, if (X, ·, e) is a group, then x·Cy = X \ {x · y}, where x, y ∈ X. It follows
that x ·C e = e ·C x = X \ {x} and x ·C x−1 = x−1 ·C x = X \ {e} for any x ∈ X.

A hypergroupoid (X,ϕ) is said to be a complementary d-algebra if there exists 0 ∈ X
such that (i) xϕx = X \ {0}; (ii) 0ϕx = X \ {0}; (iii) xϕy = yϕx = X \ {x} implies x = y, for
any x, y ∈ X.

The following proposition can be easily seen.

Proposition 5.3. Given (X,ϕ) ∈ HBin∗(X), (X,ϕ) is a d-algebra if and only if (X,ϕC) is a com-
plementary d-algebra.

Example 5.4. Let X := R be the set of all real numbers and f : X → X be a mapping. Define
a map ϕf : X × X → P ∗(X) by ϕf(x, y) := [x − |f(y)|, x + |f(y)|]. Then (X,ϕf) be a hyper-
groupoid for which xϕfy = [x − |f(y)|, x + |f(y)|] has a midpoint x where x, y ∈ X.

In particular, let f(x) := x2 for any x ∈ X and let (X, θ) := (X,ϕf)�(X,ϕf). Then xθy =
(xϕfy)ϕf (yϕfx) = ∪{aϕfb|a ∈ [x − |f(y)|, x + |f(y)|], b ∈ [y − |f(x)|, y + |f(x)|]} = ∪{[a −
b2, a+b2]|a ∈ [x−y2, x+y2], b ∈ [y−x2, y+x2]} = [x− 2y(y+x2)−x4, x+2y(y+x2)+x4], an
interval of length y2 +(y+x2)2 ≥ 0, where x = y = 0 implies 0θ0 = [0, 0] = {0}, corresponding
to 0 in the identification.

A hypergroupoid (X,ϕ) is said to be left inclusive if x ∈ xϕy for any x, y ∈ X.
Note that the only left inclusive hypergroupoid which is a groupoid is the left-zero-

semigroup. In fact, let (X, ∗) be a left inclusive hypergroupoid which is a groupoid. Then
x ∈ {x ∗ y} for any x, y ∈ X. It follows that x = x ∗ y for any x, y ∈ X, that is, (X, ∗) is a
left-zero-semigroup.

Proposition 5.5. The left inclusive hypergroupoids on X relative to the product “�” on HBin(X)
form a subsemigroup of (HBin(X),�).

Proof. Let (X,ϕ), (X,ψ) be left inclusive hypergroupoids and let (X, θ) := (X,ϕ)�(X,ψ). Then
xθy = (xϕy)ψ(yϕx) = ∪{aψb|a ∈ xϕy, b ∈ yϕx} for any x, y ∈ X. Since (X,ϕ) is left inclu-
sive, x ∈ xϕy, y ∈ yϕx, and hence xψy ⊆ xθy for any x, y ∈ X. Moreover, (X,ψ) is left
inclusive implies that x ∈ xψy, which proves that x ∈ xθy.

Proposition 5.6. Let (X,ϕ) ≤ (X,ψ) inHBin(X). If (X,ϕ) is left inclusive, then (X,ψ) is also left
inclusive.

Proof. Let (X,ϕ) ≤ (X,ψ). Then xϕy ⊆ xψy for any x, y ∈ X. Since (X,ϕ) is left inclusive, we
have x ∈ xϕy ⊆ xψy, proving the proposition.

Proposition 5.6 means that the collection of all left inclusive hypergroupoids is a filter
in the poset (HBin(X),≤).

A hypergroupoid (X,ϕ) is said to be left-self-avoiding if x /∈ xϕy for any x, y ∈ X.

Proposition 5.7. The complementary hypergroupoid (X,ϕC) of a left inclusive hypergroupoid (X,ϕ)
is left-self-avoiding.
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Proof. Let (X,ϕC) be the complementary hypergroupoid of a left inclusive hypergroupoid
(X,ϕ). Then xϕCy = X \ xϕy for any x, y ∈ X. Since (X,ϕ) is left inclusive, x ∈ xϕy for any
x, y ∈ X, and hence x /∈ xϕCy, proving the proposition.

Proposition 5.8. The complementary hypergroupoid (X,ϕC) of a left-self-avoiding hypergroupoid
(X,ϕ) is left inclusive.

Proof. Straightforward.

Proposition 5.9. Let (X, θ) = (X,ϕ)�(X,ψ) where (X,ϕ) is left inclusive and (X, θ) is left-self-
avoiding. Then (X,ψ) is left-self-avoiding.

Proof. Let (X, θ) be a left-self-avoiding hypergroupoid. Then (X, θC) is left inclusive by
Proposition 5.8. It follows that x ∈ xθCy = X \ ∪{aψb | a ∈ xϕy, b ∈ yϕx}. This means that
x /∈ aψb for any a ∈ xϕy and b ∈ yϕx where x, y ∈ X. Since (X,ϕ) is left inclusive, x ∈ xϕy,
y ∈ yϕx. Hence x /∈ xψy, proving that (X,ψ) is left-self-avoiding.

6. Conclusion

In this paper we have introduced the notion of hypergroupoids as a generalization of
groupoids in a manner analogous to the introduction of the notion of hypergroups as a gen-
eralization of the notion of groups. Since the semigroup (Bin(X),�) can still benefit from
more detailed investigation it follows that the same is evenmore true for (HBin(X),�). In the
latter case one must rely on proper adaptations obtained from (Bin(X),�) and certainly on
results obtained from studies on hypergroupoids available in the literature [7–10] as a general
plan for the organization of the subject, with parts to be completed as time and opportunity
permits.
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[4] K. Iséki and S. Tanaka, “An introduction to the theory of BCK-algebras,”Mathematica Japonica, vol. 23,

no. 1, pp. 1–26, 1978/79.
[5] J. Neggers and H. S. Kim, “On d-algebras,”Mathematica Slovaca, vol. 49, no. 1, pp. 19–26, 1999.
[6] J. S. Han, H. S. Kim, and J. Neggers, “Strong and ordinary d-algebras,” Journal of Multiple-Valued Logic

and Soft Computing, vol. 16, no. 3–5, pp. 331–339, 2010.
[7] J. Zhan, B. Davvaz, and K. P. Shum, “On probabilistic n-ary hypergroups,” Information Sciences, vol.

180, no. 7, pp. 1159–1166, 2010.
[8] J. Zhan and Y. L. Liu, “On f -derivations of BCI-algebras,”Mathematica Slovaca, vol. 49, pp. 19–26, 1999.
[9] J. Zhan, S. Sh. Mousavi, and M. Jafarpour, “On hyperactions of hypergroups,” University of Bucharest.

Scientific Bulletin A, vol. 73, no. 1, pp. 117–128, 2011.
[10] B. Davvaz and V. Leoreanu, Hyperring Theory and Applications, International Academic Press, Palm

Harbor, Fla, USA, 2007.


