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This paper presents a modelling of an unmanned airship.We are studying a quadrotor flyingwing.
The modelling of this airship includes an aerodynamic study. A special focus is done on the com-
putation of the added masses. Considering that the velocity potential of the air surrounding the
airship obeys the Laplace’s equation, the added masses matrix will be determined by means of the
velocity potential flow theory. Typically, when the shape of the careen is quite different from that
of an ellipsoid, designers in preprocessing prefer to avoid complications arising frommathematical
analysis of the velocity potential. They use either complete numerical studies, or geometric approx-
imation methods, although these methods can give relatively large differences compared to exper-
imental measurements performed on the airship at the time of its completion. We tried to develop
here as far as possible the mathematical analysis of the velocity potential flow of this uncon-
ventional shape using certain assumptions. The shape of the careen is assumed to be an elliptic
cone. To retrieve the velocity potential shapes, we use the spheroconal coordinates. This leads
to the Lamé’s equations. The whole system of equations governing the interaction air-structure,
including the boundary conditions, is solved in an analytical setting.

1. Introduction

The rapid expansion of the capabilities of airships in the last decade and the growing of the
range of missions they designed to support lead to the design of complex shapes of the
careens.

Exhaustive studies in that topic were presented by [1, 2]. Traditionally, ellipsoidal
shapes are used for airships [3–5]. However, and in order to optimize their performances, dif-
ferent original shapes have been tested in the last years. This is due to the advances in
aerodynamics, control theory, and embedded electronics. The airship studied here departs
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Figure 1: The flying wing Airship MC500.

with the traditional shapes. The MC500 is a flying wing (Figure 1), developed by the French
network DIRISOFT.

The MC500 is an experimental prototype for a set of great innovating airships. A
precise dynamics model is needed for this kind of unmanned airships including the air-
structure interaction. This will enable the elaboration of convenient algorithms of control,
stabilization, or navigation of these flying objects.

The aerodynamic forces have a large influence on the dynamic behaviour of the
airships. Among the aerodynamic solicitations, the added masses phenomenon is one of the
most important. In fact, when hovering or in case of low speed displacement, the lift and drag
forces and torques could be neglected.

The added masses phenomenon is well known for airships and similarly for sub-
marines. When an airship moves in an incompressible and infinite inviscid fluid, the kinetic
energy of the fluid produces an effect equivalent to an important increase of the mass and
the inertia moments of the body. This contribution may be of the same magnitude as the
terms of mass or inertia of the airship. Apart from ellipsoidal shapes [6] or thin rectangular
plates [7]where the theory is well established for many decades, the analysis of this problem
for unconventional shapes in preprocessing is usually done by approximate methods. We can
quote the geometric method, consisting of an extension of a 2D analysis and requiring the
introduction of empirical parameters [8, 9], or the fully numerical methods consisting of
modeling both the airship and the surrounding air [10, 11].

As opposed to other treatments of this problem, the derivation proposed here is based
on the velocity potential flow theory [6, 7, 12]. We tried to pursue the analytical study to an
advanced stage with some assumptions. The shape of the careen of the MC500 is considered
as a conewith elliptic section.Whenwe consider that the velocity potential of the air obeys the
Laplace’s equation, the added masses matrix could be determined by solving this equation,
using the spheroconal coordinates. Solving the Laplace’s equation for such configuration
leads to the Lamé’s equations.We have dedicated a section of this paper for the determination
of the ellipsoidal harmonic series issued from these equations with the specific boundary
conditions. Such series developed for the first time by Lamé [13]were improved particularly
by Liouville and Sturm in their famous theory and by Hermite [14] and were applied in dif-
ferent fields. Byerly [15] and later Hobson [16] gave an important comprehensive literature
about this topic.
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Significant recent works, such as the works of Boersma and Jansen [17] in electromag-
netic field, and those of Garmier and Barriot [18] in astrophysics could be quoted. In this
work, we are trying to apply this theory for the air-structure interaction.

2. Dynamic Model

2.1. Kinematics

The airship MC500 is assumed to be a rigid flying object.
We use two reference frames. First an earth-fixed frame R0 = (O,X0,Y0, Z0) assumed

to be Galilean. Then a local reference frame Rm = (G,Xm,Ym,Zm) fixed to the airship. Its axes
are selected as follows:

Xm and Ym are the transverse axis of the airship, Zm: the normal axis directed
downwards.

To describe the orientation of the airship, we use a parameterization in yaw, pitch, and
roll. The configuration of the object is described by means of three rotations defined by three
angles of orientation, that is, the yaw ψ, pitch θ, and roll φ.

The whole transformation between the local reference frame Rm and the global frame
is given by Goldstein [19]:

JT1
(
η2
)
=

⎛

⎝
cθ · cψ cθ · sψ −sθ

sφ · sθ · cψ − cφ · sψ sφ · sθ · sψ + cφ · cψ sφ · cθ
cφ · sθ · cψ + sφ · sψ cφ · sθ · sψ − sφ · cψ cφ · cθ

⎞

⎠, (2.1)

such as JT1 (η2) · J1(η2) = J1(η2) · JT1 (η2) = I3. We denote by cθ = cos θ; sφ = sinφ.
Using the rotation matrix J1(η2), the expression of the linear speed in the reference

frame R0 is given by

η̇1 = J1
(
η2
) · ν1. (2.2)

The angular speed is expressed as follows:

η̇2 = J2
(
η2
) · ν2 (2.3)

with

J2
(
η2
)
=

⎛

⎜⎜
⎝

1 sφ tan θ cφ tan θ
0 cφ −sφ
0

sφ

cθ

cφ

cθ

⎞

⎟⎟
⎠. (2.4)

It is noticed that the parameterization by the Euler angles has a singularity in Θ = π/2 + kπ .
This parameterization is acceptable because it is not possible for an airship to reach

this singular orientation of 90 degrees pitching angle.
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2.2. Dynamics

As mentioned previously, a specificity of the lighter than air vehicles is illustrated by the
added masses phenomenon. When a big and light object moves in the air, the kinetic energy
of the particles of air produces an effect equivalent to an important growing of the mass and
inertia of the body. As the airship displays a very large volume, its added masses and inertias
become significant.

The basis of the analysis of the motion of a rigid body immersed in a perfect fluid is
established by Lamb [6]. He proves that the kinetic energy T of the bodywith the surrounding
fluid can be expressed as a quadratic function of the six components of the translation and
rotation velocity as follows:

T =
1
2
νT (Mb +Ma)︸ ︷︷ ︸

M

ν = Tb + Ta, (2.5)

whereMa is the added mass matrix due to the motion of the surrounding air andMb is the
mass matrix of the body.

For an airship fully immersed in the air, the 6 × 6 added mass matrix Ma is assumed
to be positive and definite. As the added kinetic energy Ta, it will be discussed in the next
section. The whole mass matrixM is assumed symmetric block-diagonal matrix:

M =
(
MTT 0
0 MRR

)
. (2.6)

For the computation of the whole dynamics model, we choose to use the Kirchoff’s equation
[20]:

d

dt

(
∂T

∂ν1

)
+ ν2 ∧ ∂T

∂ν1
= τ1,

d

dt

(
∂T

∂ν2

)
+ ν2 ∧ ∂T

∂ν2
+ ν1 ∧ ∂T

∂ν1
= τ2,

(2.7)

where ∧ is the vectorial product, τ1 and τ2 are, respectively, the external forces and torques,
including the rotors effects, the weight (mg), the buoyancy B, and the aerodynamic lift (FL)
and drag (FD).

The dynamical system of the airship becomes [21–23]

(
MTT 0
0 MRR

)(
ν̇1
ν̇2

)
=
(

τ1 − ν2 ∧ (MTTν1)
τ2 − ν2 ∧ (MRRν2) − ν1 ∧ (MTTν1)

)
. (2.8)

Description of the Rotors

TheMC500 has four electric engines driving rotors. Each rotor has two parallel contrarotating
propellers to avoid any aerodynamic torque (Figure 2). The rotor can swivel in two directions.
A rotation of angle βi around the Y axis (−180◦ ≤ βi ≤ 180◦) and a rotation of angle γi around
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Figure 2: Position of the rotors.

an axis ZiR normal to Y and initially coinciding with the Z axis (−30◦ ≤ γi ≤ 30◦). A fictive
axis XiR completes the rotor frame.

Let us denote Pi by the position of the rotor i. We can then define a rotation matrix Ji3
between the frame (Pi, XiR, Y, ZiR) and the local frame Rm such as

Ji3 =

⎛

⎝
cγicβi −sγicβi sβi
sγi cγi 0

−cγisβi sγisβi cβi

⎞

⎠. (2.9)

If we suppose that the intensity of the thrust force of the rotor i is ‖Fi‖, this force could be
introduced in the second member of the dynamic equation as

Fi = Ji3‖Fi‖ · eXm, (2.10)

where eXm is a unitary vector along the Xm axis.
The torque produced by this rotor in the centre of inertia G is Fi ∧ PiG.

Weight and Buoyancy

An important characteristic of the airships is the buoyancy Bu. This force represents a natural
static lift, corresponding roughly to 1Kg for each m3 of helium involved in the careen. We
suppose here that this force is applied in the centre of buoyancy B different from the centre
of inertia G:

Bu = ρair · V · g, (2.11)

where V is the volume of the careen, ρair is the density of the air, and g the gravity.
Let us note FWB andMWB the force and the moment due to the weight and buoyancy.
We have

FWB =
(
mg − Bu

) · JT1 eZ, MWB = Bu ·
(
JT1 · eZ ∧ BG

)
. (2.12)
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Aerodynamic Forces FA

Such as other flying objects, the airships are subjected to aerodynamic forces. The resultant
of these forces could be divided into two component forces, one parallel to the direction of
the relative wind and opposite to the motion, called Drag, and the other perpendicular to the
relative wind, called Lift. The MC500 is designed with an original shape oriented to a best
optimization of the ratio lift upon drag forces.

However, and as first study, we try to evaluate the behaviour of the airship in the case
of low velocity or while hovering. In these cases, the effect of these forces could be neglected.

The global dynamic system could be expressed in a compact form as follows [21, 24]:

M · ν̇ = τ +QG (2.13)

with

τ =
(
τ1
τ2

)
, (2.14)

such as

τ1 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

4∑

i=1

‖Fi‖ · cγi · cβi −
(
mg − Bu

) · sθ
4∑

i=1

‖Fi‖sγi +
(
mg − Bu

) · sφ · cθ

−
4∑

i=1

‖Fi‖cγi · sβi +
(
mg − Bu

)
cφ · cθ

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

τ2 = −

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

c
4∑

i=1

‖Fi‖ · sγi + b1
(‖F1‖cγ1 · sβ1 − ‖F2‖cγ2 · sβ2

)

+ b3
(‖F3‖cγ3 · sβ3 − ‖F4‖cγ4 · sβ4

)
+ BuzB · sφ · cθ

−c
4∑

i=1

‖Fi‖cγi · cβi
+ a
(‖F4‖cγ4 · sβ4 + ‖F3‖cγ3 · sβ3 − ‖F1‖cγ1 · sβ1 − ‖F2‖cγ2 · sβ2

)
+ BuzB · sθ

b1
(‖F1‖cγ1 · cβ1 − ‖F2‖cγ2 · cβ2

)
+ b3
(‖F3‖cγ3 · cβ3 − ‖F4‖cγ4 · cβ4

)

+a
(‖F4‖sγ4 + ‖F3‖sγ3 − ‖F1‖sγ1 − ‖F2‖sγ2

)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

QG =
( −ν2 ∧ (MTTν1)

−ν2 ∧ (MRRν2) − ν1 ∧ (MTTν1)

)
.

(2.15)

3. Computation of the Added Masses

3.1. Spheroconal Coordinates

Much of the current airships developed and studied in the literature are considered as
ellipsoidal. This particular shape has a wide popularity in this field due to the existence of
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Figure 3: Transverse sections of the MC500.

a large and reliable knowledge and experimentations for both ellipsoidal airships and their
alter ego submarines. However for our flying wing airship, we should use a more convenient
approximation for the aerodynamic study.

The MC500 airship is a collection of aerodynamic profiles, with symmetry around the
x-z axis. Each transverse section of the careen parallel to the plan y-z gives roughly an ellipse.
This motivated us to model as first assumption the airship as an elliptic cone (Figure 3).

To take into account the interaction of the airship with the surrounding fluid, a model
of the flow is needed.

A variation of this study may be performed by calculating the fluid pressure around
the airship through the Bernoulli equation [25].

Here, we use the potential flow theory with the following assumptions.

(a) The air can be considered as an ideal fluid with irrotational flow and uniform
density ρf , that is, an incompressible fluid.

(b) A velocity potential Φf exists and satisfies the Laplace’s equation throughout the
fluid domain:

∇2Φf = 0, (3.1)

and satisfies the nonlinear free surface condition, body boundary condition, and
initial conditions.

Finally we suppose that the velocity of the air is null far from the airship:

Φf∞ −→ 0. (3.2)

(c) The velocity of the fluid obeys the equation:

Vf = ∇Φf . (3.3)
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Figure 4: Representation of the spheroconal coordinates in the elliptic cone.

In his study [6], Lamb proves that the kinetic energy Ta of the fluid surrounding a moving
rigid body can be expressed as a quadratic function of the six components of the translation
and rotation velocity ν = (u, v,w, p, q, r)T and can also be expressed as function of the velocity
potential of this fluid by the following relation:

Ta =
1
2
νTMaν = −1

2
ρf

∫∫

∂S

Φf

∂Φf

∂nO
dS. (3.4)

nO is an outward normal vector. Φf can be splitted on

Φf = νTΦ = uΦ1 + vΦ2 +wΦ3 + pΦ4 + qΦ5 + rΦ6, (3.5)

where Φ appears as a collection of six spatial potential Φi functions of x, y, z that verify
the Laplace’s equation. To extract the terms of the added mass matrix, we should define the
spatial potentialΦ of the moving fluid. In some cases it could be determined using geometric
means [8, 26]. Here we choose to use the potential flow theory. We can then express the
components of the added mass matrixMa in function of the velocity potential flow of the air
surrounding the airship Φ such as

Maij = −ρf
∫∫

S

Φi

∂Φj

∂nO
dS. (3.6)

For solving the Laplace’s equation (3.1) and according to the configuration of the careen, we
use the spheroconal coordinates [16]. This assumption seems acceptable in that stage.

A first parameterisation by the coordinates (ρ,Θ, ϕ) is used, for example, by Boersma
and Jansen [17], Kraus and Levine [27] (Figure 4), where ρ is the distance of a point to the
origin, ϕ is the azimuthal angle (0 ≤ ϕ ≤ 2π), and Θ is the longitudinal angle. Θ = Θ0

represents the external surface of the elliptic cone.
This parameterisation has the advantage to be physically significant. However, in our

case, it leads to intractable calculations. We prefer to use the parameterisation (ρ, μ, ζ) given
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by Hobson [16]. The equation of the surface of an elliptic cone is given by G. A. Korn and T.
M. Korn [28] such as

x2

μ2
+

y2

μ2 − a2 +
z2

μ2 − b2 = 0. (3.7)

a, b, and μ0 are parameters that define the elliptic cone.
With

b2 	 ζ2 	 a2 	 μ2 	 μ2
0, (3.8)

ρ is always the distance of a point to the origin. We define then the Cartesian coordinates (x,
y, z) as

x =
ρμζ

ab
,

y =
ρ

a

√(
μ2 − a2)(ζ2 − a2)

a2 − b2 ,

z =
ρ

b

√(
μ2 − b2)(ζ2 − b2)

b2 − a2 .

(3.9)

By analogy with the azimuthal angle in the previous parameterisation, we can introduce an
angle ϕ defined by

cos2ϕ =
b2 − ζ2
b2 − a2 ,

sin2ϕ =
ζ2 − a2
b2 − a2 ,

such that ζ =
√
a2cos2 ϕ + b2 sin2 ϕ, (3.10)

with (0 ≤ ϕ ≤ 2π).
The surface of the elliptic cone is now defined by μ = μ0. By varying this parameter,

one can see its influence on the shape of the cone in Figure 5.
To express the components of the fluid velocity Vf in the conical elliptic reference

frame, we define three unitary vectors �eρ, �eϕ, �eμ. With

�eρ =
1
hρ

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

∂x

∂ρ

∂y

∂ρ

∂z

∂ρ

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

, �eϕ =
1
hϕ

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

∂x

∂ϕ

∂y

∂ϕ

∂z

∂ϕ

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

, �eμ =
1
hμ

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

∂x

∂μ

∂y

∂μ

∂z

∂μ

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

, (3.11)
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Figure 5: Influence of the parameter μ on the shape of the cone.

hi are the scale factors. One can easily verify that these three angles form an orthonormal
basis, and the velocity of the fluid could be expressed as

�Vf = Vρ · �eρ + Vϕ · �eϕ + Vμ · �eμ. (3.12)

The surface of the elliptic cone is defined by μ = μ0; �eμ appears as the normal vector to the
surface in a given point.

3.2. Laplace’s Equation

With the spheroconal coordinates, the Laplace’s equation (3.1) becomes [16]

(
μ2 − ζ2

)∂2Φ
∂α2

+
(
ρ2 − ζ2

)∂2Φ
∂β2

+
(
ρ2 − μ2

)∂2Φ
∂γ2

= 0 (3.13)

with

α = b
∫ρ

b

dt
√
(t2 − a2)(t2 − b2)

, β = b
∫μ

a

dt
√
(b2 − t2)(t2 − a2)

,

γ = b
∫ ζ

0

dt
√
(a2 − t2)(b2 − t2)

.

(3.14)

To solve the Laplace’s equation (3.13), we use the traditional separation of variables:

Φ
(
ρ, μ, ζ

)
= R
(
ρ
) · Z(μ) · Y (ζ). (3.15)
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Replacing (3.16) in (3.12) gives

μ2 − ζ2
R

d2R

dα2
+
ρ2 − ζ2
Z

d2Z

dβ2
+
ρ2 − μ2

Y

d2Y

dγ2
= 0. (3.16)

This equation can be splitted on three separated differential equations:

d2R

dα2
−
[
n(n + 1)ρ2 −

(
a2 + b2

)
s
]
R = 0,

d2Z

dβ2
+
[
n(n + 1)μ2 −

(
a2 + b2

)
s
]
Z = 0,

d2Y

dγ2
−
[
n(n + 1)ζ2 −

(
a2 + b2

)
s
]
Y = 0.

(3.17)

And by replacing α, β, and γ by their expressions in (3.14), one can obtain

(
ρ2 − a2

)(
ρ2 − b2

)d2R

dρ2
+ r
(
2ρ2 − a2 − b2

)dR
dρ

−
[
n(n + 1)ρ2 −

(
a2 + b2

)
s
]
R = 0,

(
μ2 − a2

)(
μ2 − b2

)d2Z

dμ2
+ μ
(
2μ2 − a2 − b2

)dZ
dμ

−
[
n(n + 1)μ2 −

(
a2 + b2

)
s
]
Z = 0,

(
ζ2 − a2

)(
ζ2 − b2

)d2Y

dζ2
+ ζ
(
2ζ2 − a2 − b2

)dY
dζ

−
[
n(n + 1)ζ2 −

(
a2 + b2

)
s
]
Y = 0.

(3.18)

The solutions of these equations are ellipsoidal harmonics or Lamé’s functions. The Lamé’s
equations are usually written in a general form as

(
x2 − a2

)(
x2 − b2

)d2En
dr2

+ x
(
2x2 − a2 − b2

)dEn
dx

−
[
n(n + 1)x2 −

(
a2 + b2

)
s
]
En = 0. (3.19)

For a given n integer, we can find z = (a2 + b2) · s such that the particular solution of (3.19)
can be written as [18]

Ezn(x) = ψn(x)P
z
n (x). (3.20)

Those solutions are the Lamé’s functions of first kind with

Pzn (x) =
m∑

j=0

ajx
2j is Lamés′s polynomial, (3.21)
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Table 1: Characteristics of lamé’s functions of first kind.

Function Principal product m Number Value of the index i

Kzi
n (x) ψn(x) = xn−2k k k + 1 i = 0, . . . , k

Lzin (x) ψn(x) = x1−n+2k√|x2 − a2| n − k − 1 n − k i = k + 1, . . . , n

Mzi
n (x) ψn(x) = x1−n+2k√|x2 − b2| n − k − 1 n − k i = n + 1, . . . , 2n − k

Nzi
n (x) ψn(x) = xn−2k

√
|(x2 − a2)(x2 − b2)| k − 1 k i = 2n − k + 1, . . . , 2n

Total = 2n + 1.

wherem depends on the integer k, as shown in Table 1:

k =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

n

2
, if n is even,

n − 1
2

, if n is odd.

(3.22)

ψn(x) is called the principal product.
There are four different Lamé’s functions that differ from their characteristics. We

present them in Table 1.
zi is an eigenvalue. We remark that zi corresponds to a value of the parameter z in

(3.19), which determines as many equations as there are values of zi.
For a given value of n, the unknowns are the coefficients aj (3.23) and the parameters

zi. We consider as a first step the functions Kz
n(x); the other functions could be defined

similarly.
If we introduce the expressions (3.20) and (3.21) in (3.19), we obtain the following

recurrence’s relation:

2
(
k − j + 1

)(
2n − 2k + 2j − 1

)

︸ ︷︷ ︸
λj

aj−1 +
[(
a2 + b2

)(
n − 2k + 2j

)(
n − 2k + 2j

) − z
]

︸ ︷︷ ︸
�j

aj

− a2b2(n − 2k + 2j + 2
)(
n − 2k + 2j + 1

)

︸ ︷︷ ︸
σj

aj+1 = 0,

(3.23)

or

λjaj−1 +
(
�j − z

)
aj + σjaj+1 = 0 for j = 0, . . . , k. (3.24)

Knowing that ak+1 = 0, the iteration will stop at rank k. And if we introduce the conditions:

a−1 = ak+1 = 0, (3.25)
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the whole recurrence’s relations (3.28) can be written in a matrix form such as

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

�0 σ0 0 0 0 · · · 0
λ1 �1 σ1 0 0 · · · 0
0 λ2 �2 σ2 0 · · · 0

0 0 λ3 �3 σ3
...

...
...

. . . 0
0 0 · · · 0 λk−1 �k−1 σk−1
0 0 · · · 0 0 λk �k
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⎟
⎟
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⎟
⎠

︸ ︷︷ ︸
Λ

= z ·

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
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⎝
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a1
...
...
...

ak−1
ak

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

︸ ︷︷ ︸
Λ

,
(3.26)

or

ΩKΛ = z ·Λ. (3.27)

ΩK is a square matrix of dimension (k + 1). The vector Λ is an eigenvector associated to the
eigenvalue z.

There are basically (2k + 1) eigenvalues and eigenvectors. In fact we show that it is
possible to find a diagonal matrix D and a symmetric matrix SK such as

SK = D ·ΩK ·D−1, (3.28)

with

D =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

c0 0 0 · · · 0

0 c1 0 · · · ...

0 0 c2 · · · ...
. . . 0

0 0 · · · 0 ck

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, where

⎧
⎪⎨

⎪⎩

c0 = 1,

cj =

√
σj−1
λj

· cj−1 for j = 1, . . . , k.
(3.29)

The matrix Sk is diagonalizable such as Sk = RT ·Δ ·R, whereΔ is diagonal and R is an
orthogonal matrix. Accordingly,ΩK is diagonalizable and admits 2k + 1 separate eigenvalues
zi associated to k + 1 eigenvectors Λi, so k + 1 functions Kzi

n (x) for i = 0, . . . , k.
ΩK has the same eigenvalues than Sk. Knowing that Sk is symmetric, its eigenvalues

zi and eigenvectors Λs are obtained conventionally using the algorithm QR. Then the
eigenvectors of ΩK are given by Λ = D−1Λs.

The computation of the three other functions Lzin (x),M
zi
n (x), andN

zi
n (x) is in the same

manner.
Each of the functions Kzi

n (x), L
zi
n (x), M

zi
n (x), and N

zi
n (x) admits exactly i zeros in the

interval ]a, b[.
For i ≥ k/2, the value of zi corresponding to Kzi

n (x) is equal to zi−1 corresponding to
Nzi−1

n (x), and the values of zi corresponding to Lzin (x) andM
zi
n (x) are identical.
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However, the computation shows a significant numerical instability if the value of n
increases beyond 10. This is due to the computation of the coefficients aj in the expression
(3.21).

A technique was proposed by Dobner and Ritter [29] to stabilize such computation.
They proposed to use another expression of the polynomial Pn such as

Pzn (x) =
m∑

j=0

aj

(

1 − x2

a2

)

. (3.30)

This variation gives a more stable computation.
The product E(r) · E(μ) · E(ν) satisfies the potential equation (3.19) within the elliptic

cone. However for the external space other kinds of solutions are needed which vanish at
infinity.

There is another kind of function Fzn(x) solution of (3.19) which vanishes at infinity.
These functions are called Lamé’s functions of second kind. They are defined by Hobson [16]:

Fn(x) = (2n + 1)En(x) ·
∫∞

x

dt

(En(x))2
√
t2 − a2

√
t2 − b2

. (3.31)

For each value of Ezin (x) we have a function Fzin (x). We have then (2k + 1) Lamé’s functions
of second kind.

Recalling that surface of the elliptic cone is given by the relation μ = μ0, the spatial
velocity potential flow Φ, solution of (3.13), is then [16]

Φ =
∞∑

n=0

2n+1∑

i=1

An,i

Fzin
(
μ
)

Fzin
(
μ0
)Ezin
(
ρ
) · Ezin (ζ), (3.32)

where An,i are constants to be defined using the boundary conditions.

3.3. Boundary Condition

In addition to the relations (3.1)–(3.3) the velocity potential flow Φ verifies a kinematical
boundary condition on the surface of the elliptic cone such as

∂Φf

∂no
= ∇Φf · no = νT1 · no. (3.33)

nO is an outward normal vector to the surface:

no =
(
∂x

∂μ
,
∂y

∂μ
,
∂z

∂μ

)T
. (3.34)
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The relation (3.33) can then be written as

u
∂x

∂μ
+ v

∂y

∂μ
+w

∂z

∂μ
= ρ · g(ζ) = ∂Φf

∂μ
(3.35)

with

∂x

∂μ
=
ρζ

ab
,

∂y

∂μ
=
ρμ

a

√√
√
√

(
ζ2 − a2)

(a2 − b2)(μ2 − a2) ,

∂z

∂μ
=
ρμ

b

√√√
√

(
ζ2 − b2)

(b2 − a2)(μ2 − b2) ,

g(ζ) =
u · ζ
ab

+
v · μ0

a

√√√
√

(
ζ2 − a2)

(a2 − b2)(μ2
0 − a2

) +
w · μ0

b

√√√
√

(
ζ2 − b2)

(b2 − a2)(μ2
0 − b2

) .

(3.36)

Let us denote k = a/b. And suppose that 0 ≺ α ≺ K and 0 ≺ γ ≺ 4K with K is the complete
elliptic integral F(k, π/2).

For a function of α, β, and γ on the boundary surface μ = μ0 we will have

∫
f
(
α, β, γ

)
dS =

1
b2

∫K

0
dα

∫4K

0
f
(
α, β0, γ

)(
ρ2 − ζ2

)√(
ρ2 − μ2

)(
ζ2 − μ2

)
dγ. (3.37)

We can then solve the problem for the potential Φ in a given point in the space with the
boundary conditions defined on the surface of the airship μ = μ0.

The relations (3.32) and (3.35) give

∂Φ
∂μ

∣∣∣∣
μ=μ0

=
∞∑

n=0

2n+1∑

i=1

An,iE
zi
n

(
ρ
)
Ezin (ζ)

Ḟzin
(
μ0
)

Fzin
(
μ0
) = ρ · g(ζ). (3.38)

Using (3.37) and (3.38) we obtain An,i and then Φ and by the wayMaij .
We can now deduce the different components of the mass matrixM.
Finally, the vector of gyroscopic forces QG can then be expressed in a developed form

as

QG =

⎛

⎜⎜⎜⎜⎜⎜⎜
⎝

M22vr −M33qw
M33pw −M11ur
M11uq −M22vp
−M46pq + (M55 −M66)qr
M46p

2 + (M66 −M44)pr −M46r
2

(M44 −M55)pq +M46qr

⎞

⎟⎟⎟⎟⎟⎟⎟
⎠

. (3.39)
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This leads to the developed dynamic model:

M11 · u̇ =
4∑

i=1

‖Fi‖cγi · cβi −
(
mg − Bu

)
sθ −M33q ·w +M22r · v,

M22 · v̇ =
4∑

i=1

‖Fi‖sγi +
(
mg − Bu

)
sφ · cθ +M33p ·w −M11r · u,

M33 · ẇ = −
4∑

i=1

‖Fi‖cγi · sβi +
(
mg − Bu

)
cφ · cθ +M11u · q −M22v · p,

(3.40a)

ṗ =
1

(
M44M66 −M2

46

)

×
{

−M66c
4∑

i=1

‖Fi‖sγi + (M46 −M66)b1
(‖F1‖cγ1 · sβ1 − ‖F2‖cγ2 · sβ2

)

+ (M46 −M66)b3
(‖F3‖cγ3 · sβ3 − ‖F4‖cγ4 · sβ4

)

+M46a
(‖F4‖sγ4 + ‖F3‖sγ3 − ‖F1‖sγ1 − ‖F2‖sγ2

) −M66BuzGsφ · cθ

−M46(M44 −M55 +M66)pq +
(
M55M66 −M2

46 −M2
66

)
qr

}

,

M55 · q̇ = −c
4∑

i=1

‖Fi‖cγi · cβi + a
(‖F4‖cγ4 · sβ4 + ‖F3‖cγ3 · sβ3 − ‖F1‖cγ1 · sβ1 − ‖F2‖cγ2 · sβ2

)

− BuzG · sθ +M46p
2 + (M66 −M44)pr +M46r

2,

ṙ =
1

(
M44M66 −M2

46

)

×
{

M46 · c
4∑

i=1

‖Fi‖sγi + (M46 −M44)b1
(‖F1‖cγ1 · sβ1 − ‖F2‖cγ2 · sβ2

)

+ (M46 −M44)b3
(‖F3‖cγ3 · sβ3 − ‖F4‖cγ4 · sβ4

)

−M44a
(‖F4‖sγ4 + ‖F3‖sγ3 − ‖F1‖sγ1 − ‖F2‖sγ2

)
+M46BuzGsφ · cθ

+
(
M2

44 +M
2
46 −M44M55

)
pq +M46(M44 −M55 +M66)qr

}

.

(3.40b)

4. Results and Discussion

In this section we present the computation results of the added mass matrix of the MC500.
Since any comparison with a similarly shaped airship is impossible at present, we conducted
the calculation by the geometric method that we present here briefly in order to compare the
results of our method.

Geometric method is well known and discussed extensively elsewhere [6, 8, 12, 20].
In a 2D analysis the planar coefficientsmij are established for the standard shapes (rectangle,
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Table 2: Comparison between the two methods of computation.

Added masses terms M11
(kg)

M22
(kg)

M33
(kg)

M44
(kg·m2)

M55
(kg·m2)

M66
(kg·m2)

M46
(kg·m2)

Velocity potential method 583 620 687 9413 10456 18700 160
Geometric method 648 633 708 9973 11920 19341 168

circle, ellipse, etc.). Following the exhaustive study of Brenner [8], we model our flying wing
as a truncated cone (T)with elliptic section.

The airship is divided into a dozen cross-sections to optimize the inclusion of changes
in transverse dimensions in the 3D calculation.

The computing of the terms of the added masses matrix can be seen, for example, as

Ma11 =
∫

(T)
m11
(
y, z
)
dx, (4.1)

wherem11 is a 2D added mass coefficient for the forward motion.
According to the large difference of size between the diagonal and off-diagonal terms,

we will neglect these last terms, keeping only the termMa46.

4.1. Results

We present here some characteristics of the geometry of the airship: zG = 0.5m; a = 2.5m;
b = 6.5m; c = 2m; b1 = 5.4m; b3 = 6.5m; volume V = 500m3. Numerical results are presented
in Table 2.

4.2. Discussion

The first results described here show that thanks to the application of the velocity potential
flow theory to this unconventional airship it is possible to obtain reasonable values of the
addedmassesmatrix. To our knowledge, this is the first attempt to compute the addedmasses
using this technique for an elliptic cone-shaped airship.

Some differences can be observed between the two methods to certain terms of the
addedmassesmatrix. Experimental studies on the prototype nearing completionwill confirm
the accuracy of our method.

Although some geometric assumptions are made, it nonetheless demonstrates the
capability of this method to compute interesting values of the added masses matrix.

Validation of our technique will allow a good estimation of the added masses matrix
in preprocessing phase for this kind of airship. The development of an airship is usually
done by iterative techniques (model, stability, propulsion, sizing of the control, rudders, etc.);
obtaining a fairly accurate aerodynamic model early design allows better refinement of the
final model the airship.
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5. Conclusion

In this paper a dynamic model of an unconventional airship is presented. The original shape
of the careen induces a necessary reformulation of the dynamic and aerodynamic study of
these flying objects. A special focus is put on the computation of the addedmasses. According
with the original shape, an assumption of elliptic cone was made to define the careen. The
ellipsoidal harmonics and the Lamé’s equations are revisited for the analysis of the velocity
potential flow, according to the constraints of fluid-structure interaction. The first results seem
promising.

Nomenclature

η1 = [x0, y0, z0]
T : Vector position of the origin expressed in the fixed reference

frame R0

η2 = [φ, θ, ψ]T : Vector orientation of the pointer Rm in regards to R and given by
the Euler angles

η = [η1, η2]
T : Vector attitude compared to R0

η̇ : Velocity vector compared to R0 expressed in R0

ν1 = [u, v,w]T : Velocity vector expressed in Rm

ν2 = [p, q, r]T : Vector of angular velocities expressed in Rm

ν = [ν1, ν2]
T : The 6 × 1 velocity vector

m : The mass of the airship
I3 : The identity matrix 3 × 3.

References

[1] L. Liao and I. Pasternak, “A review of airship structural research and development,” Progress in
Aerospace Sciences, vol. 45, no. 4-5, pp. 83–96, 2009.

[2] Y. Li, M. Nahon, and I. Sharf, “Airship dynamics modeling: a literature review,” Progress in Aerospace
Sciences, vol. 47, no. 3, pp. 217–239, 2011.

[3] Y. Li and M. Nahon, “Modeling and simulation of airship dynamics,” Journal of Guidance, Control, and
Dynamics, vol. 30, no. 6, pp. 1691–1700, 2007.

[4] H. Jex and P. Gelhausen, “Control response measurements of the Skyship 500 Airship,” in
Inproceedings of the 6th AIAA Conference Lighter than Air Technology, pp. 130–141, New York, NY, USA,
1985.

[5] S. Bennaceur, N. Azouz, and D. Boukraa, “An efficient modelling of flexible airships: lagrangian
approach,” in Proseedings of the ESDA 2006 on ASME Internation Conference, Torino, Italy, 2006.

[6] H. Lamb, On the Motion of Solids Through a Liquid. HydrodynAmics, Dover, New York, NY, USA, 6th
edition, 1945.

[7] W. Meyerho, “Added masses of thin rectangular plates calculated from potential theory,” Journal of
Ship Research, vol. 14, no. 2, pp. 100–111, 1970.

[8] C. H. Brenner, “A review of added mass and fluid inertial forces,” Report of the Naval Civil Engineer-
ing Laboratory CR 82. 10, 1982.

[9] M. Munk, “Some tables of the factor of apparent additional mass,” Tech. Rep. NACA-TN-197, 1924.
[10] N. Bessert and O. Frederich, “Nonlinear airship aeroelasticity,” Journal of Fluids and Structures, vol. 21,

no. 8, pp. 731–742, 2005.
[11] K. El Omari, E. Schall, B. Koobus, andA. Dervieux, “Inviscid flow calculation around flexible airship,”

Mathematical Symposium Garcia De GalDeano, vol. 31, pp. 535–544, 2004.
[12] A. Korotkin, Added Masses of Ship Structures, Springer, New York, NY, USA, 2009.
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