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We firstly employ the fixed point theory to study the stability of cellular neural networks
without delays and with time-varying delays. Some novel and concise sufficient conditions are
given to ensure the existence and uniqueness of solution and the asymptotic stability of trivial
equilibrium at the same time. Moreover, these conditions are easily checked and do not require the
differentiability of delays.

1. Introduction

Cellular neural networks (CNNs)were firstly proposed by Chua and Yang in 1988 [1, 2] and
have become a research focus for their numerous successful applications in various fields
such as optimization, linear, and nonlinear programming, associative memory, pattern recog-
nition, and computer vision. Owing to the finite switching speed of neurons and amplifiers
in the implementation of neural networks, it turns out that the time delays are inevitable
and therefore the model of delayed cellular neural networks (DCNNs) is of greater realistic
significance. Research on the dynamic behaviors of CNNs and DCNNs has received much
attention, and nowadays there have been a large number of achievements reported [3–5].

In fact, besides delay effects, stochastic and impulsive as well as diffusing effects are
also likely to exist in the neural networks. As a result, they have formed complex CNNs
including impulsive delayed reaction-diffusion CNNs, stochastic delayed reaction-diffusion
CNNs, and so forth. One can refer to [6–11] for the relevant researches. Synthesizing the
existing publications about complex CNNs, we find that Lyapunov method is the primary
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technique. However, we also notice that there exist lots of difficulties in the applications of
corresponding results to practical problems and so it does seem that newmethods are needed
to address those difficulties.

Encouragingly, Burton and other authors have recently applied the fixed point theory
to investigate the stability of deterministic systems and obtained more applicable results, for
example, see the monograph [12] and the papers [13–24]. Furthermore, there has been found
that the fixed point theory is also effective to the stability analysis of stochastic (delayed)
differential equations, see [25–31]. Particularly, in [26–28], Luo used the fixed point theory to
study the exponential stability of mild solutions of stochastic partial differential equations
with bounded delays and with infinite delays. In [29, 30], Sakthivel and Luo used the
fixed point theory to investigate the asymptotic stability in pth moment of mild solutions to
nonlinear impulsive stochastic partial differential equations with bounded delays and with
infinite delays. In [31], Luo used the fixed point theory to study the exponential stability of
stochastic Volterra-Levin equations. With these motivations, we wonder if we can use the
fixed point theory to study the stability of complex neural networks, thus obtaining more
applicable results.

In the present paper, we aim to discuss the asymptotic stability of CNNs and
DCNNs. Our method is based on the contraction mapping theory, which is different from
the usual method of Lyapunov theory. Some new and easily checked algebraic criteria are
presented ensuring the existence and uniqueness of solution and the asymptotic stability
of trivial equilibrium at the same time. These sufficient conditions do not require even the
differentiability of delays, let alone the monotone decreasing behavior of delays.

2. Preliminaries

Let Rn denote the n-dimensional Euclidean space and ‖ · ‖ represent the Euclidean norm.
N � {1, 2, . . . , n}. R+ = [0,∞). C(X,Y ) corresponds to the space of continuous mappings
from the topological space X to the topological space Y .

In this paper, we consider the cellular neural network described by

dxi(t)
dt

= −aixi(t) +
n∑

j=1

bijfj
(
xj(t)

)
, t ≥ 0, (2.1)

xi(0) = x0i, (2.2)

and the following cellular neural network with time-varying delays as

dxi(t)
dt

= −aixi(t) +
n∑

j=1

bijfj
(
xj(t)

)
+

n∑

j=1

cijgj
(
xj

(
t − τj(t)

))
, t ≥ 0 (2.3)

xi(s) = ϕi(s), −τ ≤ s ≤ 0, (2.4)

where i ∈ N and n is the number of neurons in the neural network. xi(t) corresponds to the
state of the ith neuron at time t. x0 = (x01, . . . , x0n)

T ∈ Rn. fj(xj(t)) denotes the activation
function of the jth neuron at time t and gj(xj(t − τj(t))) is the activation function of the jth
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neuron at time t − τj(t). The constant bij represents the connection weight of the jth neuron
on the ith neuron at time t. The constant ai > 0 represents the rate with which the ith
neuron will reset its potential to the resting state when disconnected from the network and
external inputs. The constant cij represents the connection strength of the jth neuron on the
ith neuron at time t − τj(t), where τj(t) corresponds to the transmission delay along the
axon of the jth neuron and satisfies 0 ≤ τj(t) ≤ τ (τ is a constant). fj(·), gj(·) ∈ C(R,R).
ϕ(s) = (ϕ1(s), . . . , ϕn(s))

T ∈ Rn and ϕi(s) ∈ C([−τ, 0],R). Denote |ϕ| = sups∈[−τ,0]‖ϕ(s)‖.
Throughout this paper, we always assume that fj(0) = gj(0) = 0 for j ∈ N and

therefore (2.1) and (2.3) admit a trivial equilibrium x = 0.
Denote by x(t; 0, x0) = (x1(t; 0, x01), . . . , xn(t; 0, x0n))

T ∈ Rn the solution of (2.1)with the
initial condition (2.2) and denote by x(t; s, ϕ) = (x1(t; s, ϕ1), . . . , xn(t; s, ϕn))

T ∈ Rn the solution
of (2.3)with the initial condition (2.4).

Definition 2.1 (see [32]). The trivial equilibrium x = 0 of (2.1) is said to be stable if for any
ε > 0, there exists δ > 0 such that for any initial condition x0 satisfying ‖x0‖ < δ,

‖x(t; 0, x0)‖ < ε, t ≥ 0. (2.5)

Definition 2.2 (see [32]). The trivial equilibrium x = 0 of (2.1) is said to be asymptotically
stable if it is stable and for any x0 ∈ Rn,

lim
t→∞

‖x(t; 0, x0)‖ = 0. (2.6)

Definition 2.3 (see [32]). The trivial equilibrium x = 0 of (2.3) is said to be stable if for any
ε > 0, there exists δ > 0 such that for any initial condition ϕ(s) ∈ C([−τ, 0],Rn) satisfying
|ϕ| < δ,

∥∥x
(
t; s, ϕ

)∥∥ < ε, t ≥ 0. (2.7)

Definition 2.4 (see [32]). The trivial equilibrium x = 0 of (2.3) is said to be asymptotically
stable if it is stable and for any initial condition ϕ(s) ∈ C([−τ, 0],Rn),

lim
t→∞

∥∥x
(
t; s, ϕ

)∥∥ = 0. (2.8)

The consideration of this paper is based on the following fixed point theorem.

Lemma 2.5 (see [33]). Let Υ be a contraction operator on a complete metric spaceΘ, then there exists
a unique point ζ ∈ Θ for which Υ(ζ) = ζ.

3. Asymptotic Stability of Cellular Neural Networks

In this section, we will simultaneously consider the existence and uniqueness of solution
to (2.1)-(2.2) and the asymptotic stability of trivial equilibrium x = 0 of (2.1) by means
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of the contraction mapping principle. Before proceeding, we firstly introduce the following
assumption:

(A1) There exist nonnegative constants lj such that for η, υ ∈ R,

∣∣fj
(
η
) − fj(υ)

∣∣ ≤ lj
∣∣η − υ

∣∣, j ∈ N. (3.1)

Let S = S1 × S2 × · · · × Sn, where Si (i ∈ N) is the space consisting of continuous
functions φi(t) : R+ → R such that φi(0) = x0i and φi(t) → 0 as t → ∞, here x0i is the same
as defined in Section 2. Also S is a complete metric space when it is equipped with a metric
defined by

d
(
q(t),h(t)

)
= sup

t≥0

n∑

i=1

∣∣qi(t) − hi(t)
∣∣, (3.2)

where q(t) = (q1(t), . . . , qn(t)) ∈ S and h(t) = (h1(t), . . . , hn(t)) ∈ S.

Theorem 3.1. Assume the condition (A1) holds. If the following inequalities hold

n∑

i=1

{
1
ai
max

j

{∣∣bij lj
∣∣}
}

< 1, max
i∈N

{λi} <
1√
n
, (3.3)

where λi = (1/ai)
∑n

j=1 |bij lj |, then the trivial equilibrium x = 0 of (2.1) is asymptotically stable.

Proof. Multiplying both sides of (2.1)with eait gives

deaitxi(t) = eaitdxi(t) + aixi(t)eaitdt = eait
n∑

j=1

bijfj
(
xj(t)

)
dt, t ≥ 0, i ∈ N, (3.4)

which yields after integrating from 0 to t as

xi(t) = x0i e−ait + e−ait
∫ t

0
eais

n∑

j=1

bijfj
(
xj(s)

)
ds, t ≥ 0, i ∈ N. (3.5)

Now, for any y(t) = (y1(t), . . . , yn(t)) ∈ S, we define the following operator Φ acting on S as

Φ(y)(t) =
(
Φ
(
y1
)
(t), . . . ,Φ

(
yn

)
(t)

)
, t ≥ 0, (3.6)

where

Φ
(
yi

)
(t) = x0i e−ait + e−ait

∫ t

0
eais

n∑

j=1

bijfj
(
yj(s)

)
ds, i ∈ N. (3.7)
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The following proof is based on the contraction mapping principle, which can be
divided into two steps as follows.

Step 1. We need to prove Φ(S) ⊂ S. Recalling the construction of S, we know that
it is necessary to show the continuity of Φ on [0,∞) and Φ(yi)(t)|t=0 = x0i as well as
limt→∞Φ(yi)(t) = 0 for i ∈ N.

From (3.7), it is easy to seeΦ(yi)(t)|t=0 = x0i. Moreover, for a fixed time t1 ≥ 0, we have

Φ
(
yi

)
(t1 + r) −Φ

(
yi

)
(t1) = x0i e−ai(t1+r)

− x0i e−ait1 + e−ai(t1+r)
∫ t1+r

0
eais

n∑

j=1

bijfj
(
yj(s)

)
ds

− e−ait1
∫ t1

0
eais

n∑

j=1

bijfj
(
yj(s)

)
ds.

(3.8)

It is not difficult to see that Φ(yi)(t1 + r) − Φ(yi)(t1) → 0 as r → 0 which implies Φ is
continuous on [0,∞).

Next we shall prove limt→∞Φ(yi)(t) = 0 for yi(t) ∈ Si. Since yj(t) ∈ Sj , we get
limt→∞yj(t) = 0. Then for any ε > 0, there exists a Tj > 0 such that s ≥ Tj implies |yj(s)| < ε.
Choose T ∗ = maxj∈N{Tj}. It is then derived form (A1) that

e−ait
∫ t

0
eais

n∑

j=1

bijfj
(
yj(s)

)
ds

≤ e−ait
∫ t

0
eais

n∑

j=1

{∣∣bij lj
∣∣∣∣yj(s)

∣∣}ds

= e−ait
∫T∗

0
eais

n∑

j=1

{∣∣bij lj
∣∣∣∣yj(s)

∣∣}ds + e−ait
∫ t

T∗
eais

n∑

j=1

{∣∣bij lj
∣∣∣∣yj(s)

∣∣}ds

≤ e−ait
n∑

j=1

{
∣∣bij lj

∣∣ sup
s∈[0,T∗]

∣∣yj(s)
∣∣
}{∫T∗

0
eaisds

}
+ εe−ait

n∑

j=1

{∣∣bij lj
∣∣}

∫ t

T∗
eaisds

≤ e−ait
n∑

j=1

{
∣∣bij lj

∣∣ sup
s∈[0,T∗]

∣∣yj(s)
∣∣
}{∫T∗

0
eaisds

}
+

ε

ai

n∑

j=1

{∣∣bij lj
∣∣}.

(3.9)

As ai > 0, we obtain e−ait
∫ t
0 e

ais
∑n

j=1 bijfj(yj(s))ds → 0 as t → ∞. So limt→∞Φ(yi)(t) = 0 for
i ∈ N. We therefore conclude that Φ(S) ⊂ S.
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Step 2. We need to prove Φ is contractive. For any y = (y1(t), . . . , yn(t)) ∈ S and z =
(z1(t), . . . , zn(t)) ∈ S, we compute

sup
t∈[0,T]

n∑

i=1

∣∣Φ
(
yi

)
(t) −Φ(zi)(t)

∣∣

≤ sup
t∈[0,T]

n∑

i=1

⎧
⎨

⎩e−ait
∫ t

0
eais

n∑

j=1

{∣∣bij
∣∣∣∣fj

(
yj(s)

) − fj
(
zj(s)

)∣∣}ds

⎫
⎬

⎭

≤ sup
t∈[0,T]

n∑

i=1

⎧
⎨

⎩e−ait
∫ t

0
eais

n∑

j=1

{∣∣bij lj
∣∣∣∣yj(s) − zj(s)

∣∣}ds

⎫
⎬

⎭

≤ sup
t∈[0,T]

n∑

i=1

⎧
⎨

⎩max
j∈N

{∣∣bij lj
∣∣} sup

s∈[0,T]

⎧
⎨

⎩

n∑

j=1

∣∣yj(s) − zj(s)
∣∣

⎫
⎬

⎭ e−ait
∫ t

0
eaisds

⎫
⎬

⎭

≤
n∑

i=1

{
1
ai
max
j∈N

{∣∣bij lj
∣∣}

}
sup
s∈[0,T]

⎧
⎨

⎩

n∑

j=1

∣∣yj(s) − zj(s)
∣∣

⎫
⎬

⎭.

(3.10)

As
∑n

i=1{(1/ai) maxj∈N{|bij lj |}} < 1, Φ is a contraction mapping.
Therefore, by the contraction mapping principle, we see there must exist a unique

fixed point u(·) of Φ in S which means uT(·) is the solution of (2.1)-(2.2) and ‖uT(·)‖ → 0 as
t → ∞.

To obtain the asymptotic stability, we still need to prove that the trivial equilibrium
x = 0 of (2.1) is stable. For any ε > 0, from the conditions of Theorem 3.1, we can find δ
satisfying 0 < δ < ε such that δ +maxi∈N{λi}ε ≤ ε/

√
n.

Let ‖x0‖ < δ. According to what have been discussed above, we know that there must
exist a unique solution x(t; 0, x0) = (x1(t; 0, x01), . . . , xn(t; 0, x0n))

T ∈ Rn to (2.1)-(2.2), and

xi(t) = Φ(xi)(t) = J1(t) + J2(t), t ≥ 0, (3.11)

where J1(t) = x0i e−ait, J2(t) = e−ait
∫ t
0 e

ais
∑n

j=1 bijfj(xj(s))ds.
Suppose there exists t∗ > 0 such that ‖x(t∗; 0, x0)‖ = ε and ‖x(t; 0, x0)‖ < ε as 0 ≤ t < t∗.

It follows from (3.11) that |xi(t∗)| ≤ |J1(t∗)| + |J2(t∗)|.
As |J1(t∗)| = |x0ie−ait

∗ | ≤ δ and |J2(t∗)| ≤ e−ait
∗ ∫ t∗

0 eais
∑n

j=1 |bij ljxj(s)|ds <

(ε/ai)
∑n

j=1 |bij lj |, we obtain |xi(t∗)| < δ + λiε. Hence

‖x(t∗; 0, x0)‖2 =
n∑

i=1

{
|xi(t∗)|2

}
<

n∑

i=1

{
|δ + λiε|2

}
≤ n

∣∣∣∣δ +max
i∈N

{λi}ε
∣∣∣∣
2

≤ ε2. (3.12)

This contradicts to the assumption of ‖x(t∗; 0, x0)‖ = ε. Therefore, ‖x(t; 0, x0)‖ < ε holds
for all t ≥ 0. This completes the proof.
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4. Asymptotic Stability of Delayed Cellular Neural Networks

In this section, we will simultaneously consider the existence and uniqueness of solution to
(2.3)-(2.4) and the asymptotic stability of trivial equilibrium x = 0 of (2.3) by means of the
contraction mapping principle. Before proceeding, we give the assumption as follows.

(A2) There exist nonnegative constants kj such that for η, υ ∈ R,

∣∣gj
(
η
) − gj(υ)

∣∣ ≤ kj
∣∣η − υ

∣∣, j ∈ N. (4.1)

LetH = H1×· · ·×Hn, whereHi (i ∈ N) is the space consisting of continuous functions
φi(t) : [−τ,∞) → R such that φi(s) = ϕi(s) on s ∈ [−τ, 0] and φi(t) → 0 as t → ∞, here ϕi(s)
is the same as defined in Section 2. Also H is a complete metric space when it is equipped
with a metric defined by

d
(
q(t),h(t)

)
= sup

t≥−τ

n∑

i=1

∣∣qi(t) − hi(t)
∣∣, (4.2)

where q(t) = (q1(t), . . . , qn(t)) ∈ H and h(t) = (h1(t), . . . , hn(t)) ∈ H.

Theorem 4.1. Assume the conditions (A1)-(A2) hold. If the following inequalities hold

n∑

i=1

{
1
ai

(
max
j∈N

∣∣bij lj
∣∣ +max

j∈N

∣∣cijkj
∣∣
)}

< 1, max
i∈N

{
λi

∗} <
1√
n

(4.3)

where λi
∗ = (1/ai)

∑n
j=1 |bij lj | + (1/ai)

∑n
j=1 |cijkj |, then the trivial equilibrium x = 0 of (2.3) is

asymptotically stable.

Proof. Multiplying both sides of (2.3)with eait gives

deaitxi(t) = eaitdxi(t) + aixi(t)eaitdt

= eait

⎧
⎨

⎩

n∑

j=1

bijfj
(
xj(t)

)
+

n∑

j=1

cijgj
(
xj

(
t − τj(t)

))
⎫
⎬

⎭dt,
(4.4)

which yields after integrating from 0 to t as

xi(t) = ϕi(0)e−ait + e−ait
∫ t

0
eais

⎧
⎨

⎩

n∑

j=1

bijfj
(
xj(s)

)
+

n∑

j=1

cijgj
(
xj

(
s − τj(s)

))
⎫
⎬

⎭ds. (4.5)

Now for any y(t) = (y1(t), . . . , yn(t)) ∈ H, we define the following operator π acting onH

π(y)(t) =
(
π
(
y1
)
(t), . . . , π

(
yn

)
(t)

)
, (4.6)
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where

π
(
yi

)
(t) = ϕi(0)e−ait + e−ait

∫ t

0
eais

⎧
⎨

⎩

n∑

j=1

bijfj
(
yj(s)

)
+

n∑

j=1

cijgj
(
yj

(
s − τj(s)

))
⎫
⎬

⎭ds, t ≥ 0,

(4.7)

and π(yi)(s) = ϕi(s) on s ∈ [−τ, 0] for i ∈ N.
Similar to the proof of Theorem 3.1, we shall apply the contraction mapping principle

to prove Theorem 4.1. The subsequent proof can be divided into two steps.
Step 1. We need prove π(H) ⊂ H. To prove π(H) ⊂ H, it is necessary to show the continuity
of π on [−τ,∞) and limt→∞π(yi)(t) = 0 for yi(t) ∈ Hi and i ∈ N. In light of (4.7), we have,
for a fixed time t1 ≥ 0,

π
(
yi

)
(t1 + r) − π

(
yi

)
(t1) = I1 + I2 + I3, (4.8)

where

I1 = ϕi(0) e−ai(t1+r) − ϕi(0) e−ait1 ,

I2 = e−ai(t1+r)
∫ t1+r

0
eais

n∑

j=1

bijfj
(
yj(s)

)
ds − e−ait1

∫ t1

0
eais

n∑

j=1

bijfj
(
yj(s)

)
ds,

I3 = e−ai(t1+r)
∫ t1+r

0
eais

n∑

j=1

cijgj
(
yj

(
s − τj(s)

))
ds − e−ait1

∫ t1

0
eais

n∑

j=1

cijgj
(
yj

(
s − τj(s)

))
ds.

(4.9)

It is easy to see that limr→ 0{π(yi)(t1 + r) − π(yi)(t1)} = 0. Thus, π is continuous on [0,∞).
Noting ϕi(s) ∈ C([−τ, 0],R) and π(yi)(0) = ϕi(0), we obtain π is indeed continuous on
[−τ,∞).

Next, we will prove limt→∞π(yi)(t) = 0 for yi(t) ∈ Hi. As we did in Section 3, we
know limt→∞e−ait = 0 and e−ait

∫ t
0 e

ais
∑n

j=1 bijfj(yj(s))ds → 0 as t → ∞. In what follows, we

will show e−ait
∫ t
0 e

ais
∑n

j=1 cijgj(yj(s − τj(s)))ds → 0 as t → ∞. In fact, since yj(t) ∈ Hj , we
have limt→∞yj(t) = 0. Then for any ε > 0, there exists a Tj

′ > 0 such that s ≥ Tj
′ − τ implies

|yj(s)| < ε. Select T̂ = maxj∈N{Tj ′}. It is then derived from (A2) that

e−ait
∫ t

0
eais

n∑

j=1

cijgj
(
yj

(
s − τj(s)

))
ds

≤ e−ait
∫ t

0
eais

n∑

j=1

{∣∣cijkj
∣∣∣∣yj

(
s − τj(s)

)∣∣}ds

= e−ait
∫ T̂

0
eais

n∑

j=1

{∣∣cijkj
∣∣∣∣yj

(
s − τj(s)

)∣∣}ds

+ e−ait
∫ t

T̂

eais
n∑

j=1

{∣∣cijkj
∣∣∣∣yj

(
s − τj(s)

)∣∣}ds
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≤ e−ait
n∑

j=1

⎧
⎨

⎩
∣∣cijkj

∣∣ sup
s∈[−τ,T̂]

∣∣yj(s)
∣∣

⎫
⎬

⎭

{∫ T̂

0
eaisds

}
+ εe−ait

n∑

j=1

{∣∣cijkj
∣∣}

∫ t

T̂

eaisds

≤ e−ait
n∑

j=1

⎧
⎨

⎩
∣∣cijkj

∣∣ sup
s∈[−τ,T̂]

∣∣yj(s)
∣∣

⎫
⎬

⎭

{∫ T̂

0
eaisds

}
+

ε

ai

n∑

j=1

{∣∣cijkj
∣∣}.

(4.10)

As limt→∞e−ait = 0, we obtain e−ait
∫ t
0 e

ais
∑n

j=1 cijgj(yj(s − τj(s)))ds → 0 as t → ∞, which
leads to limt→∞π(yi)(t) = 0 for yi(t) ∈ Hi and i ∈ N. We therefore conclude π(H) ⊂ H.

Step 2. We need to prove π is contractive. For any y = (y1(t), . . . , yn(t)) ∈ H and z =
(z1(t), . . . , zn(t)) ∈ H, we estimate

n∑

i=1

∣∣π
(
yi

)
(t) − π(zi)(t)

∣∣

≤
n∑

i=1

⎧
⎨

⎩e−ait
∫ t

0
eais

n∑

j=1

[∣∣bij
∣∣∣∣fj

(
yj(s)

) − fj
(
zj(s)

)∣∣]ds

⎫
⎬

⎭

+
n∑

i=1

⎧
⎨

⎩e−ait
∫ t

0
eais

n∑

j=1

[∣∣cij
∣∣∣∣gj

(
yj

(
s − τj(s)

)) − gj
(
zj
(
s − τj(s)

))∣∣]ds

⎫
⎬

⎭

≤
n∑

i=1

⎧
⎨

⎩e−ait
∫ t

0
eais

n∑

j=1

[∣∣bij lj
∣∣∣∣yj(s) − zj(s)

∣∣]ds

⎫
⎬

⎭

+
n∑

i=1

⎧
⎨

⎩e−ait
∫ t

0
eais

n∑

j=1

[∣∣cijkj
∣∣∣∣yj

(
s − τj(s)

) − zj
(
s − τj(s)

)∣∣]ds

⎫
⎬

⎭

≤
n∑

i=1

⎧
⎨

⎩max
j∈N

∣∣bij lj
∣∣ sup
s∈[0,t]

⎧
⎨

⎩

n∑

j=1

∣∣yj(s) − zj(s)
∣∣

⎫
⎬

⎭e−ait
∫ t

0
eaisds

⎫
⎬

⎭

+
n∑

i=1

⎧
⎨

⎩max
j∈N

∣∣cijkj
∣∣ sup
s∈[−τ,t]

⎧
⎨

⎩

n∑

j=1

∣∣yj(s) − zj(s)
∣∣

⎫
⎬

⎭ e−ait
∫ t

0
eaisds

⎫
⎬

⎭

≤
n∑

i=1

{
1
ai
max
j∈N

∣∣bij lj
∣∣
}
sup
s∈[0,t]

⎧
⎨

⎩

n∑

j=1

∣∣yj(s) − zj(s)
∣∣

⎫
⎬

⎭

+
n∑

i=1

{
1
ai
max
j∈N

∣∣cijkj
∣∣
}

sup
s∈[−τ,t]

⎧
⎨

⎩

n∑

j=1

∣∣yj(s) − zj(s)
∣∣

⎫
⎬

⎭.

(4.11)
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Hence,

sup
t∈[−τ,T]

n∑

i=1

∣∣π
(
yi

)
(t) − π(zi)(t)

∣∣

≤
{

n∑

i=1

{
1
ai
max
j∈N

∣∣bij lj
∣∣
}
+

n∑

i=1

{
1
ai
max
j∈N

∣∣cijkj
∣∣
}}

sup
s∈[−τ,T]

⎧
⎨

⎩

n∑

j=1

∣∣yj(s) − zj(s)
∣∣

⎫
⎬

⎭.

(4.12)

As
∑n

i=1{(1/ai)(maxj∈N|bij lj | + maxj∈N|cijkj |)} < 1, π is a contraction mapping and
hence there exists a unique fixed point u(·) of π in H which means uT(·) is the solution of
(2.3)-(2.4) and ‖uT(·)‖ → 0 as t → ∞.

To obtain the asymptotic stability, we still need to prove that the trivial equilibrium
of (2.3) is stable. For any ε > 0, from the conditions of Theorem 4.1, we can find δ satisfying
0 < δ < ε such that δ +maxi∈N{λ∗i }ε ≤ ε/

√
n.

Let |ϕ| < δ. According to what have been discussed above, we know that there exists a
unique solution x(t; s, ϕ) = (x1(t; s, ϕ1), . . . , xn(t; s, ϕn))

T ∈ Rn to (2.3)-(2.4), and

xi(t) = π(xi)(t) = J1(t) + J2(t) + J3(t), t ≥ 0, (4.13)

where

J1(t) = x0i e−ait, J2(t) = e−ait
∫ t

0
eais

n∑

j=1

bijfj
(
xj(s)

)
ds,

J3 = e−ait
∫ t

0
eais

n∑

j=1

cijgj
(
xj

(
s − τj(s)

))
ds.

(4.14)

Suppose there exists t∗ > 0 such that ‖x(t∗; s, ϕ)‖ = ε and ‖x(t; s, ϕ)‖ < ε as 0 ≤ t < t∗. It
follows from (4.13) that |xi(t∗)| ≤ |J1(t∗)| + |J2(t∗)| + |J3(t∗)|.

As |J1(t∗)| = |x0ie−ait
∗ | ≤ δ, |J2(t∗)| < (ε/ai)

∑n
j=1 |bij lj | and

|J3(t∗)| ≤ e−ait
∗
∫ t∗

0
eais

n∑

j=1

∣∣cijkjxj

(
s − τj(s)

)∣∣ds <
ε

ai

n∑

j=1

∣∣cijkj
∣∣, (4.15)

we obtain |xi(t∗)| < δ + λi
∗ε. Hence

∥∥x
(
t∗; s, ϕ

)∥∥2 =
n∑

i=1

{
|xi(t∗)|2

}
<

n∑

i=1

{∣∣δ + λ∗i ε
∣∣2
}
≤ n

∣∣∣∣δ +max
i∈N

{
λ∗i
}
ε

∣∣∣∣
2

≤ ε2. (4.16)

This contradicts to the assumption of ‖x(t∗; s, ϕ)‖ = ε. Therefore, ‖x(t; s, ϕ)‖ < ε holds
for all t ≥ 0. This completes the proof.

Remark 4.2. In Theorems 3.1 and 4.1, we use the contraction mapping principle to study the
existence and uniqueness of solution and the asymptotic stability of trivial equilibrium at the
same time, while Lyapunov method fails to do this.
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Remark 4.3. The provided sufficient conditions in Theorem 4.1 do not require even the
differentiability of delays, let alone the monotone decreasing behavior of delays which is
necessary in some relevant works.

5. Example

Consider the following two-dimensional cellular neural network with time-varying delays

dxi(t)
dt

= −aixi(t) +
2∑

j=1

bijfj
(
xj(t)

)
+

2∑

j=1

cijgj
(
xj

(
t − τj(t)

))
, (5.1)

with the initial conditions x1(s) = cos(s), x2(s) = sin(s) on −τ ≤ s ≤ 0, where a1 = a2 =
3, b11 = 0, b12 = 1/7, b21 = −1/7, b22 = −1/7, c11 = 3/7, c12 = 2/7, c21 = 0, c22 = 1/7,
fj(s) = gj(s) = (|s + 1| − |s − 1|)/2, τj(t) is bounded by τ .

It is easily to know that lj = kj = 1 for j = 1, 2. Compute

2∑

i=1

{
1
ai

(
max
j=1,2

∣∣bij lj
∣∣ +max

j=1,2

∣∣cijkj
∣∣
)}

< 1, max
i∈N

⎧
⎨

⎩
1
ai

n∑

j=1

∣∣bij lj
∣∣ +

1
ai

n∑

j=1

∣∣cijkj
∣∣

⎫
⎬

⎭ <
1√
2
. (5.2)

From Theorem 4.1, we conclude that the trivial equilibrium x = 0 of this two-dimensional
cellular neural network is asymptotically stable.
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