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This paper studies the asymptotic behavior for a class of delayed reaction-diffusion Hopfield
neural networks driven by finite-dimensional Wiener processes. Some new sufficient conditions
are established to guarantee the mean square exponential stability of this system by using
Poincaré’s inequality and stochastic analysis technique. The proof of the almost surely exponential
stability for this system is carried out by using the Burkholder-Davis-Gundy inequality, the
Chebyshev inequality and the Borel-Cantelli lemma. Finally, an example is given to illustrate the
effectiveness of the proposed approach, and the simulation is also given by using the Matlab.

1. Introduction

Recently, the dynamics of Hopfield neural networks with reaction-diffusion terms have
been deeply investigated because their various generations have been widely used in
some practical engineering problems such as pattern recognition, associate memory, and
combinatorial optimization (see [1–3]). However, under closer scrutiny, that a more realistic
model would include some of the past states of the system, and theory of functional
differential equations systems has been extensively developed [4, 5], meanwhile many
authors have considered the asymptotic behavior of the neural networks with delays [6–
9]. In fact random perturbation is unavoidable in any situation [3, 10]; if we include some
environment noise in these systems, we can obtain a more perfect model of this situation
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[3, 11–16]. So, this paper is devoted to the exponential stability of the following delayed
reaction-diffusion Hopfield neural networks driven by finite-dimensional Wiener processes:

dui(t, x) =

⎛
⎝

l∑
j=1

∂

∂xj

(
Dij(x)

∂ui

∂xj

)
− aiui +

n∑
j=1

cijfj
(
uj(t − r, x)

)
⎞
⎠dt

+
m∑
j=1

gij(ui(t − r, x))dWj,

∂ui

∂ν

∣∣∣∣
∂O

= 0, t ≥ 0,

ui(θ, x) = φi(θ, x), x ∈ O ∈ R
l, θ ∈ [−r, 0], i = 1, 2, . . . , n.

(1.1)

There are n neural network units in this system and ui(t, x) denote the potential of the
cell i at t and x. ai are positive constants and denote the rate with which the ith unit will reset
its potential to the resting state in isolation when it is disconnected from the network and
external inputs at t, and cij are the output connection weights from the jth neuron to the ith
neuron. fj are the active functions of the neural network. r is the time delay of a neuron. O
denotes an open bounded and connected subset of R

l with a sufficient regular boundary ∂O,
ν is the unit outward normal on ∂O, ∂ui/∂ν = (∇ui, ν)Rl , and gij are noise intensities. Initial
data φi are F0-measurable and bounded functions, almost surely.

We denote (Ω,F,P) a complete probability space with filtration {Ft}t≥0 satisfying
the usual conditions (see [10]). Wi(t), i = 1, 2, . . . , m, are scale standard Brownian motions
defined on (Ω,F,P).

For convenience, we rewrite system (1.1) in the vector form:

du =
(∇ · (D(x) ◦ ∇u) −Au + Cf(u(t − r))

)
dt +G(u(t − r))dW,

∂u(t, x)
∂ν

∣∣∣∣
∂O

= 0, t ≥ 0,

u(0, x) = φ(x),

(1.2)

where C = (cij)n×n, u = (u1, u2, . . . , un)
T , ∇u = (∇u1, . . . ,∇un)

T , W = (W1,W2, . . . ,Wm)
T ,

f(u) = (f1(u1), f2(u2), . . . , fn(un))
T , A = Diag(a1, a2, . . . , an), φ = (φ1, φ2, . . . , φn)

T , G(u) =
(gij(ui))n×m, D = (Dij)n×l, and D ◦ ∇u = (Dij∂ui/∂xj)n×l is the Hadamard product of matrix
D and ∇u; for the definition of divergence operator ∇ · u, we refer to [2, 3].

2. Preliminaries and Notations

In this paper, we introduce the following Hilbert spaces H � L2(O), V � H1(O), according
to [17–19], V ⊂ H = H ′ ⊂ V ′, where H ′, V ′ denote the dual of the space H,V , respectively,
the injection is continuous, and the embedding is compact. ‖ · ‖, ||| · ||| represent the norm in
H,V , respectively.

U � (L2(O))n is the space of vector-valued Lebesgue measurable functions on O,
which is a Banach space under the norm ‖u‖U = (

∑n
i=1 ‖ui(x)‖2)1/2.

C � C([−r, 0], U) is the Banach space of all continuous functions from [−r, 0] to U,
when equipped with the sup-norm ‖φ‖C = sup−r≤s≤0‖φ‖U.
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With any continuous Ft-adapted U-valued stochastic process u(t) : Ω → U, t ≥ −r, we
associate a continuous Ft-adapted C-valued stochastic process ut : Ω → C, t > 0, by setting
ut(s, x)(ω) = u(t + s, x)(ω), s ∈ [−r, 0], x ∈ O.

Cb
F0

denote the space of all bounded continuous processes φ : [−r, 0] × Ω → U such
that φ(θ, ·) is F0-measurable for each θ ∈ [−r, 0] and E‖φ‖C < ∞.

L(K) is the set of all linear bounded operators from K into K; when equipped with
the operator norm, it becomes a Banach space.

In this paper, we assume the following.

H1 fi and Gij are Lipschitz continuous with positive Lipschitz constants k1, k2 such that
|fi(u) − fi(v)| ≤ k1|u − v| and |Gij(u) − Gij(v)| ≤ k2|u − v|, ∀u, v ∈ R, and fi(0) = 0,
gij(0) = 0.

H2 There exists α > 0 such that Dij(x) ≥ α/l.

H3 Let η = 2αβ2 + 2k3 − nk2
1σ

2er −mk2
2e

r − 2 > 0, k3 = min{ai}, σ = max{|cij |}.

Remark 2.1. We can infer from H1 that system (1.1) has an equilibrium u(t, x, ω) = 0.
Let us define the linear operator as follows:

A : Π(A) ∈ U −→ U,

Au = ∇ · (D(x) ◦ ∇u),
(2.1)

and Π(A) = {u ∈ H2(O)n, ∂u/∂ν|∂O = 0}.

Lemma 2.2 (Poincaré’s inequality). Let O be a bounded domain in Rl and φ belong to a collection
of twice differentiable functions defined on O into R; then

∥∥φ∥∥ ≤ β−1∣∣∥∥φ∥∥∣∣ , (2.2)

where the constant β depends on the size of O.

Lemma 2.3. Let us consider the equation

du

dt
= Au, t ≥ 0,

u(0) = φ.
(2.3)

For every φ ∈ U, let u(t) = S(t)φ denote the solution of (2.3); then S(t) is a contraction map inU.

Proof. Now we take the inner product of (2.3) with u(t) in U; by employing the Gaussian
theorem and condition H2, we get that (Au, u) ≤ −α‖|u|‖2

H1(O)n , (·, ·) is the inner product in U,
‖|u|‖2

H1(O)n denote the norm of H1(O)n (see [3]), which means

1
2
d

dt
‖u(t)‖2

U + α‖|u(t)|‖2
H1(O)n ≤ 0. (2.4)
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Thanks to the Poincaré inequality, one obtains

d

dt
‖u(t)‖2

U + 2αβ2‖u(t)‖2
U ≤ 0. (2.5)

Multiplying e2αβ2t in both sides of the inequality, we have

d

dt

(
e2αβ2t‖u(t)‖2

U

)
≤ 0. (2.6)

Integrating the above inequality from 0 to t, we obtain

‖u(t)‖2
U ≤ e−2αβ2t

∥∥φ∥∥2
U. (2.7)

By the definition of ‖T(t)‖L(U), we have ‖T(t)‖L(U) ≤ 1.

Definition 2.4 (see [20–22]). A stochastic process u(t) : [−r,+∞) × Ω → U is called a global
mild solution of (1.1) if

(i) u(t) is adapted to Ft

(ii) u(t) is measurable with
∫∞

0 ‖u(t)‖2
Udt < ∞ almost surely and

u(t) = S(t)φ −
∫ t

0
S(t − s)A ds +

∫ t

0
S(t − s)f(u(s − r))ds +

∫ t

0
S(t − s)G(u(s − r))dW,

u(t) = φ ∈ Cb
F0
, t ∈ [−r, 0],

(2.8)

for all t ∈ [−r,+∞) with probability one.

Definition 2.5. Equation (1.1) is said to be almost surely exponentially stable if, for any
solution u(t, x, ω) with initial data φ ∈ Cb

F0
, there exists a positive constant λ such that

lim sup
t−→∞

ln ‖ut‖C ≤ −λ, ut ∈ C, almost surely. (2.9)

Definition 2.6. System (1.1) is said to be exponentially stable in the mean square sense if there
exist positive constants κ and α such that, for any solution u(t, x, ω) with the initial condition
φ ∈ Cb

F0
, one has

E‖u(t)‖2
C ≤ κe−α(t−t0), t ≥ t0, ut ∈ C. (2.10)

3. Main Result

Theorem 3.1. Suppose conditions H1–H3 hold; then (1.1) is exponentially stable in the mean square
sense.
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Proof. Let u be the mild solution of (1.1); thanks to the Itô formula, we observe that

d
(
eλtu2

i

)
= λeλtu2

i dt + eλt

⎛
⎝2ui

⎛
⎝

l∑
j=1

∂

∂xi

(
Dij

∂ui

∂xj

)
− aiui +

n∑
j=1

cijfj
(
uj(t − r)

)
⎞
⎠
⎞
⎠dt

+ eλt
(
GiG

T
i

)
dt + 2eλtuiGidW, Gi = (Gi1, Gi2, . . . , Gim),

(3.1)

where λ is a positive constant that will be defined below. Then, by integration between 0 and
t, we find that

eλtu2
i (t) = φi(0)2 +

∫ t

0
λeλsu2

i ds + 2
∫ t

0
eλs

⎛
⎝ui

l∑
j=1

∂

∂xj

(
Dij

∂ui

∂xj

)⎞
⎠ds − 2

∫ t

0
eλsaiu

2
i ds

+ 2
∫ t

0
eλsui

n∑
j=1

cijfj
(
uj(s − r)

)
ds +

∫ t

0
eλsGiG

T
i ds + 2

∫ t

0
eλsuiGidW.

(3.2)

Integrating the above equation over O, by virtue of Fubini’s theorem, we prove that

eλt
∥∥∥u2

i

∥∥∥
2
=
∥∥φi(0)

∥∥2 + λ

∫ t

0
eλs
∫

O
u2
i dx ds +

∫ t

0
eλs
∫

O
2ui

l∑
j=1

∂

∂xj

(
Dij

∂ui

∂xj

)
dx ds

− 2
∫ t

0
eλs
∫

O
aiu

2
i dx ds + 2

∫ t

0
eλs
∫

O
ui

n∑
j=1

cijfj
(
uj(s − r)

)
dx ds

+
∫ t

0
eλs
∫

O
GiG

T
i dx ds + 2

∫ t

0
eλs
∫

O
uiGidx dW.

(3.3)

Taking the expectation on both sides of the last equation, by means of [3, 10, 16]

2E
∫ t

0

∫

O
eλsuiGidx dW = 0. (3.4)

Then, by Fubini’s theorem, we have

eλtE
∥∥∥u2

i

∥∥∥
2
= E
∥∥φi(0)

∥∥2 + λ

∫ t

0
eλs
∫

O
Eu2

i dx ds + 2E
∫ t

0
eλs
∫

O
ui

l∑
j=1

∂

∂xj

(
Dij

∂ui

∂xj

)
dx ds

− 2
∫ t

0
eλs
∫

O
aiEu

2
i dx ds + 2E

∫ t

0
eλs
∫

O
ui

n∑
j=1

cijfj
(
uj(s − r)

)
dx ds

+ E

∫ t

0
eλs
∫

O
GiG

T
i dx ds

� I1 + I2 + I3 + I4 + I5 + I6.

(3.5)
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We observe that

I1 � E
∥∥φi(0)

∥∥2 ≤ sup
θ∈[−r,0]

E
∥∥φi(θ)

∥∥2
, (3.6)

I2 � λ

∫ t

0

∫

O
eλsEu2

i dx ds = λ

∫ t

0
eλsE‖ui‖2ds. (3.7)

From the Neumann boundary condition, by means of Green’s formula and H2 (see [3, 6, 7]),
we know

I3 � 2E
∫ t

0

∫

O
eλs

⎛
⎝ui

l∑
j=1

∂

∂xj

(
Dij

∂ui

∂xj

)⎞
⎠dx ds

= −2E
∫ t

0

∫

O
eλs

l∑
j=1

Dij

(
∂ui

∂xj

)2

dx ds

≤ −2α
∫ t

0
eλsE|‖ui‖|2ds ≤ −2αβ2

∫ t

0
eλsE‖ui‖2ds.

(3.8)

Then, by using the positiveness of ai, one gets the relation

I4 � −2
∫ t

0

∫

O
eλsaiEu

2
i dx ds ≤ −2k3

∫ t

0
eλsE‖ui‖2ds, (3.9)

where k3 = min{a1, a2, . . . , an} > 0. By using the Young inequality as well as condition H1,
we have that

I5 � 2E
∫ t

0

∫

O
eλsui

n∑
j=1

cijfjdx ds

≤
∫ t

0

∫

O
eλs

⎛
⎜⎝E|ui|2 + E

∣∣∣∣∣∣
n∑
j=1

cijfj

∣∣∣∣∣∣

2
⎞
⎟⎠dx ds

≤
∫ t

0

∫

O
eλs

⎛
⎝E|ui|2 + σ2

n∑
j=1

E
∣∣fj
(
uj(s − r)

)∣∣2
⎞
⎠dx ds

≤
∫ t

0

∫

O
eλs

⎛
⎝E|ui|2 + σ2k2

1

n∑
j=1

E
∣∣uj(s − r)

∣∣2
⎞
⎠dx ds

≤
∫ t

0
eλs
(
E‖ui‖2 + σ2k2

1E‖u(s − r)‖2
U

)
ds,

(3.10)

where σ = max |cij |, and

I6 �
∫ t

0

∫

O
eλsEGiG

T
i dx ds ≤ mk2

2

∫ t

0
eλsE‖ui(s − r)‖2ds. (3.11)
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We infer from (3.6)–(3.11) that

eλtE‖ui(t)‖2 ≤ sup
θ∈[−r,0]

E
∥∥φi(θ)

∥∥2 −
(

2αβ2 + 2k3 − 1 − λ
)∫ t

0
eλsE‖ui‖2ds

+ σ2k2
1

∫ t

0
eλs‖u(t − r)‖2

Uds +mk2
2

∫ t

0
eλsE‖ui(s − r)‖2ds.

(3.12)

Adding (3.12) from i = 1 to i = n, we obtain

eλtE‖u‖2
U ≤ E

∥∥φ∥∥2
C −
(

2αβ2 + 2k3 − 1 − λ
)∫ t

0
eλsE‖u‖2

Uds

+
(
nk2

1σ
2 +mk2

2

)∫ t

0
eλsE‖u(s − r)‖2

Uds,

(3.13)

due to

∫ t

0
eλsE‖u(s − r)‖2

Uds ≤ eλr
∫ t

−r
eλsE‖u(s)‖2

Uds

≤ e2λr
∫0

−r
E
∥∥φ(s)∥∥2

Uds + eλr
∫ t

0
eλsE‖u(s)‖2

Uds

≤ re2λrE
∥∥φ∥∥2

C + eλr
∫ t

0
eλsE‖u(s)‖2

Uds;

(3.14)

we induce from the previous equations that

eλtE‖u‖2
U ≤ −c1

∫ t

0
eλsE‖u‖2

Uds + c2, (3.15)

where c1 = 2αβ2 + 2k3 − 1 − nk2
1σ

2eλr −mk2
2e

λr − λ and c2 = (1 +mk2
2re

2λr + nk2
1σ

2re2λr)E‖φ‖2
C;

so we choose λ = 1 such that c1 = η > 0. By using the classical Gronwall inequality we see
that

eλtE‖u‖2
U ≤ c2e

−ηt; (3.16)

in other words, we get

E‖u‖2
U ≤ c2e

−(η+1)t. (3.17)

So, for t + θ ≥ t/2 ≥ 0, we also have

E‖u(t + θ)‖2
U ≤ c2e

−(η+1)(t+θ),

≤ c2e
−κt, θ ∈ [−r, 0], κ =

(
η + 1

)

2
,

(3.18)
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and we can conclude that

E‖ut‖2
C ≤ c2e

−κt. (3.19)

Theorem 3.2. If the system (1.1) satisfies hypotheses H1–H3, then it is almost surely exponentially
stable.

Proof. Let u(t) be the mild solution of (1.1). By Definition 2.4 as well as the inequality
(
∑n

i=1 ai)
2 ≤ n

∑n
i=1 a

2
i , ai ∈ R, we have

E sup
N≤t≤N+1

‖u(t)‖2
U ≤ 4 sup

N≤t≤N+1
‖S(t −N + 1)u(N)‖2

U

+ 4 sup
N≤t≤N+1

∥∥∥∥∥
∫ t

N−1
−AS(t − s)uds

∥∥∥∥∥
2

U

+ 4 sup
N≤t≤N+1

∥∥∥∥∥
∫ t

N−1
S(t − s)Cf(u(s − r))ds

∥∥∥∥∥
2

U

+ 4 sup
N≤t≤N+1

∥∥∥∥∥
∫ t

N−1
S(t − s)G(u(s − r))dW

∥∥∥∥∥
2

U

� I1 + I2 + I3 + I4.

(3.20)

Using the contraction of the map S(t) and the result of Theorem 3.1, we find

I1 � 4 sup
N≤t≤N+1

E‖(S(t −N + 1)u(N − 1))‖2
U

≤ 4 sup
N≤t≤N+1

E‖uN−1‖2
C ≤ 4c2e

−κ(N−1).
(3.21)

By the Hölder inequality, we obtain

I2 � 4 sup
N≤t≤N+1

E

∥∥∥∥∥
∫ t

N−1
−AS(t − s)uds

∥∥∥∥∥
2

U

≤ 4 sup
N≤t≤N+1

(t −N + 1)
∫ t

N−1
E‖−AS(t − s)u‖2

Uds

≤ 8 sup
N≤t≤N+1

∫ t

N−1
E‖Au‖2

Uds

≤ 8k2
4

∫N+1

N−1
E‖u‖2

Uds ≤ 8k2
4

∫N+1

N−1
E‖us‖2

Cds

≤ 8k2
4c2

∫N+1

N−1
e−κsds ≤ 8k2

4ρ1e
−κ(N−1),

(3.22)

where ρ1 = c2/κ, k4 = max{a1, a2, . . . , an}.
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By virtue of Theorem 3.1, Hölder inequality, and H1, we have

I3 � 4 sup
N≤t≤N+1

∥∥∥∥∥E
∫ t

N−1
S(t − s)Cf(u(s − r))ds

∥∥∥∥∥
2

U

≤ 4 sup
N≤t≤N+1

(t −N + 1)E
∫ t

N−1

∥∥Cf(u(s − r))
∥∥2
Uds

≤ 8σ2 sup
N≤t≤N+1

E

∫ t

N−1

∥∥f(u(s − r))
∥∥2
Uds

≤ 8k2
1σ

2
∫N+1

N−1
E‖u(s − r)‖2

Uds ≤ 8k2
1σ

2
∫N+1

N−1
E‖us‖2

Cds

≤ 8k2
1c2

∫N+1

N−1
e−κsds ≤ 8k2

1ρ1e
−κ(N−1).

(3.23)

Then, by the Burkholder-Davis-Gundy inequality (see [18, 22]), there exists c3 such that

I4 � 4 sup
N≤t≤N+1

E

∥∥∥∥∥
∫ t

N−1
S(t − s)G(u(s − r))dW

∥∥∥∥∥
2

U

≤ 4c3 sup
N≤t≤N+1

E

∫ t

N−1
‖S(t − s)G(u(s − r))I‖2

Uds

≤ 4c3k
2
2 sup
N≤t≤N+1

∫ t

N−1
E‖u(s − r)‖2

Uds ≤ 4c3k
2
2

∫N+1

N−1
E‖us‖2

Cds

≤ 4c3k
2
2c2

∫N+1

N−1
e−κsds ≤ 4c3k

2
2ρ1e

−κ(N−1),

(3.24)

where I = (1, 1, . . . , 1)T is an m-dimensional vector.
We can deduce from (3.21)–(3.24) that

E sup
N≤t≤N+1

‖u(t)‖2
U ≤ ρ2e

−κ(N−1), (3.25)

where ρ2 = 4c2 + (8k2
4 + 8k2

1 + 4c3k
2
2)ρ1.

Thus, for any positive constants εN , thanks to the Chebyshev inequality we have that

P

(
sup

N≤t≤N+1
‖u(t)‖U > εN

)
≤ 1

ε2
N

sup
N≤t≤N+1

E‖u(t)‖2
U

≤ 1
ε2
N

ρ2e
−κ(N−1).

(3.26)
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Figure 1

Due to the Borel-Cantelli lemma, we see that

lim sup
t−→∞

ln ‖u(t)‖2
U

t
≤ −κ, almost surely. (3.27)

This completes the proof of the theorem.

4. Simulation

Consider two-dimensional stochastic reaction-diffusion recurrent neural networks with delay
as follows:

du1(t, x) = (10Δu1 − 7u1 + 1.3 tanh(u1(t − 1, x)))dt + u1(t − 1, x)dW,

du2(t, x) = (10Δu2 − 7u2 + tanh(u1(t − 1, x)) − tanh(u2(t − 1, x)))dt

+ u2(t − 1, x)dW
∂ui(t, 0)

∂x
=

∂ui(t, 20)
∂x

= 0, t ≥ 0,

u1(θ, x) = cos(0.2πx), u2(θ, x) = cos(0.1πx), x ∈ [0, 20], θ ∈ [−1, 0].

(4.1)

Δ is the Laplace operator. We have β ≥ 1/20, α ≥ 10, k1 = 1, k2 = 1, k3 = 7, σ = 1.3, n = 2,
and η > 0; by Theorems 3.1 and 3.2, this system is mean square exponentially stable as well
as almost surely exponentially stable. The results can be shown in Figures 1, 2 and 3.
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We use the forward Euler method to simulate this example [23–25]. We choose the
time step Δt = 0.01 and space step Δx = 1, and δ = Δt/Δx2 = 0.01.
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