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Inspired by the very recent results of Wang and Xu (2010), we study properties of the approximat-
ing curve with 1-norm regularization method for the split feasibility problem (SFP). The concept
of the minimum-norm solution set of SFP in the sense of 1-norm is proposed, and the relationship
between the approximating curve and the minimum-norm solution set is obtained.

1. Introduction

Let C andQ be nonempty closed convex subsets of real Hilbert spacesH1 andH2, respective-
ly. The problem under consideration in this paper is formulated as finding a point x satisfying
the property:

x ∈ C, Ax ∈ Q, (1.1)

where A : H1 → H2 is a bounded linear operator. Problem (1.1), referred to by Censor and
Elfving [1] as the split feasibility problem (SFP), attracts many authors’ attention due to its
application in signal processing [1]. Various algorithms have been invented to solve it (see
[2–13] and references therein).

Using the idea of Tikhonov’s regularization, Wang and Xu [14] studied the properties
of the approximating curve for the SFP. They gave the concept of the minimum-norm
solution of the SFP (1.1) and proved that the approximating curve converges strongly
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to the minimum-norm solution of the SFP (1.1). Together with some properties of this
approximating curve, they introduced a modification of Byrne’s CQ algorithm [2] so that
strong convergence is guaranteed and its limit is the minimum-norm solution of SFP (1.1).

In the practical application, H1 and H2 are often R
N and R

M, respectively. Moreover,
scientists and engineers are more willing to use 1-norm regularization method in the
calculation process (see, e.g., [15–18]). Inspired by the above results of Wang and Xu [14],
we study properties of the approximating curve with 1-norm regularization method. We also
define the concept of the minimum-norm solution set of SFP (1.1) in the sense of 1-norm.
The relationship between the approximating curve and the minimum-norm solution set is
obtained.

2. Preliminaries

Let X be a normed linear space with norm ‖ · ‖, and let X∗ be the dual space of X. We use
the notation 〈x, f〉 to denote the value of f ∈ X∗ at x ∈ X. In particular, if X is a Hilbert
space, we will denote it by H, and 〈·, ·〉 and ‖ · ‖ are the inner product and its induced norm,
respectively.

We recall some definitions and facts that are needed in our study.
Let PC denote the projection from H onto a nonempty closed convex subset C of H;

that is,

PCx = arg min
y∈C

‖x − y‖, x ∈ H. (2.1)

It is well known that PCx is characterized by the inequality

〈x − PCx, y − PCx〉 ≤ 0, ∀y ∈ C. (2.2)

Definition 2.1. Let ϕ : X → R ∪ {+∞} be a convex functional, x0 ∈ dom(ϕ) = {x ∈ X : ϕ(x) <
+∞}. Set

∂ϕ(x0) =
{
ξ ∈ X∗ : ϕ(x) ≥ ϕ(x0) + 〈x − x0, ξ〉, ∀x ∈ X

}
. (2.3)

If ∂ϕ(x0)/= ∅, ϕ is said to be subdifferentiable at x0 and ∂ϕ(x0) is called the subdifferential of ϕ at
x0. For any ξ ∈ ∂ϕ(x0), we say ξ is a subgradient of ϕ at x0.

Lemma 2.2. There holds the following property:

∂(‖x‖) =
⎧
⎨

⎩

{x∗ ∈ X∗ : ‖x∗‖ = 1, 〈x, x∗〉 = ‖x‖}, x /= 0,

{x∗ ∈ X∗ : ‖x∗‖ ≤ 1}, x = 0,
(2.4)

where ∂(‖x‖) denotes the subdifferential of the functional ‖x‖ at x ∈ X.

Proof. The process of the proof will be divided into two parts.
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Case 1. In the case of x = 0, for any x∗ ∈ X∗ such that ‖x∗‖ ≤ 1 and any y ∈ X, there holds the
inequality

‖y‖ ≥ 〈y, x∗〉 = ‖x‖ + 〈y − x, x∗〉, (2.5)

so we have x∗ ∈ ∂(‖x‖), and thus,

{x∗ ∈ X∗ : ‖x∗‖ ≤ 1} ⊂ ∂(‖x‖). (2.6)

Conversely, for any x∗ ∈ ∂(‖x‖), we have from the definition of subdifferential that

‖y‖ ≥ ‖x‖ + 〈
y − x, x∗〉 =

〈
y, x∗〉, ∀y ∈ X,

‖y‖ = ‖ − y‖ ≥ 〈−y, x∗〉 = −〈y, x∗〉.
(2.7)

Consequently,

∣∣〈y, x∗〉∣∣ ≤ ‖y‖, ∀y ∈ X, (2.8)

and this implies that ‖x∗‖ ≤ 1. Thus, we have verified that

∂(‖x‖) ⊂ {x∗ ∈ X∗ : ‖x∗‖ ≤ 1}. (2.9)

Combining (2.6) and (2.9), we immediately obtain

∂(‖x‖) = {x∗ ∈ X∗ : ‖x∗‖ ≤ 1}. (2.10)

Case 2. If x /= 0, for any x∗ ∈ {x∗ ∈ X∗ : ‖x∗‖ = 1, 〈x, x∗〉 = ‖x‖}, we obviously have

〈y − x, x∗〉 = 〈y, x∗〉 − ‖x‖ ≤ ‖y‖ − ‖x‖, ∀y ∈ X, (2.11)

which means that x∗ ∈ ∂(‖x‖), and thus,

{x∗ ∈ X∗ : ‖x∗‖ = 1, 〈x, x∗〉 = ‖x‖} ⊂ ∂(‖x‖). (2.12)

Conversely, if x∗ ∈ ∂(‖x‖), we have

〈−x, x∗〉 ≤ 0 − ‖x‖ = −‖x‖, 〈x, x∗〉 ≤ 2‖x‖ − ‖x‖ = ‖x‖; (2.13)

hence,

〈x, x∗〉 = ‖x‖. (2.14)
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On the other hand, using (2.14), we get

‖y‖ ≥ ‖x‖ + 〈y − x, x∗〉 = ‖x‖ + 〈y, x∗〉 − 〈x, x∗〉 = 〈y, x∗〉, ∀y ∈ X, (2.15)

and consequently,

∥
∥y

∥
∥ =

∥
∥−y∥∥ ≥ ‖x‖ + 〈−y − x, x∗〉

= ‖x‖ − 〈
y, x∗〉 − 〈x, x∗〉

= −〈y, x∗〉;

(2.16)

that is,

−‖y‖ ≤ 〈y, x∗〉. (2.17)

Equation (2.17) together with (2.15) implies that

∣∣〈y, x∗〉∣∣ ≤ ‖y‖, ∀y ∈ X; (2.18)

hence, ‖x∗‖ ≤ 1. Note that (2.14) implies that ‖x∗‖ ≥ 〈x, x∗〉/‖x‖ = 1; we assert that

‖x∗‖ = 1. (2.19)

Thus we have from (2.14) and (2.19) that

{x∗ ∈ X∗ : ‖x∗‖ = 1, 〈x, x∗〉 = ‖x‖} ⊃ ∂(‖x‖). (2.20)

The proof is finished by combining (2.12) and (2.20).

‖ · ‖∞ and ‖ · ‖1 will stand for∞-norm and 1-norm of any Euclidean space; respectively,
that is, for any x = (x1, x2, . . . , xl) ∈ R

l, we have

‖x‖∞ = max
1≤j≤l

∣∣xj

∣∣, ‖x‖1 =
l∑

j=1

∣∣xj

∣∣. (2.21)

Corollary 2.3. In l-dimensional Euclidean space R
l, there holds the following result:

∂(‖x‖1) =
⎧
⎨

⎩

{
ξ ∈ R

l : ‖ξ‖∞ = 1, 〈x, ξ〉 = ‖x‖1
}
, x /= 0,

{
ξ ∈ R

l : ‖ξ‖∞ ≤ 1
}
, x = 0,

=

⎧
⎪⎨

⎪⎩

{
ξ ∈ R

l : ξi =
xi

|xi| , if xi /= 0; ξi ∈ [−1, 1], if xi = 0
}
, x /= 0,

{
ξ ∈ R

l : ‖ξ‖∞ ≤ 1
}
, x = 0.

(2.22)
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LetH be a Hilbert space and f : H → R a functional. Recall that

(i) f is convex if f(λx + (1 − λ)y) ≤ λf(x) + (1 − λ)f(y), for all 0 < λ < 1, for all x, y ∈ H;

(ii) f is strictly convex if f(λx + (1 − λ)y) < λf(x) + (1 − λ)f(y), for all 0 < λ < 1, for all
x, y ∈ H with x /=y;

(iii) f is coercive if f(x) → ∞ whenever ‖x‖ → ∞. See [19] for more details about convex
functions.

The following lemma gives the optimality condition for the minimizer of a convex
functional over a closed convex subset.

Lemma 2.4 (see [20]). Let H be a Hilbert space and C a nonempty closed convex subset of H. Let
f : H → R be a convex and subdifferentiable functional. Then x ∈ C is a solution of the problem

min
x∈C

f(x) (2.23)

if and only if there exists some ξ ∈ ∂f(x) satisfying the following optimality condition:

〈ξ, v − x〉 ≥ 0, ∀v ∈ C. (2.24)

3. Main Results

It is well known that SFP (1.1) is equivalent to the minimization problem

min
x∈C

∥∥(I − PQ

)
Ax

∥∥2
. (3.1)

Using the idea of Tikhonov’s regularization method, Wang and Xu [14] studied the mini-
mization problem in Hilbert spaces:

min
x∈C

∥∥(I − PQ

)
Ax

∥∥2 + α‖x‖2, (3.2)

where α > 0 is the regularization parameter.
In what follows, H1 and H2 in SFP (1.1) are restricted to R

N and R
M, respectively,

and ‖ · ‖ will stand for the usual 2-norm of any Euclidean space R
l; that is, for any x =

(x1, x2, . . . , xl) ∈ R
l,

‖x‖ =
√
x2
1 + · · · + x2

l
. (3.3)

Inspired by the above work of Wang and Xu, we study properties of the approximating curve
with 1-norm regularization scheme for the SFP, that is, the following minimization problem:

min
x∈C

1
2
∥∥(I − PQ

)
Ax

∥∥2 + α‖x‖1, (3.4)
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where α > 0 is the regularization parameter. Let

fα(x) =
1
2
∥
∥(I − PQ

)
Ax

∥
∥2 + α‖x‖1. (3.5)

It is easy to see that fα is convex and coercive, so problem (3.4) has at least one solution.
However, the solution of problem (3.4) may not be unique since fα is not necessarily strictly
convex. Denote by Sα the solution set of problem (3.4); thus we can assert that Sα is a
nonempty closed convex set but may contain more than one element. The following simple
example illustrates this fact.

Example 3.1. Let C = {(x, y) : x + y = 1}, Q = {(x, y) : x + y = 1/2} and

A =

⎛

⎜⎜
⎝

1
2

0

0
1
2

⎞

⎟⎟
⎠. (3.6)

Then A : R
2 → R

2 is a bounded linear operator. Obviously, Sα = {(x, y) : x + y = 1, x ≥ 0, y ≥
0} and it contains more than one element.

Proposition 3.2. For any α > 0, xα ∈ Sα if and only if there exists some ξ ∈ ∂(‖x‖1) satisfying the
following inequality:

〈
A∗(I − PQ

)
Axα + αξ, v − xα

〉 ≥ 0, ∀v ∈ C. (3.7)

Proof. Let

f(x) =
1
2
∥∥(I − PQ

)
Ax

∥∥2
, (3.8)

then

fα(x) = f(x) + α‖x‖1. (3.9)

Since f is convex and differentiable with gradient

∇f(x) = A∗(I − PQ

)
Ax, (3.10)

fα is convex, coercive, and subdifferentiable with the subdifferential

∂fα(x) = ∂f(x) + α∂(‖x‖1); (3.11)

that is,

∂fα(x) = A∗(I − PQ

)
Ax + α∂(‖x‖1). (3.12)

By Corollary 2.3 and Lemma 2.4, the proof is finished.
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Theorem 3.3. Denote by xα an arbitrary element of Sα, then the following assertions hold:

(i) ‖xα‖1 is decreasing for α ∈ (0,∞);

(ii) ‖(I − PQ)Axα‖ is increasing for α ∈ (0,∞).

Proof. Let α > β > 0, for any xα ∈ Sα, xβ ∈ Sβ. We immediately obtain

1
2
∥
∥(I − PQ

)
Axα

∥
∥2 + α‖xα‖1 ≤

1
2
∥
∥(I − PQ

)
Axβ

∥
∥2 + α

∥
∥xβ

∥
∥
1, (3.13)

1
2
∥
∥(I − PQ

)
Axβ

∥
∥2 + β

∥
∥xβ

∥
∥
1 ≤

1
2
∥
∥(I − PQ

)
Axα

∥
∥2 + β‖xα‖1. (3.14)

Adding up (3.13) and (3.14) yields

α‖xα‖1 + β
∥∥xβ

∥∥
1 ≤ α

∥∥xβ

∥∥
1 + β‖xα‖1, (3.15)

which implies ‖xα‖1 ≤ ‖xβ‖1. Hence (i) holds.
Using (3.14) again, we have

1
2
∥∥(I − PQ

)
Axβ

∥∥2 ≤ 1
2
∥∥(I − PQ

)
Axα

∥∥2 + β
(
‖xα‖1 −

∥∥xβ

∥∥
1

)
, (3.16)

which together with (i) implies

∥∥(I − PQ

)
Axβ

∥∥2 ≤ ∥∥(I − PQ

)
Axα

∥∥2
, (3.17)

and hence (ii) holds.

Let F = C ∩A−1(Q), where A−1(Q) = {x ∈ R
N : Ax ∈ Q}. In what follows, we assume

thatF /= ∅; that is, the solution set of SFP (1.1) is nonempty. The fact thatF is nonempty closed
convex set thus allows us to introduce the concept of minimum-norm solution of SFP (1.1) in
the sense of norm ‖ · ‖ (induced by the inner product).

Definition 3.4 (see [14]). An element x† ∈ F is said to be the minimum-norm solution of SFP
(1.1) in the sense of norm ‖ · ‖ if ‖x†‖ = infx∈F‖x‖. In other words, x† is the projection of the
origin onto the solution setF of SFP (1.1). Thus there exists only oneminimum-norm solution
of SFP (1.1) in the sense of norm ‖ · ‖, which is always denoted by x†.

We can also give the concept of minimum-norm solution of SFP (1.1) in other senses.

Definition 3.5. An element x̃ ∈ F is said to be a minimum-norm solution of SFP (1.1) in the sense
of 1-norm if ‖x̃‖1 = infx∈F‖x‖1. We use F1 to stand for all minimum-norm solutions of SFP
(1.1) in the sense of 1-norm and F1 is called the minimum-norm solution set of SFP (1.1) in
the sense of 1-norm.

Obviously, F1 is a closed convex subset of F. Moreover, it is easy to see that F1 /= ∅.
Indeed, taking a sequence {xn} ⊂ F such that ‖xn‖1 → infx∈F‖x‖1 as n → ∞, then {xn}
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is bounded. There exists a convergent subsequence {xnk} of {xn}. Set x = limk→∞xnk , then
x ∈ F since F is closed. On the other hand, using lower semicontinuity of the norm, we have

‖x‖ ≤ lim
k→∞

‖xnk‖ = inf
x∈F

‖x‖1, (3.18)

and this implies that x ∈ F1.
However, F1 may contain more than one elements, in general (see Example 3.1, F1 =

{(x, y) : x + y = 1, x, y ≥ 0}).

Theorem 3.6. Let α > 0 and xα ∈ Sα. Thenω(xα) ⊂ F1, whereω(xα) = {x : ∃{xαk} ⊂ {xα}, xαk →
x weakly}.

Proof. Taking x̃ ∈ F1 arbitrarily, for any α ∈ (0,∞), we always have

1
2
∥∥(I − PQ

)
Axα

∥∥2 + α‖xα‖1 ≤
1
2
∥∥(I − PQ

)
Ax̃

∥∥2 + α‖x̃‖1. (3.19)

Since x̃ is a solution of SFP (1.1), ‖(I − PQ)Ax̃‖ = 0. This implies that

1
2
∥∥(I − PQ)Axα

∥∥2 + α‖xα‖1 ≤ α‖x̃‖1, (3.20)

then,

‖xα‖1 ≤ ‖x̃‖1; (3.21)

thus {xα} is bounded.
Take ω ∈ ω(xα) arbitrarily, then there exists a sequence {αn} such that αn → 0 and

xαn → ω as n → ∞. Put xαn = xn. By Proposition 3.2, we deduce that there exists some ξn ∈
∂(‖xn‖1) such that

〈
A∗(I − PQ

)
Axn + αnξn, x̃ − xn

〉 ≥ 0. (3.22)

This implies that

〈(
I − PQ

)
Axn,A(x̃ − xn)

〉 ≥ αn〈ξn, xn − x̃〉. (3.23)

Since Ax̃ ∈ Q, the characterizing inequality (2.2) gives

〈(
I − PQ

)
Axn,Ax̃ − PQ(Axn)

〉 ≤ 0, (3.24)

then,

∥∥(I − PQ

)
Axn

∥∥2 ≤ 〈(
I − PQ

)
Axn,A(xn − x̃)

〉
. (3.25)
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Combining (3.23) and (3.25), we have
∥
∥(I − PQ

)
Axn

∥
∥2 ≤ αn〈ξn, x̃ − xn〉

≤ αn‖ξn‖∞‖x̃ − xn‖1
≤ 2αn‖x̃‖1.

(3.26)

Consequently, we get

lim
n→∞

∥
∥(I − PQ

)
Axn

∥
∥ = 0. (3.27)

Furthermore, noting the fact that xn → ω and I − PQ and A are all continuous operators, we
have (I − PQ)Aω = 0; that is, Aω ∈ Q; thus, ω ∈ F. Since x̃ is a minimum-norm solution of
SFP (1.1) in the sense of 1-norm, using (3.21) again, we get

‖ω‖1 ≤ lim inf
n→∞

‖xn‖1 ≤ ‖x̃‖1 = min{‖x‖1 : x ∈ F}. (3.28)

Thus we can assert that ω ∈ F1 and this completes the proof.

Corollary 3.7. If F1 contains only one element x̃, then xα → x̃, (α → 0).

Remark 3.8. It is worth noting that the minimum-norm solution of SFP (1.1) in the sense of
norm ‖ · ‖ is very different from the minimum-norm solution of SFP (1.1) in the sense of
1-norm. In fact, x† may not belong to F1! The following simple example shows this fact.

Example 3.9. Let C = {(x, y) : x + 2y ≥ 2, x ≥ 0, y ≥ 0}, Q = {(x, y) : x + y = 1, x ≥ 0, y ≥ 0},
and

A =

⎛

⎝
1
2

0

0 1

⎞

⎠. (3.29)

It is not hard to see that A : R
2 → R

2 is a bounded linear operator and A(x, y)T = ((1/2)x,
y)T , for all (x, y) ∈ C. Obviously, F = {(x, y) : x + 2y = 2, x ≥ 0, y ≥ 0}, x† = (2/5, 4/5), but
F1 = {(0, 1)}. Hence, x† ∈ F \ F1.

Acknowledgments

This work was supported by the Fundamental Research Funds for the Central Universities
(ZXH2012K001) and in part by the Foundation of Tianjin Key Lab for Advanced Signal
Processing. W. Zhu was also supported by the Postgraduate Science and Technology
Innovation Funds (YJSCX12-22).

References

[1] Y. Censor and T. Elfving, “A multiprojection algorithm using Bregman projections in a product
space,” Numerical Algorithms, vol. 8, no. 2–4, pp. 221–239, 1994.



10 Journal of Applied Mathematics

[2] Y. Yao, R. Chen, G. Marino, and Y. C. Liou, “Applications of fixed point and optimization methods to
the multiple-sets split feasibility problem,” Journal of Applied Mathematics, vol. 2012, Article ID 927530,
21 pages, 2012.

[3] C. Byrne, “Iterative oblique projection onto convex sets and the split feasibility problem,” Inverse
Problems, vol. 18, no. 2, pp. 441–453, 2002.

[4] C. Byrne, “A unified treatment of some iterative algorithms in signal processing and image
reconstruction,” Inverse Problems, vol. 20, no. 1, pp. 103–120, 2004.

[5] B. Qu and N. Xiu, “A note on the CQ algorithm for the split feasibility problem,” Inverse Problems, vol.
21, no. 5, pp. 1655–1665, 2005.

[6] H. K. Xu, “A variable Krasnosel’skii-Mann algorithm and the multiple-set split feasibility problem,”
Inverse Problems, vol. 22, no. 6, pp. 2021–2034, 2006.

[7] Q. Yang, “The relaxed CQ algorithm solving the split feasibility problem,” Inverse Problems, vol. 20,
no. 4, pp. 1261–1266, 2004.

[8] Q. Yang and J. Zhao, “Generalized KM theorems and their applications,” Inverse Problems, vol. 22, no.
3, pp. 833–844, 2006.

[9] Y. Yao, J. Wu, and Y. C. Liou, “Regularized methods for the split feasibility problem,” Abstract and
Applied Analysis, vol. 2012, Article ID 140679, 15 pages, 2012.

[10] X. Yu, N. Shahzad, and Y. Yao, “Implicit and explicit algorithms for solving the split feasibility
problem ,” Optimization Letters. In press.

[11] F. Wang and H. K. Xu, “Cyclic algorithms for split feasibility problems in Hilbert spaces,” Nonlinear
Analysis, Theory, Methods and Applications, vol. 74, no. 12, pp. 4105–4111, 2011.

[12] H. K. Xu, “Averaged mappings and the gradient-projection algorithm,” Journal of Optimization Theory
and Applications, vol. 150, no. 2, pp. 360–378, 2011.

[13] H. K. Xu, “Iterative methods for the split feasibility problem in infinite-dimensional Hilbert spaces,”
Inverse Problems, vol. 26, no. 10, Article ID 105018, 2010.

[14] H. K. Xu and F. Wang, “Approximating curve and strong convergence of the CQ algorithm for the
split feasibility problem,” Journal of Inequalities and Applications, vol. 2010, Article ID 102085, 13 pages,
2010.

[15] M. R. Kunz, J. H. Kalivas, and E. Andries, “Model updating for spectral calibration maintenance and
transfer using 1-norm variants of tikhonov regularization,” Analytical Chemistry, vol. 82, no. 9, pp.
3642–3649, 2010.

[16] X. Nan, N. Wang, P. Gong, C. Zhang, Y. Chen, and D. Wilkins, “Gene selection using 1-norm
regulariza-tion for multi-class microarray data,” in Proceedings of the IEEE International Conference on
Bioinformatics and Biomedicine (BIBM ’10), pp. 520–524, December 2010.

[17] X. Nan, Y. Chen, D. Wilkins, and X. Dang, “Learning to rank using 1-norm regularization and convex
hull reduction,” in Proceedings of the 48th Annual Southeast Regional Conference (ACMSE ’10), Oxford,
Miss, USA, April 2010.

[18] H. W. Park, M. W. Park, B. K. Ahn, and H. S. Lee, “1-Norm-based regularization scheme for system
identification of structures with discontinuous system parameters,” International Journal for Numerical
Methods in Engineering, vol. 69, no. 3, pp. 504–523, 2007.

[19] J. P. Aubin, Optima and Equilibria: An Introduction to Nonliear Analysis, vol. 140 of Graduate Texts in
Mathematics, Springer, Berlin, Germany, 1993.

[20] H.W. Engl, M. Hanke, and A. Neubauer, Regularization of Inverse Problems, vol. 375 ofMathematics and
Its Applications, Kluwer Academic, Dordrecht, The Netherlands, 1996.


