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A numerical method to solve nonlinear Fredholm integral equations of second kind is presented
in this work. The method is based upon hybrid function approximate. The properties of hybrid of
block-pulse functions and Taylor series are presented and are utilized to reduce the computation
of nonlinear Fredholm integral equations to a system of algebraic equations. Some numerical
examples are selected to illustrate the effectiveness and simplicity of the method.

1. Introduction

Over the last years, the fractional calculus has been used increasingly in different areas of
applied science. This tendency could be explained by the deduction of knowledge models
which describe real physical phenomena. In fact, the fractional derivative has been proved
reliable to emphasize the long memory character in some physical domains especially with
the diffusion principle. For example, the nonlinear oscillation of earthquake can be modeled
with fractional derivatives, and the fluid-dynamic traffic model with fractional derivatives
can eliminate the deficiency arising from the assumption of continuum traffic flow [1].
In the fields of physics and chemistry, fractional derivatives and integrals are presently
associated with the application of fractals in the modeling of electrochemical reactions,
irreversibility and electromagnetism [2], heat conduction in materials with memory, and
radiation problems. Many mathematical formulations of mentioned phenomena contain
nonlinear integrodifferential equations with fractional order. Nonlinear phenomena are also
of fundamental importance in various fields of science and engineering. The nonlinear
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models of real-life problems are still difficult to be solved either numerically or theoretically.
There has recently been much attention devoted to the search for better and more efficient
solution methods for determining a solution, approximate or exact, analytical or numerical,
to nonlinear models [3, 4].

In this paper, we study the numerical solution of a nonlinear fractional integro-dif-
ferential equation of the second kind:

Dαf(x) − λ

∫1

0
k(x, t)

[
f(t)

]q
dt = g(x), q > 1, (1.1)

with the initial condition

f (i)(0) = δi, i = 0, 1, . . . , r − 1, r − 1 < α ≤ r, r ∈ N, (1.2)

by hybrid of block-pulse functions and Taylor series. Here, g ∈ L2([0, 1)), k ∈ L2([0, 1)2) is
known functions, and f(x) is unknown function. Dα is the Caputo fractional differentiation
operator and q is a positive integer.

During the last decades, several methods have been used to solve fractional differential
equations, fractional partial differential equations, fractional integro-differential equations
and dynamic systems containing fractional derivatives, such as Adomian’s decomposition
method [5–9], He’s variational iterationmethod [10–12], homotopy perturbationmethod [13,
14], homotopy analysis method [15], collocation method [16], Galerkin method [17], and
other methods [18–20].

2. Basic Definitions

We give some basic definitions and properties of the fractional calculus theory which are used
further in this paper.

Definition 2.1. The Riemann-Liouville fractional integral operator of order α ≥ 0 is defined as
[21]

Jαf(x) =
1

Γ(α)

∫x

0
(x − t)α−1f(t)dt, α > 0, x > 0,

J0f(x) = f(x).

(2.1)

It has the following properties

Jαxγ =
Γ
(
γ + 1

)
Γ
(
α + γ + 1

)xα+γ , γ > −1. (2.2)

Definition 2.2. The Caputo definition of fractional derivative operator is given by

Dαf(x) = Jm−αDmf(x) =
1

Γ(m − α)

∫x

0
(x − t)m−α−1f (m)(t)dt, (2.3)



Journal of Applied Mathematics 3

where m − 1 < α ≤ m, m ∈ N, x > 0. It has the following two basic properties

DαJαf(x) = f(x), (2.4)

JαDαf(x) = f(x) −
m−1∑
k=0

f (k)(0+)
xk

k!
, x > 0. (2.5)

3. Properties of Hybrid Functions

3.1. Hybrid Functions of Block-Pulse and Taylor Polynomials

Hybrid functions hnm(x), n = 1, 2, . . . ,N, m = 0, 1, 2, . . . ,M − 1, are defined on the interval
[0, 1) as

hnm(x) =

⎧⎪⎨
⎪⎩
Tm(Nx − (n − 1)), x ∈

[
n − 1
N

,
n

N

)
,

0, otherwise,
(3.1)

where n and m are the orders of block-pulse functions and Taylor polynomials, respectively
and Tm(x) = xm.

3.2. Function Approximation

A function y(x) ∈ L2[0, 1) may be expanded as

y(x) =
∞∑
n=1

∞∑
m=0

cnmhnm(x), (3.2)

where

cnm =
1

Nmm!

(
dmy(x)
dxm

)∣∣∣∣
x=((n−1)/N)

. (3.3)

If y(x) in (3.2) is truncated, then (3.2) can be written as

y(x) =
N∑
n=1

M−1∑
m=0

cnmhnm(x) ≈ CTH(x) = HT (x)C, (3.4)

where

C = [c10, c11, . . . , c1M−1, c20, . . . , c2M−1, . . . cN0, . . . , cNM−1]T , (3.5)

H(x) = [h10(x), h11(x), . . . , h1M−1(x), h20(x), . . . , h2M−1(x), . . . hN0(x), . . . , hNM−1(x)]
T . (3.6)
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In (3.5) and (3.6), cnm, n = 1, 2, . . . ,N, m = 0, 1, . . . ,M − 1, are the coefficients expansions of
the function y(x) in the nth subinterval [(n − 1)/N, n/N] and hnm(x), n = 1, 2, . . . ,N, m =
0, 1, . . . ,M − 1, are defined in (3.1).

3.3. Operational Matrix of the Fractional Integration

The integration of the vector H(t) defined in (3.6) can be obtained as

∫ t

0
H(τ)dτ ≈ PH(t), (3.7)

see, [22], where P is the MN ×MN operational matrix for integration.
Our purpose is to derive the hybrid functions operational matrix of the fractional

integration. For this purpose, we consider anm-set of block pulse function as

bi(t) =

⎧⎪⎨
⎪⎩
1,

i

m
≤ t ≤ (i + 1)

m
,

0, otherwise,
(3.8)

where m = MN, i = 0, 1, 2, . . . , (m − 1).
The functions bi(t) are disjoint and orthogonal. That is,

bi(t)bj(t) =

⎧⎨
⎩
0, i /= j,

bi(t), i = j.
(3.9)

From the orthogonality of property, it is possible to expand functions into their block pulse
series.

Similarly, hybrid function may be expanded into anm-set of block pulse function as

H(t) = ΦB(t), (3.10)

where B(t) = [b1(t), b2(t), . . . , bm(t)], Φ is aMN ×MN matrix.
In [23], Kilicman and Al Zhour have given the block pulse operational matrix of the

fractional integration Fα as follows:

JaB(x) ≈ FαB(x), (3.11)
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where

Fα =
1

NMα

1
Γ(α + 2)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 ξ1 ξ2 ξ3 · · · ξl−1

0 1 ξ1 ξ2 · · · ξl−2

0 0 1 ξ1 · · · ξl−3
...

...
...

...
. . .

...

0 0 0 0 · · · ξ1

0 0 0 0 · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3.12)

with ξk = (k + 1)α+1 − 2kα+1 + (k − 1)α+1.
Next, we derive the hybrid function operational matrix of the fractional integration.

Let

JαH(x) ≈ PαH(x), (3.13)

where matrix Pα is called the hybrid function operational matrix of fractional integration.
Using (3.10) and (3.11), we have

JαH(x) ≈ JαΦB(x) = ΦJαB(x) ≈ ΦFαB(x). (3.14)

From (3.10) and (3.13), we get

PαH(x) = PαΦB(x) = ΦFαB(x). (3.15)

Then, the hybrid function operational matrix of fractional integration Pα is given by

Pα = ΦFαΦ−1. (3.16)

Therefore, we have found the operational matrix of fractional integration for hybrid function.

3.4. The Product Operational of the Hybrid of Block-Pulse
and Taylor Polynomials

The following property of the product of two hybrid function vectors will also be used.
Let

H(x)HT (x)C ∼= C̃B(x), (3.17)
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see, [22], where C̃ = diag(C̃1, C̃2, . . . , C̃N) is anMN ×MN product operational matrix. And,
C̃i, i = 1, 2, 3, . . . ,N are M ×M matrices given by

C̃i =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ci0 ci1 ci2 · · · ciM−1

0 ci0 ci1 · · · ciM−2

0 0 ci0 · · · ciM−3
...

...
...

. . .
...

0 0 0 · · · ci0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3.18)

4. Nonlinear Fredholm Integral Equations

Considering (1.1), we approximate Dαf(x) by the way mentioned in Section 3 as

Dαf(x) ≈ ATH(x). (4.1)

For simplicity, we can assume that δi = 0 (in the initial condition). Hence by using (2.5) and
(3.13)we have

f(x) ≈ ATPαH(x). (4.2)

Define

C =
(
ATPα

)T
,

[
f(t)

]q = [
HT (t)C

]q
=

[
CTH(t)

]m
= CTH(t) ·HT (t)C

[
HT (t)C

]q−2
.

(4.3)

Applying (3.17) and (4.3) becomes

[
f(t)

]q = ATC̃H(t)
[
HT (t)C

]q−2
= CTC̃H(t) ·HT (t)C

[
HT (t)C

]q−3
,

[
f(t)

]q = CT
[
C̃
]q−1

H(t) = C∗H(t).

(4.4)

With substituting in (1.1)we have

ATH(x) − λ

∫1

0
k(x, t)C∗H(t)dt = g(x). (4.5)

We now collocate (4.5) at NM points

xnm =
1
2N

cos
(

mπ

M − 1

)
+
2n − 1
2N

, m = 0, 1, 2, . . . ,M − 1, n = 1, 2, . . . ,N, (4.6)
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as

ATH(xnm) − λ

∫1

0
k(xnm, t)C∗H(t)dt = g(xnm). (4.7)

We approximate above integral in (4.7) by means of Clenshaw-Curtis rule. Using (4.7), we
obtain a system of NM nonlinear equations which can be solved by the Newton’s iterative
method. By solving this equation we can find the vector C.

5. Error Analysis

In this section, we discuss the convergence of the hybrid functions method for the nonlinear
Fredholm integro-differential equations (1.1).

Suppose we estimate function f(x) ∈ L2[0, 1], using Taylor polynomials of orderM−1,
on the interval [a, b], then using Taylor Residual Theorem, the truncation error is

e(x) = f(x) −
M−1∑
i=0

(x − a)i

i!
f (i)(a) =

(x − a)M

M!
f (M)(ξ), (5.1)

see, [24], where ξ lies between a and x. Then

‖e(x)‖∞ ≤ (b − a)M

M!

∥∥∥f (M)(x)
∥∥∥
∞
. (5.2)

If we use hybrid of block-pulse functions and Taylor series on the interval [0, 1], then for ith
sub interval [(i − 1)/N, i/N], we have

‖e(x)‖∞ =
∥∥f(x) − fNM(x)

∥∥ ≤ 1
NMM!

∥∥∥f (M)(x)
∥∥∥
∞

(5.3)

see, [25], where the infinity norm is computed on the ith subinterval. It shows that the
accuracy improves with increasing the N and M.

6. Numerical Examples

In this section, we applied the method presented in this paper for solving integral equation
of the form (1.1) and solved some examples. All results were computed using MATLAB 7.0.

Example 6.1. Let us first consider fractional nonlinear intego-differential equation:

Dα
∗f(x) −

∫1

0
xt

[
f(t)

]2
dt = 1 − x

4
, 0 ≤ x < 1, 0 < α ≤ 1, (6.1)

see, [26]with the initial condition f(0) = 0.
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Figure 1: The approximate solution of Example 6.1 forN = 1,M = 2.
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Figure 2: Absolute error of Example 6.3 forN = 10, M = 3.

The numerical results for M = 1, N = 2, and α = 1/4, 1/2, 3/4, and 1 are plotted in
Figure 1. For α = 1, the exact solution is given as f(x) = x. Note that, as α approaches 1, the
numerical solution converges the analytical solution f(x) = x.

Example 6.2. Consider the following equation:

D1/2f(x) −
∫1

0
xt

[
f(t)

]2
dt = g(x), (6.2)

where

g(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
Γ(1/2)

(
2x1/2 − 8

3
x3/2

)
− 11x
1920

, 0 ≤ x ≤ 1
2
,

8
3Γ(1/2)

x3/2 − 21x
128

,
1
2
< x ≤ 1,

(6.3)
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Table 1: Absolute error for α = 1/2 and different values ofM,N for Example 6.2.

x N = 2, M = 3 N = 2, M = 5 N = 2, M = 7

0.1 4.6746e − 003 1.5643e − 005 6.0606e − 007
0.2 8.3241e − 003 2.7623e − 005 1.5480e − 006
0.3 7.6758e − 004 3.6753e − 005 4.6970e − 006
0.4 1.3362e − 003 5.0337e − 005 2.2131e − 007
0.5 3.3485e − 003 4.0518e − 005 6.2563e − 007
0.6 1.6673e − 003 6.5000e − 006 2.6769e − 007
0.7 6.0563e − 004 4.2335e − 005 4.7123e − 007
0.8 6.7621e − 004 3.0421e − 005 4.8631e − 006
0.9 1.2309e − 003 3.6676e − 005 2.0707e − 006

Table 2: Exact and numerical solutions of Example 6.3 for N = 2,M = 3.

x Exact solutions Numerical solutions Absolute error

0.2 0.04000000 0.04023540 2.3540e − 004
0.4 0.16000000 0.16196810 1.9681e − 003
0.6 0.36000000 0.36025632 2.5632e − 004
0.8 0.64000000 0.64035128 3.5128e − 004
1.0 1.00000000 1.00133210 1.3321e − 003

and with these supplementary conditions f(0) = 0. The exact solution is

f(x) =

⎧⎪⎪⎨
⎪⎪⎩
x − x2, 0 ≤ x ≤ 1

2
,

x2,
1
2
< x ≤ 1.

(6.4)

The absolute error |f(x) − fNM(x)| for different values of N and M is shown in Table 1.

Example 6.3. One has

D5/3
∗ f(x) −

∫1

0
(x + t)2

[
f(t)

]3
dt = g(x), 0 ≤ x < 1, (6.5)

see, [26]where

g(x) =
6

Γ(1/3)
3
√
x − x2

7
− x

4
− 1
9
, (6.6)

and with these supplementary conditions f(0) = f ′(0) = 0. The exact solution is f(x) = x2.
Table 2 shows the exact and approximate solution for N = 2, M = 3. Figure 2 illustrates the
absolute error |f(x)− fNM(x)|with N = 10,M = 3. From Figure 2 and Table 2 we can see the
numerical solutions are in a good agreement with the exact solution.
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7. Conclusion

We have solved the nonlinear Fredholm integral equations of second kind by using hybrid of
block-pulse functions and Taylor series. The properties of hybrid of block-pulse functions and
Taylor series are used to reduce the equation to the solution of nonlinear algebraic equations.
Illustrative examples are given to demonstrate the validity and applicability of the proposed
method. The advantages of hybrid functions are that the values of N and M are adjustable
as well as being able to yield more accurate numerical solutions. Also hybrid functions have
good advantage in dealing with piecewise continuous functions, as are shown.

Themethod can be extended and applied to the system of nonlinear integral equations,
linear and nonlinear integro-differential equations, but some modifications are required.
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