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By means of the fixed point theory in cones, we investigate the existence of positive solutions
for the following second-order singular differential equations with a negatively perturbed term:
−u′′(t) = λ[f(t, u(t)) − q(t)], 0 < t < 1, αu(0) − βu′(0) =

∫1
0 u(s)dξ(s), γu(1) + δu′(1) =

∫1
0 u(s)dη(s),

where λ > 0 is a parameter; f : (0, 1) × (0,∞) → [0,∞) is continuous; f(t, x) may be singular at
t = 0, t = 1, and x = 0, and the perturbed term q : (0, 1) → [0,+∞) is Lebesgue integrable and may
have finitely many singularities in (0, 1), which implies that the nonlinear term may change sign.

1. Introduction

In this paper, we are concerned with positive solutions of the following second-order singular
semipositone boundary value problem (BVP):

−u′′(t) = λ
[
f(t, u(t)) − q(t)

]
, 0 < t < 1,

αu(0) − βu′(0) =
∫1

0
u(s)dξ(s),

γu(1) + δu′(1) =
∫1

0
u(s)dη(s),

(1.1)

where λ > 0 is a parameter, α, γ ≥ 0, β, δ > 0 are constants such that ρ = αγ + αδ + βγ > 0,
and the integrals in (1.1) are given by Stieltjes integral with a signed measure, that is, ξ, η are
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suitable functions of bounded variation, q : (0, 1) → [0,+∞) is a Lebesgue integral and may
have finitely many singularities in [0, 1], f : (0, 1) × (0,∞) → [0,∞) is continuous, f(t, x)
may be singular at t = 0, t = 1, and x = 0.

Semipositone BVPs occur in models for steady-state diffusion with reactions [1], and
interest in obtaining conditions for the existence of positive solutions of such problems has
been ongoing for many years. For a small sample of such work, we refer the reader to the
papers of Agarwal et al. [2, 3], Kosmatov [4], Lan [5–7], Liu [8], Ma et al. [9, 10], and Yao
[11]. In [12], the second-order m-point BVP,

−u′′(t) = λf(t, u(t)), t ∈ (0, 1),

u′(0) =
m−2∑

i=1

aiu
′(ξi), u(1) =

m−2∑

i=1

biu(ξi),
(1.2)

is studied, where ai, bi > 0 (i = 1, 2, . . . , m − 2), 0 < ξ1 < ξ2 < · · · < ξm−2 < 1, λ is a positive
parameter. By using the Krasnosel’skii fixed point theorem in cones, the authors established
the conditions for the existence of at least one positive solution to (1.2), assuming that 0 <∑m−2

i=1 ai < 1, 0 <
∑m−2

i=1 bi < 1, f : [0, 1] × [0,+∞) → (−∞,+∞) is continuous, and there exists
A > 0 such that f(t, u) ≥ −A for (t, u) ∈ [0, 1] × [0,+∞). If the constant A is replaced by any
continuous functionA(t) on [0, 1], f also has a lower bound and the existence results are still
true.

Recently, Webb and Infante [13] studied arbitrary-order semipositone boundary value
problems. The existence of multiple positive solutions is established via a Hammerstein inte-
gral equation of the form:

u(t) =
∫1

0
k(t, s)g(s)f(s, u(s))ds, (1.3)

where k is the corresponding Green function, g ∈ L1[0, 1] is nonnegative and may have
pointwise singularities, f : [0, 1]×[0,+∞) → (−∞,+∞) satisfies the Carathéodory conditions
and f(t, u) ≥ −A for some A > 0. Although A is a constant, because of the term g, [13]
includes nonlinearities that are bounded below by an integral function. It is worthmentioning
that the boundary conditions cover both local and nonlocal types. Nonlocal boundary con-
ditions are quite general, involving positive linear functionals on the space C[0, 1], given by
Stieltjes integrals.

For the cases where the nonlinear term takes only nonnegative values, the existence of
positive solutions of nonlinear boundary value problems with nonlocal boundary conditions,
including multipoint and integral boundary conditions, has been extensively studied by
many researchers in recent years [14–25]. Kong [17] studied the second-order singular BVP:

u′′(t) + λf(t, u(t)) = 0, t ∈ (0, 1),

u(0) =
∫1

0
u(s)dξ(s),

u(1) =
∫1

0
u(s)dη(s),

(1.4)
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where λ is a positive parameter, f : (0, 1)×(0,+∞) → [0,+∞) is continuous, ξ(s) and η(s) are
nondecreasing, and the integrals in (1.4) are Riemann-Stieltjes integrals. Sufficient conditions
are obtained for the existence and uniqueness of a positive solution by using the mixed
monotone operator theory.

Inspired by the above work, the purpose of this paper is to establish the existence of
positive solutions to BVP (1.1). By using the fixed point theorem on a cone, some new exis-
tence results are obtained for the case where the nonlinearity is allowed to be sign changing.
Wewill address here that the problem tackled has several new features. Firstly, as q ∈ L1[0, 1],
the perturbed effect of q on f may be so large that the nonlinearity may tend to negative
infinity at some singular points. Secondly, the BVP (1.1) possesses singularity, that is, the
perturbed term q may has finitely many singularities in [0, 1], and f(t, x) is allowed to be
singular at t = 0, t = 1, and x = 0. Obviously, the problem in question is different from those
in [2–13]. Thirdly,

∫1
0 u(s)dξ(s) and

∫1
0 u(s)dη(s) denote the Stieltjes integrals where ξ, η are of

bounded variation, that is, dξ and dη can change sign. This includes the multipoint problems
and integral problems as special cases.

The rest of this paper is organized as follows. In Section 2, we present some lemmas
and preliminaries, and we transform the singularly perturbed problem (1.1) to an equivalent
approximate problem by constructing a modified function. Section 3 gives the main results
and their proofs. In Section 4, two examples are given to demonstrate the validity of our main
results.

Let K be a cone in a Banach space E. For 0 < r < R < +∞, let Kr = {x ∈ K : ‖x‖ < r},
∂Kr = {x ∈ K : ‖x‖ = r}, and Kr,R = {x ∈ K : r ≤ ‖x‖ ≤ R}. The proof of the main theorem of
this paper is based on the fixed point theory in cone. We list here one lemma [26, 27] which
is needed in our following argument.

Lemma 1.1. LetK be a positive cone in real Banach space E, T : Kr,R → K is a completely continu-
ous operator. If the following conditions hold:

(i) ‖Tx‖ ≤ ‖x‖ for x ∈ ∂KR,

(ii) there exists e ∈ ∂K1 such that x /= Tx +me for any x ∈ ∂Kr and m > 0,

then, T has a fixed point in Kr,R.

Remark 1.2. If (i) and (ii) are satisfied for x ∈ ∂Kr and x ∈ ∂KR, respectively, then Lemma 1.1
is still true.

2. Preliminaries and Lemmas

Denote

φ1(t) =
1
ρ

(
δ + γ(1 − t)

)
, φ2(t) =

1
ρ

(
β + αt

)
, e(t) = G(t, t), t ∈ [0, 1],

k1 = 1 −
∫1

0
φ1(t)dξ(t), k2 =

∫1

0
φ2(t)dξ(t), k3 =

∫1

0
φ1(t)dη(t),

k4 = 1 −
∫1

0
φ2(t)dη(t), k = k1k4 − k2k3, σ =

ρ
(
α + β

)(
γ + δ

) ,

(2.1)
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where

G(t, s) =
1
ρ

⎧
⎨

⎩

(
β + αs

)(
δ + γ(1 − t)

)
, 0 ≤ s ≤ t ≤ 1,

(
β + αt

)(
δ + γ(1 − s)

)
, 0 ≤ t ≤ s ≤ 1.

(2.2)

Obviously,

e(t) = ρφ1(t)φ2(t) =
1
ρ

(
β + αt

)(
δ + γ(1 − t)

)
, t ∈ [0, 1], (2.3)

σe(t)e(s) ≤ G(t, s) ≤ e(s) (or e(t)) ≤ σ−1, t, s ∈ [0, 1]. (2.4)

Throughout this paper, we adopt the following assumptions.

(H1) k1, k4 ∈ (0, 1], k2 ≥ 0, k3 ≥ 0, k > 0, and

Gξ(s) =
∫1

0
G(t, s)dξ(t) ≥ 0, Gη(s) =

∫1

0
G(t, s)dη(t) ≥ 0, s ∈ [0, 1]. (2.5)

(H2) q : (0, 1) → [0,+∞) is a Lebesgue integral and
∫1
0 q(t)dt > 0.

(H3) For any (t, x) ∈ (0, 1) × (0,+∞),

0 ≤ f(t, x) ≤ p(t)
(
g(x) + h(x)

)
, (2.6)

where p ∈ C(0, 1) with p > 0 on (0, 1) and
∫1
0 p(t)dt < +∞, g > 0 is continuous

and nonincreasing on (0,+∞), h ≥ 0 is continuous on [0,+∞), and for any constant
r > 0,

0 <

∫1

0
p(s)g(re(s))ds < +∞. (2.7)

Remark 2.1. If dξ and dη are two positive measures, then the assumption (H1) can be replaced
by a weaker assumption:

(H ′
1) k1 > 0, k4 > 0, k > 0.

Remark 2.2. It follows from (2.4) and (H3) that

∫1

0
e(s)p(s)g(re(s))ds ≤ σ−1

∫1

0
p(s)g(re(s))ds < +∞. (2.8)
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For convenience, in the rest of this paper, we define several constants as follows:

L1 = 1 +
k4
(
γ + δ

)
+ k3

(
α + β

)

ρk

∫1

0
dξ(τ) +

k2
(
γ + δ

)
+ k1

(
α + β

)

ρk

∫1

0
dη(τ),

L2 = σ

[

1 +
k4
(
γ + δ

)
+ k3

(
α + β

)

ρk

∫1

0
e(τ)dξ(τ) +

k2
(
γ + δ

)
+ k1

(
α + β

)

ρk

∫1

0
e(τ)dη(τ)

]

,

L3 = 1 +
k4δ + k3β

kβδ

∫1

0
e(τ)dξ(τ) +

k2δ + k1β

kβδ

∫1

0
e(τ)dη(τ).

(2.9)

Remark 2.3. If x ∈ C[0, 1] ∩ C2(0, 1) satisfies (1.1), and x(t) > 0 for any t ∈ (0, 1), then we say
that x is a C[0, 1] ∩ C2(0, 1) positive solution of BVP (1.1).

Lemma 2.4. Assume that (H1) holds. Then, for any y ∈ L1[0, 1], the problem,

−u′′(t) = y(t), t ∈ (0, 1),

αu(0) − βu′(0) =
∫1

0
u(s)dξ(s),

γu(1) + δu′(1) =
∫1

0
u(s)dη(s),

(2.10)

has a unique solution

u(t) =
∫1

0
H(t, s)y(s)ds, (2.11)

where

H(t, s) = G(t, s) +
k4φ1(t) + k3φ2(t)

k

∫1

0
G(τ, s)dξ(τ) +

k2φ1(t) + k1φ2(t)
k

∫1

0
G(τ, s)dη(τ).

(2.12)

Proof. The proof is similar to Lemma 2.2 of [28], so we omit it.

Lemma 2.5. Suppose that (H1) holds, then Green’s function H(t, s) defined by (2.12) possesses the
following properties:

(i) H(t, s) ≤ L1e(s), t, s ∈ [0, 1];

(ii) L2e(t)e(s) ≤ H(t, s) ≤ L3e(t), t, s ∈ [0, 1],

where L1, L2, and L3 are defined by (2.9).
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Proof. (i) It follows from (2.4) that

H(t, s) ≤ e(s) +
k4
(
γ + δ

)
+ k3

(
α + β

)

ρk

∫1

0
e(s)dξ(τ)

+
k2
(
γ + δ

)
+ k1

(
α + β

)

ρk

∫1

0
e(s)dη(τ)

= L1e(s), t, s ∈ [0, 1].

(2.13)

(ii) By the monotonicity of φ1, φ2 and the definition of G(t, s), we have

e(t)
α + β

≤ φ1(t) =
e(t)

ρφ2(t)
=

e(t)
αt + β

≤ e(t)
β

, t ∈ [0, 1],

e(t)
γ + δ

≤ φ2(t) =
e(t)

ρφ1(t)
=

e(t)
γ(1 − t) + δ

≤ e(t)
δ

, t ∈ [0, 1].

(2.14)

By (2.4) and the left-hand side of inequalities (2.14), we have

H(t, s) ≥ σe(t)e(s) + σe(t)e(s)
k4/

(
α + β

)
+ k3/

(
γ + δ

)

k

∫1

0
e(τ)dξ(τ)

+ σe(t)e(s)
k2/

(
α + β

)
+ k1/

(
γ + δ

)

k

∫1

0
e(τ)dη(τ)

= σe(t)e(s)

[

1 +
k4
(
γ + δ

)
+ k3

(
α + β

)

ρk

∫1

0
e(τ)dξ(τ)

+
k2
(
γ + δ

)
+ k1

(
α + β

)

ρk

∫1

0
e(τ)dη(τ)

]

= L2e(t)e(s), t, s ∈ [0, 1].

(2.15)

Similarly, by (2.4) and the right-hand side of inequalities (2.14), we have

H(t, s) = G(t, s) +
k4φ1(t) + k3φ2(t)

k

∫1

0
G(τ, s)dξ(τ) +

k2φ1(t) + k1φ2(t)
k

∫1

0
G(τ, s)dη(τ)

≤ e(t) + e(t)

[
k4/β + k3/δ

k

∫1

0
G(τ, s)dξ(τ) +

k2/β + k1/δ

k

∫1

0
G(τ, s)dη(τ)

]

≤ e(t) + e(t)

[
k4δ + k3β

kβδ

∫1

0
e(τ)dξ(τ) +

k2δ + k1β

kβδ

∫1

0
e(τ)dη(τ)

]
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= e(t)

[

1 +
k4δ + k3β

kβδ

∫1

0
e(τ)dξ(τ) +

k2δ + k1β

kβδ

∫1

0
e(τ)dη(τ)

]

= L3e(t), t, s ∈ [0, 1].

(2.16)

The proof of Lemma 2.5 is completed.

Lemma 2.6. Suppose that (H1) and (H2) hold. Then, the boundary value problem,

−w′′(t) = 2λp(t), t ∈ (0, 1),

αw(0) − βw′(0) =
∫1

0
w(s)dξ(s),

γw(1) + δw′(1) =
∫1

0
w(s)dη(s),

(2.17)

has unique solution

w(t) = 2λ
∫1

0
H(t, s)p(s)ds, (2.18)

which satisfies

w(t) ≤ 2λL3e(t)
∫1

0
p(s)ds, t ∈ [0, 1]. (2.19)

Proof. It follows from (2.11), Lemma 2.5, (H1) and (H2) that (2.18) and (2.19) hold.

Let X = C[0, 1] be a real Banach space with the norm ‖x‖ = maxt∈[0,1]|x(t)| for x ∈ X.
We let

K = {x ∈ X : x is concave on [0, 1], x(t) ≥ Λe(t)‖x‖ for t ∈ [0, 1]}, (2.20)

where Λ = L2/L1. Clearly, K is a cone of X.
For any u ∈ X, let us define a function [·]+:

[u(t)]+ =

⎧
⎨

⎩

u(t), u(t) ≥ 0,

0, u(t) < 0.
(2.21)
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Next, we consider the following approximate problem of (1.1):

−x′′(t) = λ
[
f
(
t, [x(t) −w(t)]+

)
+ q(t)

]
, t ∈ (0, 1),

αx(0) − βx′(0) =
∫1

0
x(s)dξ(s),

γx(1) + δx′(1) =
∫1

0
x(s)dη(s).

(2.22)

Lemma 2.7. If x ∈ C[0, 1] ∩ C2(0, 1) is a positive solution of problem (2.22) with x(t) ≥ w(t) for
any t ∈ [0, 1], then x−w is a positive solution of the singular semipositone differential equation (1.1).

Proof. If x is a positive solution of (2.22) such that x(t) ≥ w(t) for any t ∈ [0, 1], then from
(2.22) and the definition of [u(t)]+, we have

−x′′(t) = λ
[
f(t, x(t) −w(t)) + q(t)

]
, t ∈ (0, 1),

αx(0) − βx′(0) =
∫1

0
x(s)dξ(s),

γx(1) + δx′(1) =
∫1

0
x(s)dη(s).

(2.23)

Let u = x −w, then u′′ = x′′ −w′′, which implies that

−x′′ = −u′′ −w′′ = −u′′ + 2λq(t). (2.24)

Thus, (2.23) becomes

−u′′(t) = λ
[
f(t, u(t)) − q(t)

]
, t ∈ (0, 1),

αu(0) − βu′(0) =
∫1

0
u(s)dξ(s),

γu(1) + δu′(1) =
∫1

0
u(s)dη(s),

(2.25)

that is, x −w is a positive solution of (1.1). The proof is complete.

To overcome singularity, we consider the following approximate problem of (2.22):

−x′′(t) = λ
[
f
(
t, [x(t) −w(t)]+ + n−1

)
+ q(t)

]
, t ∈ (0, 1),

αx(0) − βx′(0) =
∫1

0
x(s)dξ(s),

γx(1) + δx′(1) =
∫1

0
x(s)dη(s),

(2.26)
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where n is a positive integer. For any n ∈ N, let us define a nonlinear integral operator Tλ
n :

K → X as follows:

Tλ
nx(t) = λ

∫1

0
H(t, s)

[
f
(
s, [x(s) −w(s)]+ + n−1

)
+ q(s)

]
ds. (2.27)

It is obvious that solving (2.26) in C[0, 1] ∩ C2(0, 1) is equivalent to solving the fixed point
equation Tλ

nx = x in the Banach space C[0, 1].

Lemma 2.8. Assume that (H1)–(H3) hold, then for each n ∈ N, λ > 0, R > r ≥ 4λL3Λ−1 ∫1
0 q(s)ds,

Tλ
n : Kr,R → K is a completely continuous operator.

Proof. Let n ∈ N be fixed. For any x ∈ K, by (2.27) we have

(
Tλ
nx
)′′
(t) = −λ

[
f
(
s, [x(s) −w(s)]+ + n−1

)
+ q(s)

]
≤ 0,

Tλ
nx(0) = λ

∫1

0
H(0, s)

[
f
(
s, [x(s) −w(s)]+ + n−1

)
+ q(s)

]
ds ≥ 0,

Tλ
nx(1) = λ

∫1

0
H(1, s)

[
f
(
s, [x(s) −w(s)]+ + n−1

)
+ q(s)

]
ds ≥ 0,

(2.28)

which implies that Tλ
n is nonnegative and concave on [0, 1]. For any x ∈ K and t ∈ [0, 1], it

follows from Lemma 2.5 that

Tλ
nx(t) = λ

∫1

0
H(t, s)

[
f
(
s, [x(s) −w(s)]+ + n−1

)
+ q(s)

]
ds

≤ λL1

∫1

0
e(s)

[
f
(
s, [x(s) −w(s)]+ + n−1

)
+ q(s)

]
ds.

(2.29)

Thus,

∥∥∥Tλ
nx
∥∥∥ ≤ λL1

∫1

0
e(s)

[
f
(
s, [x(s) −w(s)]+ + n−1

)
+ q(s)

]
ds. (2.30)

On the other hand, from Lemma 2.5, we also obtain

Tλ
nx(t) = λ

∫1

0
H(t, s)

[
f
(
s, [x(s) −w(s)]+ + n−1

)
+ q(s)

]
ds

≥ λL2e(t)
∫1

0
e(s)

[
f
(
s, [x(s) −w(s)]+ + n−1

)
+ q(s)

]
ds.

(2.31)

So,

Tλ
nx(t) ≥ Λe(t)

∥∥∥Tλ
nx
∥∥∥, t ∈ [0, 1]. (2.32)

This yields that Tλ
n (K) ⊂ K.
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Next, we prove that Tλ
n : Kr,R → K is completely continuous. Suppose xm ∈ Kr,R and

x0 ∈ Kr,R with ‖xm − x0‖ → 0 (m → ∞). Notice that

∣
∣[xm(s) −w(s)]+ − [x0(s) −w(s)]+

∣
∣

=
∣
∣
∣
∣
|xm(s) −w(s)| + xm(s) −w(s)

2
− |x0(s) −w(s)| + x0(s) −w(s)

2

∣
∣
∣
∣

=
∣
∣
∣
∣
|xm(s) −w(s)| − |x0(s) −w(s)|

2
+
xm(s) − x0(s)

2

∣
∣
∣
∣

≤ |xm(s) − x0(s)|.

(2.33)

This, together with the continuity of f , implies

∣∣∣f
(
s, [xm(s) −w(s)]+ + n−1

)
+ q(s) −

[
f
(
s, [x0(s) −w(s)]+ + n−1

)
+ q(s)

]∣∣∣

=
∣∣∣f
(
s, [xm(s) −w(s)]+ + n−1

)
− f
(
s, [x0(s) −w(s)]+ + n−1

)∣∣∣ −→ 0, m −→ ∞.

(2.34)

Using the Lebesgue dominated convergence theorem, we have

∥∥∥Tλ
nxm − Tλ

nx0

∥∥∥

≤λL1

∫1

0
e(s)

∣∣∣f
(
s, [xm(s) −w(s)]++n−1

)
−f
(
s, [x0(s) −w(s)]++n−1

)∣∣∣ ds −→ 0, m −→ ∞.

(2.35)

So, Tλ
n : Kr,R → K is continuous.
Let B ⊂ Kr,R be any bounded set, then for any x ∈ B, we have x ∈ K, r ≤ ‖x‖ ≤ R.

Therefore, we have

[x(t) −w(t)]+ ≤ x(t) ≤ ‖x‖ ≤ R, t ∈ [0, 1],

x(t) −w(t) ≥ x(t) − 2λL3e(t)
∫1

0
q(s)ds ≥ x(t) − 2λL3

x(t)
Λr

∫1

0
q(s)ds

≥ 1
2
x(t) ≥ 1

2
rΛe(t) > 0, t ∈ [0, 1].

(2.36)

By (H3), we have

Lr :=
∫1

0
p(s)g

(
1
2
Λre(s)

)
ds < +∞. (2.37)

It is easy to show that Tλ
n (B) is uniformly bounded. In order to show that Tλ

n is a compact
operator, we only need to show that Tλ

n (B) is equicontinuous. By the continuity of H(t, s) on
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[0, 1]× [0, 1], for any ε > 0, there exists δ1 > 0 such that for any t1, t2, s ∈ [0, 1] and |t1− t2| < δ1,
we have

|H(t1, s) −H(t2, s)| < ε. (2.38)

By (2.36)–(2.37), and (2.27), we have

∣
∣
∣Tλ

nx(t1) − Tλ
nx(t2)

∣
∣
∣ ≤ λ

∫1

0
|H(t1, s) −H(t2, s)|

[
f
(
s, [x(s) −w(s)]+ + n−1

)
+ q(s)

]
ds

< ελ

∫1

0

[
f
(
s, [x(s) −w(s)]+ + n−1

)
+ q(s)

]
ds

≤ ελ

∫1

0

[
p(s)

(
g
(
[x(s) −w(s)]+ + n−1

)
+ h
(
[x(s) −w(s)]+ + n−1

))

+q(s)
]
ds

≤ ελ

[

Lr + (1 + h∗(R))
∫1

0

[
p(s) + q(s)

]
ds

]

,

(2.39)

where

h∗(r) = max
y∈[0,1+r]

h
(
y
)
. (2.40)

This means that Tλ
n (B) is equicontinuous. By the Arzela-Ascoli theorem, Tλ

n (B) is a relatively
compact set. Now since λ and n are given arbitrarily, the conclusion of this lemma is valid.

3. Main Results

Theorem 3.1. Assume that conditions (H1)–(H3) are satisfied. Further assume that the following
condition holds.

(H4) There exists an interval [a, b] ⊂ (0, 1) such that

lim inf
u→+∞

min
t∈[a,b]

f(t, u)
u

= +∞. (3.1)

Then, there exists λ∗ > 0 such that the BVP (1.1) has at least one positive solution u(t) ∈ C[0, 1] ∩
C2(0, 1) provided λ ∈ (0, λ∗). Furthermore, the solution also satisfies u(t) ≥ l̃e(t) for some positive
constant l̃.
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Proof. Take r > 4L3Λ−1 ∫1
0 q(s)ds. Let

λ∗ = min

⎧
⎨

⎩
1,

r

2L1
∫1
0 e(s)p(s)g((1/2)rΛe(s))ds

,
r

2L1(h∗(r) + 1)
∫1
0 e(s)

[
p(s) + q(s)

]
ds

⎫
⎬

⎭
,

(3.2)

where h∗ is defined by (2.40). For any λ ∈ (0, λ∗), x ∈ ∂Kr , noticing that λ∗ ≤ 1, we have

[x(t) −w(t)]+ ≤ x(t) ≤ ‖x‖ ≤ r, t ∈ [0, 1],

x(t) −w(t) ≥ x(t) − 2λL3e(t)
∫1

0
q(s)ds ≥ x(t) − 2L3e(t)

∫1

0
q(s)ds

≥ x(t) − 2L3
x(t)
Λr

∫1

0
q(s)ds ≥ 1

2
x(t) ≥ 1

2
rΛe(t) > 0, t ∈ [0, 1].

(3.3)

For any λ ∈ (0, λ∗), by (3.3), we have

∣∣∣Tλ
nx(t)

∣∣∣ = λ

∫1

0
H(t, s)

[
f
(
s, [x(s) −w(s)]+ + n−1

)
+ q(s)

]
ds

≤ λL1

∫1

0
e(s)

[
p(s)

(
g
(
[x(s) −w(s)]+ + n−1

)
+ h
(
[x(s) −w(s)]+ + n−1

))
+ q(s)

]
ds

≤ λL1

∫1

0
e(s)

[
p(s)

(
g

(
1
2
rΛe(s)

)
+ h∗(r)

)
+ q(s)

]
ds

≤ λL1

∫1

0
e(s)p(s)g

(
1
2
rΛe(s)

)
ds + λL1(h∗(r) + 1)

∫1

0
e(s)

[
p(s) + q(s)

]
ds

≤ r

2
+
r

2
= r,

(3.4)

which means that

∥∥∥Tλ
nx
∥∥∥ ≤ ‖x‖, x ∈ ∂Kr. (3.5)

On the other hand, choose a real number M > 0 such that λML2l
2
1Λ
∫b
a e(s)ds > 2,

where l1 = min0≤t≤1e(t) > 0, L2 is defined by (2.9). By (H4), there exists N > 0 such that for
any t ∈ [a, b], we have

f(t, u) ≥ Mu, u ≥ N. (3.6)



Abstract and Applied Analysis 13

Take R > max{r, 2N/l1Λ}. Next, we take ϕ1 ≡ 1 ∈ ∂K1 = {x ∈ K : ‖x‖ = 1}, and for any
x ∈ ∂KR, m > 0, n ∈ N, we will show

x /= Tλ
nx +mϕ1. (3.7)

Otherwise, there exist x0 ∈ ∂KR andm0 > 0 such that

x0 = Tλ
nx0 +m0ϕ1. (3.8)

From x0 ∈ ∂KR, we know that ‖x0‖ = R. Then, for t ∈ [a, b], we have

x0(t) −w(t) ≥ x0(t) − 2λL3e(t)
∫1

0
q(s)ds ≥ x0(t) − 2L3

x0(t)
ΛR

∫1

0
q(s)ds

≥ 1
2
x0(t) ≥ 1

2
RΛe(t) ≥ l1RΛ

2
≥ N > 0.

(3.9)

So, by (3.6), (3.9), we have

x0(t) = λ

∫1

0
H(t, s)

[
f
(
s, [x0(s) −w(s)]+ + n−1

)
+ q(s)

]
ds +m0

≥ λL2e(t)
∫1

0
e(s)f

(
s, [x0(s) −w(s)]+ + n−1

)
ds +m0

≥ λL2e(t)
∫b

a

e(s)f
(
s, [x0(s) −w(s)]+ + n−1

)
ds +m0

≥ λML2e(t)
∫b

a

e(s)
(
[x0(s) −w(s)]+ + n−1

)
ds +m0

≥ 1
2
λML2l

2
1ΛR

∫b

a

e(s)ds +m0

≥ R +m0 > R.

(3.10)

This implies that R > R, which is a contradiction. This yields that (3.7) holds. By (3.5), (3.7),
and Lemma 1.1, for any n ∈ N and λ ∈ (0, λ∗), we obtain that Tλ

n has a fixed point xn in Kr,R.
Let {xn}∞n=1 be the sequence of solutions of the boundary value problems (2.26). It is

easy to see that they are uniformly bounded. Next, we show that {xn}∞n=1 are equicontinuous
on [0, 1]. From xn ∈ Kr,R, we know that

[xn(t) −w(t)]+ ≤ xn(t) ≤ ‖xn‖ ≤ R, t ∈ [0, 1],

xn(t) −w(t) ≥ xn(t) − 2λL3e(t)
∫1

0
q(s)ds ≥ xn(t) − 2λL3

xn(t)
Λ‖xn‖

∫1

0
q(s)ds

≥ 1
2
xn(t) ≥ 1

2
Λe(t)‖xn‖ ≥ 1

2
Λre(t) > 0, t ∈ [0, 1].

(3.11)
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For any ε > 0, by the continuity ofH(t, s) in [0, 1]× [0, 1], there exists δ2 > 0 such that for any
t1, t2, s ∈ [0, 1] and |t1 − t2| < δ2, we have

|H(t1, s) −H(t2, s)| < ε. (3.12)

This, combined with (2.11) and (2.37), implies that for any t1, t2 ∈ [0, 1] and |t1 − t2| < δ2, we
have

|xn(t1) − xn(t2)| ≤
∫1

0
|H(t1, s) −H(t2, s)|

[
f
(
s, [x(s) −w(s)]+ + n−1

)
+ q(s)

]
ds

< ε

∫1

0

[
f
(
s, [x(s) −w(s)]+ + n−1

)
+ q(s)

]
ds

≤ ε

∫1

0

[
p(s)

(
g
(
[x(s) −w(s)]+ + n−1

)
+ h
(
[x(s) −w(s)]+ + n−1

))
+ q(s)

]
ds

≤ ε

[

Lr + (1 + h∗(R))
∫1

0

(
p(s) + q(s)

)
ds

]

.

(3.13)

By the Ascoli-Arzela theorem, the sequence {xn}∞n=1 has a subsequence being uniformly
convergent on [0, 1]. Without loss of generality, we still assume that {xn}∞n=1 itself uniformly
converges to x on [0, 1]. Since {xn}∞n=1 ∈ Kr,R ⊂ K, we have xn ≥ 0. By (2.26), we have

xn(t) = xn

(
1
2

)
+
(
t − 1

2

)
x′
n

(
1
2

)

− λ

∫ t

1/2
ds

∫ s

1/2

[
f
(
τ, xn(τ) −w(τ) + n−1

)
+ q(τ)

]
dτ, t ∈ (0, 1).

(3.14)

From (3.14), we know that {x′
n(1/2)}∞n=1 is bounded sets. Without loss of generality, we may

assume x′
n(1/2) → c1 as n → ∞. Then, by (3.14) and the Lebesgue dominated convergence

theorem, we have

x(t) = x

(
1
2

)
+ c1

(
t − 1

2

)
− λ

∫ t

1/2
ds

∫s

1/2

[
f(τ, x(τ) −w(τ)) + q(τ)

]
dτ, t ∈ (0, 1). (3.15)

By (3.15), direct computation shows that

−x′′(t) = λ
[
f(t, x(t) −w(t)) + q(t)

]
, 0 < t < 1. (3.16)
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On the other hand, letting n → ∞ in the following boundary conditions:

αxn(0) − βx′
n(0) =

∫1

0
xn(s)dξ(s),

γxn(1) + δx′
n(1) =

∫1

0
xn(s)dη(s),

(3.17)

we deduce that x is a positive solution of BVP (2.22).
Let u(t) = x(t) − w(t) and l̃ = (1/2)Λr. By (3.11) and the convergence of sequence

{xn}∞n=1, we have u(t) ≥ l̃e(t) > 0, t ∈ [0, 1]. It then follows from Lemma 2.7 that BVP (1.1) has
at least one positive solution u satisfying u ≥ l̃e(t) for any t ∈ [0, 1]. The proof is completed.

Theorem 3.2. Assume that conditions (H1)–(H3) are satisfied. In addition, assume that the fol-
lowing condition holds.

(H5) There exists an interval [c, d] ⊂ (0, 1) such that

lim inf
u→+∞

min
t∈[c,d]

f(t, u) >
4L3

∫1
0 q(s)ds

ΛL2l2
∫d
c e(s)ds

, (3.18)

where l2 = minc≤t≤de(t) and

lim
u→+∞

h(u)
u

= 0. (3.19)

Then there exists λ∗ > 0 such that the BVP (1.1) has at least one positive solution u(t) ∈
C[0, 1] ∩ C2(0, 1) provided λ ∈ (λ∗,+∞). Furthermore, the solution also satisfies u(t) ≥
l̃e(t) for some positive constant l̃.

Proof. By (3.18), there exists N0 > 0 such that, for any t ∈ [c, d], u ≥ N0, we have

f(t, u) ≥ 4L3
∫1
0 q(s)ds

ΛL2l2
∫d
c e(s)ds

. (3.20)

Choose λ∗ = N0/2l2L3
∫1
0 q(s)ds. Let r = 4λL3Λ−1 ∫1

0 q(s)ds as λ > λ∗. Next, we take ϕ1 ≡ 1 ∈
∂K1 = {x ∈ K : ‖x‖ = 1}, and for any x ∈ ∂Kr ,m > 0, n ∈ N, we will show that

x /= Tλ
nx +mϕ1. (3.21)

Otherwise, there exist x0 ∈ ∂Kr andm0 > 0 such that

x0 = Tλ
nx0 +m0ϕ1. (3.22)
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From x0 ∈ ∂Kr , we know that ‖x0‖ = r, and

x0(t) −w(t) ≥ Λre(t) − 2λL3e(t)
∫1

0
q(s)ds = 2λL3e(t)

∫1

0
q(s)ds ≥ N0

l2
e(t). (3.23)

So, we have x0(t) −w(t) ≥ N0 on t ∈ [c, d], x0 ∈ ∂Kr . Then, by (3.20)we have

x0(t) = λ

∫1

0
H(t, s)

[
f
(
s, [x0(s) −w(s)]+ + n−1

)
+ q(s)

]
ds +m0

≥ λL2e(t)
∫1

0
e(s)f

(
s, [x0(s) −w(s)]+ + n−1

)
ds +m0

≥ λL2e(t)
∫d

c

e(s)f
(
s, [x0(s) −w(s)]+ + n−1

)
ds +m0

≥ λL2e(t)
4L3

∫1
0 q(s)ds

ΛL2l2
∫d
c e(s)ds

∫d

c

e(s)ds +m0

≥ 4λΛ−1L3

∫1

0
q(s)ds +m0

= r +m0 > r.

(3.24)

This implies that r > r, which is a contradiction. This yields that (3.21) holds.
On the other hand, by (3.19) and the continuity of h(u) on [0,+∞), we have

lim
u→+∞

h∗(u)
u

= 0, (3.25)

where h∗(u) is defined by (2.40). For

ε =

[

4λL1

∫1

0
e(s)[p(s) + q(s)]ds

]−1
, (3.26)

there exists M0 > 0 such that when x > M0, for any 0 ≤ y ≤ x, we have h(y) ≤ εx. Take

R > max

{

2, r,M0, 2λL1

∫1

0
e(s)p(s)g(Λe(s))ds

}

. (3.27)
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Then, for any x ∈ ∂KR, t ∈ [0, 1], we have

[x(t) −w(t)]+ ≤ x(t) ≤ ‖x‖ ≤ R,

x(t) −w(t) ≥ x(t) − 2λL3e(t)
∫1

0
q(s)ds ≥ x(t) − 2λL3

x(t)
ΛR

∫1

0
q(s)ds

≥ 1
2
x(t) ≥ 1

2
RΛe(t) > Λe(t) > 0, t ∈ [0, 1].

(3.28)

It follows from (3.19) and (3.28) that

∣
∣
∣Tλ

nx(t)
∣
∣
∣ = λ

∫1

0
H(t, s)

[
f
(
s, [x(s) −w(s)]+ + n−1

)
+ q(s)

]
ds

≤ λL1

∫1

0
e(s)p(s)g

(
[x(s) −w(s)]+ + n−1

)
ds

+ λL1

∫1

0
e(s)

[
p(s)h

(
[x(s) −w(s)]+ + n−1

)
+ q(s)

]
ds

≤ λL1

∫1

0
e(s)p(s)g(Λe(s))ds + λL1

∫1

0
e(s)

[
p(s)ε(R + 1) + q(s)

]
ds

≤ λL1

∫1

0
e(s)p(s)g(Λe(s))ds + ελL1(R + 2)

∫1

0
e(s)

[
p(s) + q(s)

]
ds

≤ R

2
+
R

2
= R,

(3.29)

which means that

∥∥∥Tλ
nx
∥∥∥ ≤ ‖x‖, x ∈ ∂KR. (3.30)

By (3.21), (3.30), and Lemma 1.1, for any n ∈ N and λ > λ∗, we obtain that Tλ
n has a fixed point

xn in Kr,R satisfying r ≤ ‖xn‖ ≤ R. The rest of proof is similar to Theorem 3.1. The proof is
complete.

Remark 3.3. From the proof of Theorem 3.2, we can see that if (H5) is replaced by the following
condition.

(H ′
5) There exists an interval [c, d] ⊂ (0, 1) such that

lim inf
u→+∞

min
t∈[c,d]

f(t, u) = +∞, lim
u→+∞

h(u)
u

= 0, (3.31)

then, the conclusion of Theorem 3.2 is still true.



18 Abstract and Applied Analysis

4. Applications

In this section, we construct two examples to demonstrate the application of our main results.

Example 4.1. Consider the following 4-point boundary value problem:

−u′′(t) = λ

[
1

√
t(1 − t)

(
1
u2

+ u2 + 1
)
− q(t)

]

, 0 < t < 1,

u(0) − u′(0) =
1
4
u

(
1
3

)
+
1
9
u

(
2
3

)
,

u(1) + u′(1) =
3
8
u

(
1
3

)
+ u

(
2
3

)
,

(4.1)

where λ > 0 is a parameter and

q(t) =
1

4 + 3 3
√
4

⎡

⎢
⎣

1√
t
+

1√
1 − t

+
1

3
√
(t − 1/2)2

⎤

⎥
⎦. (4.2)

The BVP (4.1) can be regarded as a boundary value problem of the form of (1.1). In this
situation, α = β = γ = δ = 1 and

ξ(s) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, s ∈
[
0,

1
3

)
,

1
4
, s ∈

[
1
3
,
2
3

)
,

13
36

, s ∈
[
2
3
, 1
]
,

η(s) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, s ∈
[
0,

1
3

)
,

3
8
, s ∈

[
1
3
,
2
3

)
,

11
8
, s ∈

[
2
3
, 1
]
.

(4.3)

Let

f(t, x) =
1

√
t(1 − t)

(
1
x2

+ x2 + 1
)
, for (t, x) ∈ (0, 1) × (0,+∞) (4.4)

and let p(t) = 1/
√
t(1 − t), g(x) = 1/x2, h(x) = x2+1. By direct calculation, we have

∫1
0 p(t)dt =

π ,
∫1
0 q(t)dt = 1, and

ρ = 3, σ =
3
4
, φ1(t) =

2 − t

3
, φ2(t) =

1 + t

3
, e(t) =

1
3
(2 − t)(1 + t),

k1 =
263
324

, k2 =
14
81

, k3 =
47
72

, k4 =
5
18

, k =
73
648

,

L1 = 11, L2 =
227
36

, L3 =
109
9

.

(4.5)
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Clearly, the conditions (H1)–(H3) hold. Taking t ∈ [1/4, 3/4] ⊂ [0, 1], we have

lim inf
x→+∞

min
t∈[1/4,3/4]

f(t, x)
x

= lim inf
x→+∞

min
t∈[1/4,3/4]

(
1/
√
t(1 − t)

)(
1/x2 + x2 + 1

)

x
= +∞. (4.6)

Thus (H4) also holds. Consequently, by Theorem 3.1, we infer that the singular BVP (4.1) has
at least one positive solution provided λ is small enough.

Example 4.2. Consider the following problem:

−u′′(t) = λ

[
1

√
t(1 − t)

(
1
u2

+
√
u + 1

)
−

√
2

4
√
t3(1 − t)

]

, 0 < t < 1,

u(0) − u′(0) = −
∫1

0
u(t) cos 2πtdt,

u(1) + u′(1) =
1
5
u

(
1
4

)
+ u

(
3
4

)
,

(4.7)

where λ > 0 is a parameter. Let

f(t, x) =
1

√
t(1 − t)

(
1
x2

+
√
x + 1

)
, (t, x) ∈ (0, 1) × (0,+∞),

q(t) =
√
2

4
√
t3(1 − t)

, p(t) =
1

√
t(1 − t)

, g(x) =
1
x2

, h(x) =
√
x + 1.

(4.8)

Then,
∫1
0 p(t)dt = π ,

∫1
0 q(t)dt = 2π . Here, dξ(t) = − cos 2πt dt, so the measure dξ changes sign

on [0, 1]. By direct calculation, we have

k1 = 1, k2 = 0, k3 =
8
15

, k4 =
1
3
, k =

1
3
,

Gξ(s) =
1

4π2 (1 − cos 2πs) ≥ 0, Gη(s) ≥ 0,
(4.9)

where

Gη(s) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
5
G2

(
1
4
, s

)
+G2

(
3
4
, s

)
, 0 ≤ s <

1
4
,

1
5
G1

(
1
4
, s

)
+G2

(
3
4
, s

)
,

1
4
≤ s ≤ 3

4
,

1
5
G1

(
1
4
, s

)
+G1

(
3
4
, s

)
,

3
4
< s ≤ 1,

G(t, s) =

⎧
⎪⎪⎨

⎪⎪⎩

G1(t, s) =
(2 − s)(1 + t)

3
, 0 ≤ t ≤ s ≤ 1,

G2(t, s) =
(2 − t)(1 + s)

3
, 0 ≤ s ≤ t ≤ 1.

(4.10)
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Taking t ∈ [1/4, 3/4] ⊂ [0, 1], we have

lim inf
x→+∞

min
t∈[1/4,3/4]

f(t, x) = lim inf
x→+∞

min
t∈[1/4,3/4]

1
√
t(1 − t)

(
1
x2

+
√
x + 1

)
= +∞,

lim
x→+∞

h(x)
x

= lim
x→+∞

√
x + 1
x

= 0.

(4.11)

So all assumptions of Theorem 3.2 are satisfied. By Theorem 3.2, we know that BVP (4.7) has
at least one positive solution provided λ is large enough.
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