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A new system of extended general nonlinear regularized nonconvex set-valued variational
inequalities is introduced, and the equivalence between the extended general nonlinear
regularized nonconvex set-valued variational inequalities and the fixed point problems is verified.
Then, by this equivalent formulation, a new perturbed projection iterative algorithm with mixed
errors for finding a solution of the aforementioned system is suggested and analyzed. Also the
convergence of the suggested iterative algorithm under some suitable conditions is proved.

1. Introduction

Variational inequality theory, introduced by Stampacchia [1], has become a rich source of
inspiration and motivation for the study of a large number of problems arising in economics,
finance, transportation, network and structural analysis, elasticity, and optimization. Many
research papers have been written lately, both on the theory and applications of this field.
Important connections with main areas of pure and applied sciences have been made.
(See, for example, [2–4] and the references cited therein.) The development of variational
inequality theory can be viewed as the simultaneous pursuit of two different lines of research.
On the one hand, it reveals the fundamental facts on the qualitative aspects of the solution to
important classes of problems. On the other hand, it also enables us to develop highly efficient
and powerful new numerical methods to solve, for example, obstacle, unilateral, free, moving
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and the complex equilibrium problems. One of the most interesting and important problems
in variational inequality theory is the development of an efficient numerical method. There
is a substantial number of numerical methods including projection method and its variant
forms, Wiener-Holf (normal) equations, auxiliary principle, and descent framework for
solving variational inequalities and complementarity problems. For applications on physical
formulations, numerical methods and other aspects of variational inequalities, see [1–37] and
the references therein.

Projection method and its variant forms represent important tool for finding the
approximate solution of various types of variational and quasi-variational inequalities, the
origin of which can be traced back to Lions and Stampacchia [23]. The projection type
methods were developed in 1970s and 1980s. The main idea in this technique is to establish
the equivalence between the variational inequalities and the fixed point problem using
the concept of projection. This alternate formulation enables us to suggest some iterative
methods for computing the approximate solution; for example, see [5–7, 16–18, 29, 30, 35–
37].

It should be pointed that almost all the results regarding the existence and iterative
schemes for solving variational inequalities and related optimizations problems are being
considered in the convexity setting. Consequently, all the techniques are based on the
properties of the projection operator over convex sets, which may not hold in general, when
the sets are nonconvex. It is known that the uniformly prox-regular sets are nonconvex
and include the convex sets as special cases. For more details, see, for example, [12, 20,
21, 28]. In recent years, Bounkhel et al. [12], Moudafi [24], Noor [25, 26], and Pang et
al. [27] have considered variational inequalities in the context of uniformly prox-regular
sets.

In this paper, we introduce and consider a new system of extended general nonlinear
regularized nonconvex set-valued variational inequalities. We establish the equivalence
between the extended general nonlinear regularized nonconvex set-valued variational
inequalities and the fixed point problems, and then, by this equivalent formulation, we
suggest and analyze a new perturbed projection iterative algorithm with mixed errors for
finding a solution of the aforementioned system. We also prove the convergence of the
suggested iterative algorithm under some suitable conditions.

2. Preliminaries

Throughout this paper, we will letH be a real Hilbert space which is equipped with an inner
product 〈·, ·〉 and corresponding norm ‖ · ‖. Let K be a nonempty convex subset of H, and,
CB(H) denote the family of all closed and bounded subsets of H. We denote by dK(·) or
d(·, K) the usual distance function to the subsetK; that is, dK(u) = infv∈K‖u−v‖. Let us recall
the following well-known definitions and some auxiliary results of nonlinear convex analysis
and nonsmooth analysis [19–21, 28].

Definition 2.1. Let u ∈ H be a point not lying in K. A point v ∈ K is called a closest point or a
projection of u ontoK if dK(u) = ‖u−v‖. The set of all such closest points is denoted by PK(u);
that is,

PK(u) := {v ∈ K : dK(u) = ‖u − v‖}. (2.1)
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Definition 2.2. The proximal normal cone of K at a point u ∈ Hwith u /∈ K is given by

NP
K(u) := {ξ ∈ H : u ∈ PK(u + αξ), for some α > 0}. (2.2)

Clarke et al. [20], in Proposition 1.1.5, give a characterization of NP
K(u) as the following.

Lemma 2.3. Let K be a nonempty closed subset in H. Then ξ ∈ NP
K(u) if and only if there exists a

constant α = α(ξ, u) > 0 such that 〈ξ, v − u〉 ≤ α‖v − u‖2 for all v ∈ K.

The above inequality is called the proximal normal inequality. The special case in which
K is closed and convex is an important one. In Proposition 1.1.10 of [20], the authors give the
following characterization of the proximal normal cone, the closed and convex subsetK ⊂ H.

Lemma 2.4. Let K be a nonempty, closed, and convex subset in H. Then ξ ∈ NP
K(u) if and only if

〈ξ, v − u〉 ≤ 0, for all v ∈ K.

Definition 2.5. Let X be a real Banach space, and let f : X → R be the Lipschitz with constant
τ near a given point x ∈ X; that is, for some ε > 0, one has |f(y) − f(z)| ≤ τ‖y − z‖ for
all y, z ∈ B(x; ε) where B(x; ε) denotes the open ball of radius r > 0 and centered at x. The
generalized directional derivative of f at x in the direction v, denoted as f◦(x;v), is defined
as follows:

f◦(x;v) = lim sup
y→x,t↓0

f
(
y + tv

) − f
(
y
)

t
, (2.3)

where y is a vector in X and t is a positive scalar.

The generalized directional derivative defined earlier can be used to develop a notion
of tangency that does not require K to be smooth or convex.

Definition 2.6. The tangent cone TK(x) to K at a point x in K is defined as follows:

TK(x) :=
{
v ∈ H : d◦

K(x;v) = 0
}
. (2.4)

Having defined a tangent cone, the likely candidate for the normal cone is the one
obtained from TK(x) by polarity. Accordingly, we define the normal cone ofK at x by polarity
with TK(x) as follows:

NK(x) := {ξ : 〈ξ, v〉 ≤ 0, ∀v ∈ TK(x)}. (2.5)

Definition 2.7. The Clarke normal cone, denoted by NC
K(x), is given by NC

K(x) = co[NP
K(x)],

where co[S]means the closure of the convex hull of S. It is clear that one always hasNP
K(x) ⊆

NC
K(x). The converse is not true in general. Note that NC

K(x) is always closed and convex
cone, whereas NP

K(x) is always convex but may not be closed (see [19, 20, 28]).

In 1995, Clarke et al. [21] introduced and studied a new class of nonconvex sets, called
proximally smooth sets; subsequently, Poliquin et al. in [28] investigated the aforementioned
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sets, under the name of uniformly prox-regular sets. These have been successfully used in
many nonconvex applications in areas such as optimizations, economic models, dynamical
systems, differential inclusions, and so forth. For such applications see [9–11, 13]. This
class seems particularly well suited to overcome the difficulties which arise due to the
nonconvexity assumptions on K. We take the following characterization proved in [21] as
a definition of this class. We point out that the original definition was given in terms of the
differentiability of the distance function (see [21]).

Definition 2.8. For any r ∈ (0,+∞], a subsetKr ofH is called normalized uniformly prox-regular
(or uniformly r-prox-regular [21]) if every nonzero proximal normal to Kr can be realized by
an r-ball.

This means that, for all x ∈ Kr and all 0/= ξ ∈ NP
Kr
(x)with ‖ξ‖ = 1,

〈ξ, x − x〉 ≤ 1
2r

‖x − x‖2, ∀x ∈ Kr. (2.6)

Obviously, the class of normalized uniformly prox-regular sets is sufficiently large
to include the class of convex sets, p-convex sets, and C1,1 submanifolds (possibly with
boundary) of H, the images under a C1,1 diffeomorphism of convex sets and many other
nonconvex sets, see [14, 21].

Lemma 2.9 (see [21]). A closed set K ⊆ H is convex if and only if it is proximally smooth of radius
r for every r > 0.

If r = +∞, then, in view of Definition 2.8 and Lemma 2.9, the uniform r-prox-regularity
ofKr is equivalent to the convexity ofKr , which makes this class of great importance. For the
case of that r = +∞, we set Kr = K.

The following proposition summarizes some important consequences of the uniform
prox-regularity needed in the sequel. The proof of this results can be found in [21,
28].

Proposition 2.10. Let r > 0, and let Kr be a nonempty closed and uniformly r-prox-regular subset
of H. SetU(r) = {u ∈ H : 0 < dKr (u) < r}. Then the following statements hold.

(a) For all x ∈ U(r), one has PKr (x)/= ∅.

(b) For all r ′ ∈ (0, r), PKr is Lipschitz continuous with constant r/(r − r ′) on U(r ′) = {u ∈
H : 0 < dKr (u) < r ′}.

(c) The proximal normal cone is closed as a set-valued mapping.

As a direct consequent of part (c) of Proposition 2.10, we have NC
Kr
(x) = NP

Kr
(x).

Therefore, we will define NKr (x) := NC
Kr
(x) = NP

Kr
(x) for such a class of sets.

In order to make clear the concept of r-prox-regular sets, we state the following
concrete example. The union of two disjoint intervals [a, b] and [c, d] is r-prox-regular with
r = (c − b)/2. The finite union of disjoint intervals is also r-prox-regular, and r depends on
the distances between the intervals.
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Definition 2.11. The single-valued operator h : H → H is called

(a) monotone if

〈
h(x) − h

(
y
)
, x − y

〉 ≥ 0, ∀x, y ∈ H, (2.7)

(b) r-strongly monotone if, there exists a constant r > 0 such that

〈
h(x) − h

(
y
)
, x − y

〉 ≥ r
∥
∥x − y

∥
∥2

, ∀x, y ∈ H, (2.8)

(c) γ-Lipschitz continuous if there exists a constant γ > 0 such that

∥∥h(x) − h
(
y
)∥∥ ≤ γ

∥∥x − y
∥∥, ∀x, y ∈ H. (2.9)

Definition 2.12. Let T : H � H be a set-valued operator, and let g : H → H be a single-
valued operator. Then T is said to be

(a) monotone if

〈
u − v, x − y

〉 ≥ 0, ∀x, y ∈ H, u ∈ T(x), v ∈ T
(
y
)
, (2.10)

(b) κ-strongly monotone with respect to g if there exists a constant κ > 0 such that

〈
u − v, g(x) − g

(
y
)〉 ≥ κ

∥∥x − y
∥∥2

, ∀x, y ∈ H, u ∈ T(x), v ∈ T
(
y
)
. (2.11)

Definition 2.13. A two-variable set-valued operator T : H × H � H is called ξ-Ĥ-Lipschitz
continuous in the first variable, if there exists a constant ξ > 0 such that, for all x, x′ ∈ H,

Ĥ
(
T
(
x, y

)
, T

(
x′, y′)) ≤ ξ

∥∥x − x′∥∥, ∀y, y′ ∈ H, (2.12)

where Ĥ is the Hausdorff pseudo-metric, that is, for any two nonempty subsets A and B of
H,

Ĥ(A,B) = max

{

sup
x∈A

d(x, B), sup
y∈B

d
(
y,A

)
}

. (2.13)

It should be pointed that if the domain of Ĥ is restricted to the family closed bounded
subsets of H (denoted by CB(H)), then Ĥ is the Hausdorff metric.
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3. System of Extended General Regularized Nonconvex Set-Valued
Variational Inequalities

In this section, we introduce a new system of extended general nonlinear regularized non-
convex set-valued variational inequalities and a new system of extended general nonlinear
set-valued variational inequalities in Hilbert spaces and investigate their relations.

Let Ti : H × H → CB(H)(i = 1, 2) be two nonlinear set-valued operators, and let
gi, hi : H → H(i = 1, 2) be four nonlinear single-valued operators such that Kr ⊆ gi(H), for
each i = 1, 2. For any constants ρ > 0 and η > 0, we consider the problem of finding x∗, y∗ ∈ H
and u∗ ∈ T1(y∗, x∗), w∗ ∈ T2(x∗, y∗) such that h1(x∗), h2(y∗) ∈ Kr and

〈
ρu∗ + h1(x∗) − g1

(
y∗), g1(x) − h1(x∗)

〉
+

1
2r

∥
∥g1(x) − h1(x∗)

∥
∥2 ≥ 0, ∀x ∈ H : g1(x) ∈ Kr,

〈
ηw∗ + h2

(
y∗) − g2(x∗), g2(x) − h2

(
y∗)〉 +

1
2r

∥
∥g2(x) − h2

(
y∗)∥∥2 ≥ 0, ∀x ∈ H : g2(x) ∈ Kr.

(3.1)

The problem (3.1) is called the system of extended general nonlinear regularized nonconvex
set-valued variational inequalities involving six different nonlinear operators.

Lemma 3.1. If Kr is a uniformly prox-regular set, then the problem (3.1) is equivalent to that of
finding x∗, y∗ ∈ H and u∗ ∈ T1(y∗, x∗), w∗ ∈ T2(x∗, y∗) such that h1(x∗), h2(y∗) ∈ Kr and

0 ∈ ρu∗ + h1(x∗) − g1
(
y∗) +NP

Kr
(h1(x∗)),

0 ∈ ηw∗ + h2
(
y∗) − g2(x∗) +NP

Kr

(
h2
(
y∗)),

(3.2)

whereNP
Kr
(s) denotes the P -normal cone of Kr at s in the sense of nonconvex analysis.

Proof. Let (x∗, y∗, u∗, w∗) with x∗, y∗ ∈ H, h1(x∗), h2(y∗) ∈ Kr , and u∗ ∈ T1(y∗, x∗), w∗ ∈
T2(x∗, y∗) be a solution of the system (3.1). If ρu∗ + h1(x∗) − g1(y∗) = 0, because the vector
zero always belongs to any normal cone, then 0 ∈ ρu∗ + h1(x∗) − g1(y∗) + NP

Kr
(h1(x∗)). If

ρu∗ + h1(x∗) − g1(y∗)/= 0, then, for all x ∈ Hwith g1(x) ∈ Kr , one has

〈−(ρu∗ + h1(x∗) − g1
(
y∗)), g1(x) − h1(x∗)

〉 ≤ 1
2r

∥∥g1(x) − h1(x∗)
∥∥2
. (3.3)

Now, by Lemma 2.3, one gets −(ρu∗ + h1(x∗) − g1(y∗)) ∈ NP
Kr
(h1(x∗)), and so

0 ∈ ρu∗ + h1(x∗) − g1
(
y∗) +NP

Kr
(h1(x∗)). (3.4)

Similarly, one can establish

0 ∈ ηw∗ + h2
(
y∗) − g2(x∗) +NP

Kr

(
h2
(
y∗)). (3.5)
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Conversely, if (x∗, y∗, u∗, w∗) with x∗, y∗ ∈ H, h1(x∗), h2(y∗) ∈ Kr , and u∗ ∈ T1(y∗, x∗), w∗ ∈
T2(x∗, y∗) is a solution of the system (3.2), then, in view of Definition 2.8, x∗, y∗ ∈ H and
u∗ ∈ T1(y∗, x∗), w∗ ∈ T2(x∗, y∗)with h1(x∗), h2(y∗) ∈ Kr are a solution of the system (3.1).

The problem (3.2) is called the extended general nonlinear nonconvex set-valued
variational inclusion system associated with the system of extended general nonlinear
regularized nonconvex set-valued variational inequalities (3.1).

Some special cases of the system (3.1) are as follows.

Case 1. If r = ∞; that is, Kr = K, the convex set in H, then the system (3.1) collapses to the
following system.

Find x∗, y∗ ∈ H and u∗ ∈ T1(y∗, x∗), w∗ ∈ T2(x∗, y∗) such that h1(x∗), h2(y∗) ∈ K and

〈
ρu∗ + h1(x∗) − g1

(
y∗), g1(x) − h1(x∗)

〉 ≥ 0, ∀x ∈ H : g1(x) ∈ K,

〈
ηw∗ + h2

(
y∗) − g2(x∗), g2(x) − h2

(
y∗)〉 ≥ 0, ∀x ∈ H : g2(x) ∈ K,

(3.6)

which is called the system of extended general nonlinear set-valued variational inequalities in the
sense of convex analysis.

Case 2. If T1, T2 : H×H → H are two nonlinear single-valued operators, hi ≡ I, the identity
operator, and gi = g(i = 1, 2), then the system (3.6) reduces to the system of finding x∗, y∗ ∈ K
such that

〈
ρT1

(
y∗, x∗) + x∗ − g

(
y∗), g(x) − x∗〉 ≥ 0, ∀x ∈ H : g(x) ∈ K,

〈
ηT2

(
x∗, y∗) + y∗ − g(x∗), g(x) − y∗〉 ≥ 0, ∀x ∈ H : g(x) ∈ K,

(3.7)

which has been considered and studied by Noor [26].

Case 3. If r = ∞; that is, Kr = K, T1, T2 : H → H are two univariate nonlinear single-
valued operators, and hi = gi = g(i = 1, 2), then the system (3.1) changes into that of finding
x∗, y∗ ∈ K such that g(x∗), g(y∗) ∈ K and

〈
ρT1

(
y∗) + g(x∗) − g

(
y∗), g(x) − g(x∗)

〉 ≥ 0, ∀x ∈ H : g(x) ∈ K,

〈
ηT2(x∗) + g

(
y∗) − g(x∗), g(x) − g

(
y∗)〉 ≥ 0, ∀x ∈ H : g(x) ∈ K,

(3.8)

which has been introduced and studied by Yang et al. [34].

Case 4. If T1 = T2 = T , then the problem (3.7) is equivalent to finding x∗, y∗ ∈ K such that

〈
ρT

(
y∗, x∗) + x∗ − g

(
y∗), g(x) − x∗〉 ≥ 0, ∀x ∈ H : g(x) ∈ K,

〈
ηT

(
x∗, y∗) + y∗ − g(x∗), g(x) − y∗〉 ≥ 0, ∀x ∈ H : g(x) ∈ K,

(3.9)

which was considered and investigated by Noor [26].



8 Journal of Applied Mathematics

Case 5. If g ≡ I, then the system (3.7) reduces to the system of finding x∗, y∗ ∈ K such that

〈
ρT1

(
y∗, x∗) + x∗ − y∗, x − x∗〉 ≥ 0, ∀x ∈ K,

〈
ηT2

(
x∗, y∗) + y∗ − x∗, x − y∗〉 ≥ 0, ∀x ∈ K,

(3.10)

which has been considered and studied by Huang and Noor [22].

Case 6. If g ≡ I, then the system (3.9) changes into that of finding x∗, y∗ ∈ K such that

〈
ρT

(
y∗, x∗) + x∗ − y∗, x − x∗〉 ≥ 0, ∀x ∈ K,

〈
ηT

(
x∗, y∗) + y∗ − x∗, x − y∗〉 ≥ 0, ∀x ∈ K.

(3.11)

The system (3.11) has been studied and investigated by Chang et al. [15] and Verma [33].

Case 7. If T : H → H is an univariate nonlinear operator, then the system (3.11) reduces to
the following system: find x∗, y∗ ∈ K such that

〈
ρT

(
y∗) + x∗ − y∗, x − x∗〉 ≥ 0, ∀x ∈ K,

〈
ηT(x∗) + y∗ − x∗, x − y∗〉 ≥ 0, ∀x ∈ K,

(3.12)

which has been introduced and studied by Verma [31, 32].

Case 8. If x∗ = y∗, then the system (3.12) collapses to the following problem.
Find x∗ ∈ K such that

〈Tx∗, x − x∗〉 ≥ 0, ∀x ∈ K. (3.13)

Inequality of type (3.13) is called variational inequality, which was introduced and studied by
Stampacchia [1] in 1964.

4. Perturbed Projection Iterative Algorithms

In this section, by using the projection operator technique, we first verify the equivalence
between the extended general nonlinear regularized nonconvex set-valued variational
inequalities (3.1) and the fixed point problems. Then, by using the obtained fixed point
formulation, we construct two new perturbed projection iterative algorithms with mixed
errors for solving the systems (3.1) and (3.6).
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Lemma 4.1. Let Ti, gi, hi(i = 1, 2), ρ, and η be the same as in the system (3.1). Then (x∗, y∗, u∗, w∗)
with x∗, y∗ ∈ H, h1(x∗), h2(y∗) ∈ Kr , and u∗ ∈ T1(y∗, x∗), w∗ ∈ T2(x∗, y∗) is a solution of the
system (3.1), if and only if

h1(x∗) = PKr

(
g1
(
y∗) − ρu∗),

h2
(
y∗) = PKr

(
g2(x∗) − ηw∗),

(4.1)

where PKr is the projection of H onto the uniformly prox-regular set Kr .

Proof. Let (x∗, y∗, u∗, w∗) with x∗, y∗ ∈ H, h1(x∗), h2(y∗) ∈ Kr , and u∗ ∈ T1(y∗, x∗), w∗ ∈
T2(x∗, y∗) be a solution of the system (3.1). Then, in view of Lemma 3.1, we have

0 ∈ ρu∗ + h1(x∗) − g1
(
y∗) +NP

Kr
(h1(x∗)),

0 ∈ ηw∗ + h2
(
y∗) − g2(x∗) +NP

Kr

(
h2
(
y∗)),

(4.2)

⇐⇒

g1
(
y∗) − ρu∗ ∈

(
I +NP

Kr

)
(h1(x∗)),

g2(x∗) − ηw∗ ∈
(
I +NP

Kr

)(
h2
(
y∗)),

(4.3)

⇐⇒

h1(x∗) = PKr

(
g1
(
y∗) − ρu∗),

h2
(
y∗) = PKr

(
g2(x∗) − ηw∗),

(4.4)

where I is identity operator, and we have used the well-known fact that PKr = (I+NP
Kr
)−1.

Remark 4.2. The equality (4.1) can be written as follows:

z = g1
(
y∗) − ρu∗, t = g2(x∗) − ηw∗,

h1(x∗) = PKr (z), h2
(
y∗) = PKr (t),

(4.5)

where ρ, η > 0 are two constants.

The fixed point formulation (4.5) enables us to construct the following perturbed
iterative algorithms with mixed errors.
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Algorithm 4.3. Let Ti, gi, hi(i = 1, 2), ρ, and η be the same as in the system (3.1) such that
hi : H → H be an onto operator for i = 1, 2. For arbitrary chosen initial point (z0, t0) ∈ H×H,
compute the iterative sequence {(xn, yn, un,wn)}∞n=0 by using

h1(xn) = PKr (zn), h2
(
yn

)
= PKr (tn),

zn+1 = (1 − α)zn + α
(
g1
(
yn

) − ρun + en
)
+ rn,

tn+1 = (1 − α)tn + α
(
g2(xn) − ηwn + pn

)
+ kn,

un ∈ T1
(
yn, xn

)
, ‖un − un+1‖ ≤

(
1 + (1 + n)−1

)
Ĥ
(
T1
(
yn, xn

)
, T1

(
yn+1, xn+1

))
,

wn ∈ T2
(
xn, yn

)
, ‖wn −wn+1‖ ≤

(
1 + (1 + n)−1

)
Ĥ
(
T2
(
xn, yn

)
, T2

(
xn+1, yn+1

))
,

(4.6)

where initial points u0 ∈ T1(y0, x0) and w0 ∈ T2(x0, y0) are chosen arbitrary, 0 < α ≤ 1
is a parameter and {en}∞n=0, {pn}∞n=0, {rn}∞n=0 and {kn}∞n=0 are four sequences in H to take
into account a possible inexact computation of the resolvent operator point satisfying the
following conditions:

lim
n→∞

en = lim
n→∞

pn = lim
n→∞

rn = lim
n→∞

kn = 0,

∞∑

n=1

‖en − en−1‖ < ∞,
∞∑

n=1

∥∥pn − pn−1
∥∥ < ∞,

∞∑

n=1

‖rn − rn−1‖ < ∞,
∞∑

n=1

‖kn − kn−1‖ < ∞.

(4.7)

Algorithm 4.4. Let Ti, gi, hi(i = 1, 2), ρ, and η be the same as in the system (3.6) such that
hi : H → H is an onto operator for i = 1, 2. For arbitrary chosen initial point (z0, t0) ∈ H×H,
compute the iterative sequence {(xn, yn, un,wn)}∞n=0 by using

h1(xn) = PK(zn), h2
(
yn

)
= PK(tn),

zn+1 = (1 − α)zn + α
(
g1
(
yn

) − ρun + en
)
+ rn,

tn+1 = (1 − α)tn + α
(
g2(xn) − ηwn + pn

)
+ kn,

un ∈ T1
(
yn, xn

)
, ‖un − un+1‖ ≤

(
1 + (1 + n)−1

)
Ĥ
(
T1
(
yn, xn

)
, T1

(
yn+1, xn+1

))
,

wn ∈ T2
(
xn, yn

)
, ‖wn −wn+1‖ ≤

(
1 + (1 + n)−1

)
Ĥ
(
T2
(
xn, yn

)
, T2

(
xn+1, yn+1

))
,

(4.8)

where initial points u0 ∈ T1(y0, x0) and w0 ∈ T2(x0, y0) are chosen arbitrary, the parameter α
and the sequences {en}∞n=0, {pn}∞n=0, {rn}∞n=0, and {kn}∞n=0 are the same as in Algorithm 4.3.
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Remark 4.5. It should be pointed that

(a) when rn = kn = 0, for all n ≥ 0, Algorithms 4.3 and 4.4 reduce to the perturbed
iterative process with mean errors;

(b) if en = pn = rn = kn = 0, for all n ≥ 0, then Algorithms 4.3 and 4.4 change into the
perturbed iterative process without error.

5. Main Results

In this section, we establish the strongly convergence of the sequence generated by the
perturbed projection iterative Algorithms 4.3 and 4.4.

Theorem 5.1. Let Ti, gi, hi(i = 1, 2), ρ, and η be the same as in the system (3.1) such that, for each
i = 1, 2,

(a) Ti is θi-strongly monotone with respect to gi and γi-Ĥ-Lipschitz continuous in the first
variable;

(b) hi is πi-strongly monotone and δi-Lipschitz continuous;

(c) gi is σi-Lipschitz continuous.

If the constants ρ and η satisfy the following conditions:

∣∣∣∣∣
ρ − θ1

γ21

∣∣∣∣∣
<

√
r2θ2

1 − γ21

(
r2σ2

1 − (r − r ′)2
(
1 − μ2

)2)

rγ21
,

∣∣∣∣∣
η − θ2

γ22

∣∣∣∣∣
<

√
r2θ2

2 − γ22

(
r2σ2

2 − (r − r ′)2
(
1 − μ1

)2)

rγ22
,

rθ1 > γ1

√
r2σ2

1 − (r − r ′)2
(
1 − μ2

)2
,

rθ2 > γ2

√
r2σ2

2 − (r − r ′)2
(
1 − μ1

)2
,

rσ1 >
(
r − r ′

)(
1 − μ2

)
, rσ2 >

(
r − r ′

)(
1 − μ1

)
,

μi =
√
1 − (

2πi − δ2
i

)
< 1, 2πi < 1 + δ2

i , (i = 1, 2),

(5.1)

where r ′ ∈ (0, r), then there exist x∗, y∗ ∈ H with h1(x∗), h2(y∗) ∈ Kr and u∗ ∈ T1(y∗, x∗),
w∗ ∈ T2(x∗, y∗) such that (x∗, y∗, u∗, w∗) is a solution of the system (3.1), and the sequence
{(xn, yn, un,wn)}∞n=0 generated by Algorithm 4.3 converges strongly to (x∗, y∗, u∗, w∗).

Proof. It follows from (4.6) that

‖zn+1 − zn‖ ≤ (1 − α)‖zn − zn−1‖ + α
∥∥g1

(
yn

) − g1
(
yn−1

) − ρ(un − un−1)
∥∥

+ α‖en − en−1‖ + ‖rn − rn−1‖.
(5.2)
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Since T1 is θ1-strongly monotone with respect to g1 and γ1-Ĥ-Lipschitz continuous in the first
variable and g1 is σ1-Lipschitz continuous, we conclude that

∥
∥g1

(
yn

) − g1
(
yn−1

) − ρ(un − un−1)
∥
∥2

=
∥
∥g1

(
yn

) − g1
(
yn−1

)∥∥2 − 2ρ
〈
un − un−1, g1

(
yn

) − g1
(
yn−1

)〉
+ ρ2‖un − un−1‖2

≤
(
σ2
1 − 2ρθ1

)∥
∥yn − yn−1

∥
∥2 + ρ2

(
1 + n−1

)2(
Ĥ
(
T1
(
yn, xn

)
, T1

(
yn−1, xn−1

)))2

≤
(
σ2
1 − 2ρθ1 + ρ2

(
1 + n−1

)2
γ21

)∥
∥yn − yn−1

∥
∥2
.

(5.3)

Substituting (5.3) in (5.2), we get

‖zn+1 − zn‖ ≤ (1 − α)‖zn − zn−1‖ + α
√
σ2
1 − 2ρθ1 + ρ2

(
1 + n−1)2γ21

∥∥yn − yn−1
∥∥

+ α‖en − en−1‖ + ‖rn − rn−1‖.
(5.4)

Like the proof (5.4), by using (4.6), we can prove that

‖tn+1 − tn‖ ≤ (1 − α)‖tn − tn−1‖ + α
√
σ2
2 − 2ηθ2 + η2

(
1 + n−1)2γ22 ‖xn − xn−1‖

+ α
∥∥pn − pn−1

∥∥ + ‖kn − kn−1‖.
(5.5)

On the other hand, by using (4.6) and Proposition 2.10, we find that

‖xn − xn−1‖ ≤ ‖xn − xn−1 − (h1(xn) − h1(xn−1))‖ + ‖h1(xn) − h1(xn−1)‖
= ‖xn − xn−1 − (h1(xn) − h1(xn−1))‖ + ‖PKr (zn) − PKr (zn−1)‖

≤ ‖xn − xn−1 − (h1(xn) − h1(xn−1))‖ + r

r − r ′
‖zn − zn−1‖.

(5.6)

From π1-strongly monotonicity and δ1-Lipschitz continuity of h1, we have

‖xn − xn−1 − (h1(xn) − h1(xn−1))‖2

= ‖xn − xn−1‖2 − 2〈h1(xn) − h1(xn−1), xn − xn−1〉 + ‖h1(xn) − h1(xn−1)‖2

≤
(
1 − 2π1 + δ2

1

)
‖xn − xn−1‖2.

(5.7)

Substituting (5.7) in (5.6), we obtain

‖xn − xn−1‖ ≤
√
1 − 2π1 + δ2

1‖xn − xn−1‖ + r

r − r ′
‖zn − zn−1‖, (5.8)
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which leads to

‖xn − xn−1‖ ≤ r

(r − r ′)
(
1 −

√
1 − 2π1 + δ2

1

)‖zn − zn−1‖.
(5.9)

In similar way to the proofs (5.6)–(5.9), we can prove that

∥
∥yn − yn−1

∥
∥ ≤ r

(r − r ′)
(
1 −

√
1 − 2π2 + δ2

2

)‖tn − tn−1‖.
(5.10)

It follows from (5.4) and (5.10) that

‖zn+1 − zn‖ ≤ (1 − α)‖zn − zn−1‖ + α
r
√
σ2
1 − 2ρθ1 + ρ2

(
1 + n−1)2γ21

(r − r ′)
(
1 −

√
1 − 2π2 + δ2

2

) ‖tn − tn−1‖

+ α‖en − en−1‖ + ‖rn − rn−1‖.

(5.11)

From (5.5) and (5.9), it follows that

‖tn+1 − tn‖ ≤ (1 − α)‖tn − tn−1‖ + α
r
√
σ2
2 − 2ηθ2 + η2

(
1 + n−1)2γ22

(r − r ′)
(
1 −

√
1 − 2π1 + δ2

1

) ‖zn − zn−1‖

+ α
∥∥pn − pn−1

∥∥ + ‖kn − kn−1‖.

(5.12)

Now define ‖ · ‖∗ on H×H by ‖(x, y)‖∗ = ‖x‖ + ‖y‖, for all (x, y) ∈ H ×H. It is obvious that
(H×H, ‖ · ‖∗) is a Hilbert space. Applying (5.11) and (5.12), one has

‖(zn+1, tn+1) − (zn, tn)‖∗ ≤ (1 − α)‖(zn, tn) − (zn−1, tn−1)‖∗ + αϑ(n)‖(zn, tn) − (zn−1, tn−1)‖∗

+ α
∥∥(en, pn

) − (
en−1, pn−1

)∥∥
∗ + ‖(rn, kn) − (rn−1, kn−1)‖∗,

(5.13)

where

ϑ(n) = max

⎧
⎪⎪⎨

⎪⎪⎩

r
√
σ2
1 − 2ρθ1 + ρ2

(
1 + n−1)2γ21

(r − r ′)
(
1 −

√
1 − 2π2 + δ2

2

) ,
r
√
σ2
2 − 2ηθ2 + η2

(
1 + n−1)2γ22

(r − r ′)
(
1 −

√
1 − 2π1 + δ2

1

)

⎫
⎪⎪⎬

⎪⎪⎭
. (5.14)
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Obviously, ϑ(n) → ϑ, as n → ∞, where

ϑ = max

⎧
⎪⎪⎨

⎪⎪⎩

r
√
σ2
1 − 2ρθ1 + ρ2γ21

(r − r ′)
(
1 −

√
1 − 2π2 + δ2

2

) ,
r
√
σ2
2 − 2ηθ2 + η2γ22

(r − r ′)
(
1 −

√
1 − 2π1 + δ2

1

)

⎫
⎪⎪⎬

⎪⎪⎭
. (5.15)

In view of the condition (5.1), we know that 0 ≤ ϑ < 1. Then, for ϑ̂ = (1/2)(ϑ + 1) ∈ (ϑ, 1),
there exists n0 ≥ 1 such that ϑ(n) < ϑ̂ for each n ≥ n0. Thus, it follows from (5.13) that, for
each n ≥ n0,

‖(zn+1, tn+1) − (zn, tn)‖∗
≤ (1 − α)‖(zn, tn) − (zn−1, tn−1)‖∗ + αϑ̂‖(zn, tn) − (zn−1, tn−1)‖∗
+ α

∥∥(en, pn
) − (

en−1, pn−1
)∥∥

∗ + ‖(rn, kn) − (rn−1, kn−1)‖∗

=
(
1 − α

(
1 − ϑ̂

))
‖(zn, tn) − (zn−1, tn−1)‖∗ + α

∥∥(en, pn
) − (

en−1, pn−1
)∥∥

∗

+ ‖(rn, kn) − (rn−1, kn−1)‖∗

≤
(
1 − α

(
1 − ϑ̂

))[(
1 − α

(
1 − ϑ̂

))
‖(zn−1, tn−1) − (zn−2, tn−2)‖∗

+α
∥∥(en−1, pn−1

) − (
en−2, pn−2

)∥∥
∗ + ‖(rn−1, kn−1) − (rn−2, kn−2)‖∗

]

+ α
∥∥(en, pn

) − (
en−1, pn−1

)∥∥
∗ + ‖(rn, kn) − (rn−1, kn−1)‖∗

=
(
1 − α

(
1 − ϑ̂

))2
‖(zn−1, tn−1) − (zn−2, tn−2)‖∗

+ α
[(

1 − α
(
1 − ϑ̂

))∥∥(en−1, pn−1
) − (

en−2, pn−2
)∥∥

∗ +
∥∥(en, pn

) − (
en−1, pn−1

)∥∥
∗
]

+
(
1 − α

(
1 − ϑ̂

))
‖(rn−1, kn−1) − (rn−2, kn−2)‖∗ + ‖(rn, kn) − (rn−1, kn−1)‖∗

≤
...

≤
(
1 − α

(
1 − ϑ̂

))n−n0‖(zn0+1, tn0+1) − (zn0 , tn0)‖∗

+ α
n−n0∑

i=1

(
1 − α

(
1 − ϑ̂

))i−1∥∥(en−(i−1), pn−(i−1)
) − (

en−i, pn−i
)∥∥

∗

+
n−n0∑

i=1

(
1 − α

(
1 − ϑ̂

))i−1∥∥(rn−(i−1), kn−(i−1)
) − (rn−i, kn−i)

∥∥
∗.

(5.16)



Journal of Applied Mathematics 15

Hence, for any m ≥ n > n0, we have

‖(zm, tm) − (zn, tn)‖∗ ≤
m−1∑

j=n

∥
∥(zj+1, tj+1

) − (
zj , tj

)∥∥
∗

≤
m−1∑

j=n

(
1 − α

(
1 − ϑ̂

))j−n0‖(zn0+1, tn0+1) − (zn0 , tn0)‖∗

+ α
m−1∑

j=n

j−n0∑

i=1

(
1 − α

(
1 − ϑ̂

))i−1∥
∥(en−(i−1), pn−(i−1)

) − (
en−i, pn−i

)∥∥
∗

+
m−1∑

j=n

j−n0∑

i=1

(
1 − α

(
1 − ϑ̂

))i−1∥
∥(rn−(i−1), kn−(i−1)

) − (rn−i, kn−i)
∥
∥
∗.

(5.17)

Since 1 − α(1 − ϑ̂) ∈ (0, 1), it follows from (4.7) and (5.17) that ‖(zm, tm) − (zn, tn)‖∗ = ‖zm −
zn‖ + ‖tm − tn‖ → 0, as n → ∞. Hence, {zn} and {tn} are both Cauchy sequences in H, and
so there exist z∗ and t∗ ∈ H such that zn → z∗ and tn → t∗, as n → ∞. By the inequalities
(5.9) and (5.10), it follows that the sequences {xn} and {yn} are both also Cauchy inH. Thus,
there exist x∗, y∗ ∈ H such that xn → x∗ and yn → y∗, as n → ∞. Since for i = 1, 2, Ti is
γi-Ĥ-Lipschitz continuous in the first variable, it follows from (4.6) that

‖un − un+1‖ ≤
(
1 + (1 + n)−1

)
Ĥ
(
T1
(
yn, xn

)
, T1

(
yn+1, xn+1

))

≤
(
1 + (1 + n)−1

)
γ1
∥∥yn − yn+1

∥∥ −→ 0,

‖wn −wn+1‖ ≤
(
1 + (1 + n)−1

)
Ĥ
(
T2
(
xn, yn

)
, T2

(
xn+1, yn+1

))

≤
(
1 + (1 + n)−1

)
γ2‖xn − xn+1‖ −→ 0,

(5.18)

as n → ∞. Hence, {un} and {wn} are also both Cauchy sequences in H and so there exist
u∗, w∗ ∈ H such that un → u∗ and wn → w∗, as n → ∞. Further, noting un ∈ T1(yn, xn), we
have

d
(
u∗, T1

(
y∗, x∗)) = inf

{∥∥u∗ − q
∥∥ : q ∈ T1

(
y∗, x∗)}

≤ ‖u∗ − un‖ + d
(
un, T1

(
y∗, x∗))

≤ ‖u∗ − un‖ + Ĥ
(
T1
(
yn, xn

)
, T1

(
y∗, x∗))

≤ ‖u∗ − un‖ + γ1
∥∥yn − y∗∥∥.

(5.19)

Since wn ∈ T2(xn, yn), like the proof (5.19), we obtain

d
(
w∗, T2

(
x∗, y∗)) ≤ ‖w∗ −wn‖ + γ2‖xn − x∗‖. (5.20)
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The right sides of the inequalities (5.19) and (5.20) tend to zero as n → ∞. Hence, u∗ ∈
T1(y∗, x∗) and w∗ ∈ T2(x∗, y∗). Since the operators g1 and g2 are continuous, it follows from
(4.6) and (4.7) that

z∗ = g1
(
y∗) − ρu∗, t∗ = g2(x∗) − ηw∗. (5.21)

Since the operators h1, h2, and PKr are continuous, it follows from (4.6) and (5.21) that

h1(x∗) = PKr (z
∗) = PKr

(
g1
(
y∗) − ρu∗), h2

(
y∗) = PKr (t

∗) = PKr

(
g2(x∗) − ηw∗). (5.22)

Now, Lemma 4.1 guarantees that (x∗, y∗, u∗, w∗) is a solution of the system (3.1). This
completes the proof.

Theorem 5.2. Let Ti, gi, hi(i = 1, 2), ρ, and η be the same as in the system (3.6) such that, for each
i = 1, 2,

(a) Ti is θi-strongly monotone with respect to gi and γi-Ĥ-Lipschitz continuous in the first
variable;

(b) hi is πi-strongly monotone and δi-Lipschitz continuous;

(c) gi is σi-Lipschitz continuous.

If the constants ρ and η satisfy the following conditions:

∣∣∣∣∣
ρ − θ1

γ21

∣∣∣∣∣
<

√
θ2
1 − γ21

(
σ2
1 −

(
1 − μ2

)2)

γ21
,

∣∣∣∣∣
η − θ2

γ22

∣∣∣∣∣
<

√
θ2
2 − γ22

(
σ2
2 −

(
1 − μ1

)2)

γ22
,

θ1 > γ1

√
σ2
1 −

(
1 − μ2

)2
,

θ2 > γ2

√
σ2
2 −

(
1 − μ1

)2
,

σ1 + μ2 > 1, σ2 + μ1 > 1,

μi =
√
1 − (

2πi − δ2
i

)
< 1, 2πi < 1 + δ2

i , (i = 1, 2),

(5.23)

then there exist x∗, y∗ ∈ H with h1(x∗), h2(y∗) ∈ K and u∗ ∈ T1(y∗, x∗), w∗ ∈ T2(x∗, y∗) such that
(x∗, y∗, u∗, w∗) is a solution of the system (3.6) and the sequence {(xn, yn, un,wn)}∞n=0 generated by
Algorithm 4.4 converges strongly to (x∗, y∗, u∗, w∗).

Remark 5.3. Using the method presented in this paper, one can extend Theorems 5.1 and 5.2
to a system of n-generalized variational inequalities.
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