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We exhibit a regularity condition concerning the pressure gradient for the Navier-Stokes equations
in a special class. It is shown that if the pressure gradient belongs to L2/(2−r)((0, T);M(Ḣr(R3) →
Ḣ−r(R3))), where M(Ḣr(R3) → Ḣ−r(R3)) is the multipliers between Sobolev spaces whose
definition is given later for 0 < r < 1, then the Leray-Hopf weak solution to the Navier-Stokes
equations is actually regular.

1. Introduction

Consider the Navier-Stokes equations in R
3:

∂tu + u · ∇u −Δu +∇p = 0, (x, t) ∈ R
3 × (0,∞),

divu = 0, (x, t) ∈ R
3 × (0,∞),

u(x, 0) = u0(x), x ∈ R
3,

(1.1)

where u = u(x, t) is the velocity field, p = p(x, t) is the scalar pressure, and u0(x) with div
u0 = 0 in the sense of distribution is the initial velocity field. For simplicity, we assume that
the external force has a scalar potential and is included into the pressure gradient.

In the famous paper, Leray [1] and Hopf [2] constructed a weak solution u of (1.1) for
arbitrary u0 ∈ L2(R3) with divu0 = 0. The solution is called the Leray-Hopf weak solution.
Regularity of such Leray-Hopf weak solutions is one of the most significant open problems
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in mathematical fluid mechanics. We note here that there are partial regularity results from
Scheffer and from Caffarelli et al., see [3, 4] and references therein. Besides, more work was
pioneered by Serrin [5] and extended and improved by Giga [6], Struwe [7, 8], and Zhou [9].
Further results can be found in [10–16] and references therein.

Introducing the class Lγ((0, T);Lα(R3)), Serrin [5] showed that if we have a Leray-
Hopf weak solution u belonging to Lγ((0, T);Lα(R3)) with the exponents α and γ satisfying
2/γ + 3/α < 1, 2 < γ < ∞, 3 < α < ∞, then the solution u(x, t) ∈ C∞((0, T) × R

3), while the
limit case 2/γ + 3/α = 1 was shown much later by Sohr [17] (see also [18]).

Regularity results including assumptions on the pressure gradient have been given by
Zhou [15], and it was extended later by Struwe [8] to any dimension n ≥ 3. It is shown that if
the gradient of pressure ∇p ∈ Lα((0, T);Lq(R3)) with 2/α + 3/q ≤ 3, then the corresponding
weak solution is actually strong. For the recent work on the regularity problem containing the
pressure, velocity field, and the quotient of pressure-velocity, we refer to [19–21] for details.

The purpose of this short paper is to establish a regularity criterion in terms
of the pressure gradient for weak solutions to the Navier-Stokes equations in the class
L2/(2−r)((0, T);M(Ḣr → Ḣ−r)). This work is motivated by the recent results [22, 23] on
the Navier-Stokes equations. It is an unusual, larger space considered in the current paper
than L3/2r (the following Lemma 2.3) and possesses more information. Obviously, the present
result extends some previous ones. For more facts concerning regularity of weak solutions,
we refer the readers to the celebrated papers [24–30].

2. Preliminaries

We recall the definition of the multiplier space, which was introduced in [31] (see also [32,
33]). The spaceM(Ḣr(R3) → Ḣ−r(R3)) of pointwise multipliers, which map Ḣr into Ḣ−r , is
defined in the following way.

Definition 2.1. For 0 ≤ r < 3/2, M(Ḣr(R3) → Ḣ−r(R3)) is a Banach space of all distributions
f on R

3 such that there exists a constant C such that for all u ∈ D(R3) we have fu ∈ Ḣ−r(R3)
and

∥
∥fu
∥
∥
Ḣ−r ≤ C‖u‖Ḣr , (2.1)

where we denote by Ḣr(R3) the completion of the space C∞
0 (R3) with respect to the norm

‖u‖Ḣr = ‖(−Δ)r/2u‖L2 and denote by D(R3) the Schwarz class.

The norm of M(Ḣr(R3) → Ḣ−r(R3)) is given by the operator norm of pointwise
multiplication

∥
∥f
∥
∥
M(Ḣr(R3)→ Ḣ−r(R3)) = sup

{∥
∥fu
∥
∥
Ḣ−r : ‖u‖Ḣr ≤ 1, u ∈ D

(

R
3
)}

. (2.2)

Remark 2.2. Equivalently, we will say that f ∈ M(Ḣr(R3) → Ḣ−r(R3)) if and only if the
inequality

∣
∣
〈

fu, v
〉∣
∣ ≤ C‖u‖Ḣr‖v‖Ḣr (2.3)

holds for all u, v ∈ D(R3).
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Lemma 2.3. Let 0 ≤ r < 3/2. Then the following embedding:

L3/2r
(

R
3
)

⊂ M
(

Ḣr
(

R
3
)

−→ Ḣ−r
(

R
3
))

(2.4)

holds.

Proof. Indeed, let f ∈ L3/2r(R3). By using the following well-known Sobolev embedding:

Lq
(

R
3
)

⊂ Ḣ−r
(

R
3
)

(2.5)

with 3/q = 3/2 + r, we have by Hölder’s inequality

∥
∥fg

∥
∥
Ḣ−r ≤ C

∥
∥fg

∥
∥
Lq ≤ C

∥
∥f
∥
∥
L3/2r

∥
∥g
∥
∥
Lσ

≤ C
∥
∥f
∥
∥
L(3/2r)

∥
∥g
∥
∥
Ḣr

(

Ḣr
(

R
3
)

⊂ Lσ
(

R
3
))

,
(2.6)

where 1/σ = 1/2 − r/3. Then, it follows that

∥
∥f
∥
∥
M(Ḣr → Ḣ−r) = sup

‖g‖Ḣr ≤1

∥
∥fg

∥
∥
Ḣ−r ≤ C

∥
∥f
∥
∥
L3/2r . (2.7)

This completes the proof.

Example 2.4. Due to the well-known inequality

∥
∥
∥
∥

u

|x|
∥
∥
∥
∥
L2

≤ 2‖∇u‖L2 , (2.8)

we see that |x|−2 ∈ M(Ḣ1(R3) → Ḣ−1(R3)).

Indeed, since the functions of class C∞
0 (R3) are dense in Ḣ1(R3) in the norm ‖ · ‖Ḣr(R3),

suppose u, v ∈ C∞
0 (R3). Then by virtue of the Cauchy-Schwarz inequality we obtain

∣
∣
∣

〈

|x|−2u, v
〉∣
∣
∣ ≤
∥
∥
∥
∥

u

|x|
∥
∥
∥
∥
L2

∥
∥
∥
∥

v

|x|
∥
∥
∥
∥
L2

≤ 4‖∇u‖L2‖∇v‖L2 ,

(2.9)

and thus for u, v ∈ D, ‖u‖Ḣr ≤ 1, and ‖v‖Ḣr ≤ 1

∥
∥
∥|x|−2

∥
∥
∥
M(Ḣr → Ḣ−r)

= sup
u∈D,‖u‖Ḣr ≤1

∥
∥
∥|x|−2u

∥
∥
∥
Ḣ−r

= sup
u,v∈D

∣
∣
∣

〈

|x|−2u, v
〉∣
∣
∣ ≤ 4 < ∞. (2.10)
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3. Regularity Theorem

Now we state our result as following.

Theorem 3.1. Let u0 ∈ L2(R3) ∩ Lq(R3) for some q ≥ 3 and ∇ · u0 = 0 in the sense of distributions.
Suppose that u(t, x) is a Leray-Hopf solution of (1.1) in [0, T). If the pressure gradient satisfies

∇p ∈ L2/(2−r)((0, T);M(Ḣr −→ Ḣ−r)) with 0 < r < 1, (3.1)

then u(t, x) is a regular solution in the sense that

u ∈ C∞
(

[0, T] × R
3
)

. (3.2)

Proof. In order to prove this result, we have to do a priori estimates for the Navier-
Stokes equations and then show that the solution satisfies the well-known Serrin regularity
condition. Multiply both sides of the first equation of (1.1) by 4u|u|2 and integrate by parts to
obtain (see, e.g., [30])

d

dt
‖u(·, t)‖4L4 − 4

∫

R3
(Δu) · u|u|2dx = −4

∫

R3
∇p · u|u|2dx, (3.3)

for t ∈ (0, T). Then we have

d

dt
‖u(·, t)‖4L4 + 2

∥
∥
∥∇|u|2

∥
∥
∥

2

L2
≤ −4

∫

R3
∇p · u|u|2dx, (3.4)

where we have used

4
∫

R3
(Δu) · u|u|2dx ≤ −2

∫

R3

∣
∣
∣∇|u|2

∣
∣
∣

2
dx. (3.5)

Let us estimate the integral

I =
∫

R3
∇p · u|u|2dx (3.6)

on the right-hand side of (3.4). By the Hölder inequality and the Young inequality, we have

I ≤ ∥∥∇p · u∥∥Ḣ−r

∥
∥
∥|u|2

∥
∥
∥
Ḣr

≤ ∥∥∇p
∥
∥
M(Ḣr → Ḣ−r)‖u‖Ḣr

∥
∥
∥|u|2

∥
∥
∥
Ḣr

≤ C
∥
∥∇p

∥
∥
M(Ḣr → Ḣ−r)‖u‖1−rL2 ‖∇u‖rL2

∥
∥
∥|u|2

∥
∥
∥

1−r

L2

∥
∥
∥∇|u|2

∥
∥
∥

r

L2

≤ C
∥
∥∇p

∥
∥
M(Ḣr → Ḣ−r)

∥
∥
∥|u|2

∥
∥
∥

1−r

L2

∥
∥
∥∇|u|2

∥
∥
∥

r

L2
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≤ C(ε)
∥
∥∇p

∥
∥
2/(2−r)
M(Ḣr → Ḣ−r)

∥
∥
∥|u|2

∥
∥
∥

2(1−r)/(2−r)

L2
+ ε
∥
∥
∥∇|u|2

∥
∥
∥

2

L2

= C(ε)
∥
∥∇p

∥
∥
2/(2−r)
M(Ḣr → Ḣ−r)‖u‖

4ξ
L4 + ε

∥
∥
∥∇|u|2

∥
∥
∥

2

L2
,

(3.7)

where ξ = (1 − r)/(2 − r) < 1; we have used the inequality

‖w‖Ḣr ≤ C‖w‖1−rL2 ‖∇w‖rL2 (3.8)

and the Young inequality with ε:

ab ≤ εap + C(ε)bq (a, b > 0, ε > 0),
(
1
p
+
1
q
= 1
)

, (3.9)

for C(ε) = (εp)−q/pq−1. Hence by (3.4) and the above inequality, we derive

d

dt
‖u(·, t)‖4L4 + (2 − ε)

∥
∥
∥∇|u|2

∥
∥
∥

2

L2
≤ C(ε)

∥
∥∇p

∥
∥
2/(2−r)
M(Ḣr → Ḣ−r)‖u‖

4ξ
L4 . (3.10)

Now by Gronwall’s lemma (see for instance in [28, Lemma 2]), we have

‖u(·, t)‖4L4 ≤ C

⎡

⎣‖u(0)‖4L4 +

(∫ t

0

∥
∥∇p

∥
∥
2/(2−r)
M(Ḣr → Ḣ−r)dτ

)1/(1−ξ)⎤

⎦

= C

[

‖u(0)‖4L4 +
(
∥
∥∇p

∥
∥
2/(2−r)
L2/(2−r)((0,T);M(Ḣr → Ḣ−r))

)1/(1−ξ)]

.

(3.11)

Due to the integrability of the pressure gradient, it follows that

u ∈ L∞
(

0, T ;L4
(

R
3
))

. (3.12)

Consequently u falls into the well-known Serrin’s regularity framework. Therefore, the
smoothness of u follows immediately. This completes the proof of Theorem 3.1.

Remark 3.2. By a strong solution wemean a weak solution of the Navier-Stokes equation such
that

u ∈ L∞
(

(0, T);H1
)

∩ L2
(

(0, T);H2
)

. (3.13)

It is wellknown that strong solutions are regular (we say classical) and unique in the class of
weak solutions.



6 Abstract and Applied Analysis

Acknowledgment

The author thanks the anonymous referee for his/her comments on this paper.

References

[1] J. Leray, “Sur le mouvement d’un liquide visqueux emplissant l’espace,” Acta Mathematica, vol. 63,
no. 1, pp. 193–248, 1934.

[2] E. Hopf, “Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen,” Mathema-
tische Nachrichten, vol. 4, pp. 213–231, 1951.

[3] L. Caffarelli, R. Kohn, and L. Nirenberg, “Partial regularity of suitable weak solutions of the Navier-
Stokes equations,” Communications on Pure and Applied Mathematics, vol. 35, no. 6, pp. 771–831, 1982.

[4] V. Scheffer, “Partial regularity of solutions to the Navier-Stokes equations,” Pacific Journal of Mathe-
matics, vol. 66, no. 2, pp. 535–552, 1976.

[5] J. Serrin, “On the interior regularity of weak solutions of the Navier-Stokes equations,” Archive for
Rational Mechanics and Analysis, vol. 9, pp. 187–195, 1962.

[6] Y. Giga, “Solutions for semilinear parabolic equations in Lp and regularity of weak solutions of the
Navier-Stokes system,” Journal of Differential Equations, vol. 62, no. 2, pp. 186–212, 1986.

[7] M. Struwe, “On partial regularity results for the Navier-Stokes equations,” Communications on Pure
and Applied Mathematics, vol. 41, no. 4, pp. 437–458, 1988.

[8] M. Struwe, “On a Serrin-type regularity criterion for the Navier-Stokes equations in terms of the
pressure,” Journal of Mathematical Fluid Mechanics, vol. 9, no. 2, pp. 235–242, 2007.

[9] Y. Zhou, “A new regularity criterion for weak solutions to the Navier-Stokes equations,” Journal de
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Texts, Springer Basel, Basel, Switzerland, 2001.
[18] H. Sohr and W. von Wahl, “On the regularity of the pressure of weak solutions of Navier-Stokes

equations,” Archiv der Mathematik, vol. 46, no. 5, pp. 428–439, 1986.
[19] Z. Guo and S. Gala, “Remarks on logarithmical regularity criteria for the Navier-Stokes equations,”

Journal of Mathematical Physics, vol. 52, no. 6, p. 063503, 9, 2011.
[20] Z. Guo and S. Gala, “A note on the regularity criteria for the Navier-Stokes equations,” Applied Mathe-

matics Letters, vol. 25, no. 3, pp. 305–309, 2012.
[21] Z. Guo, P. Wittwer, and W. Wang, “Regularity issue of the Navier-Stokes equations involving the

combination of pressure and velocity field,” Acta Applicandae Mathematicae. In press.
[22] Y. Zhou and S. Gala, “Regularity criteria in terms of the pressure for the Navier-Stokes equations in

the critical Morrey-Campanato space,” Zeitschrift für Analysis und ihre Anwendungen, vol. 30, no. 1, pp.
83–93, 2011.

[23] Y. Zhou and S. Gala, “Logarithmically improved regularity criteria for the Navier-Stokes equations in
multiplier spaces,” Journal of Mathematical Analysis and Applications, vol. 356, no. 2, pp. 498–501, 2009.

[24] L. C. Berselli and G. P. Galdi, “Regularity criteria involving the pressure for the weak solutions to
the Navier-Stokes equations,” Proceedings of the American Mathematical Society, vol. 130, no. 12, pp.
3585–3595, 2002.



Abstract and Applied Analysis 7

[25] C. Cao and E. S. Titi, “Regularity criteria for the three-dimensional Navier-Stokes equations,” Indiana
University Mathematics Journal, vol. 57, no. 6, pp. 2643–2661, 2008.

[26] C. Cao, J. Qin, and E. S. Titi, “Regularity criterion for solutions of three-dimensional turbulent channel
flows,” Communications in Partial Differential Equations, vol. 33, no. 1–3, pp. 419–428, 2008.

[27] S. Gala, “Remark on a regularity criterion in terms of pressure for the Navier-Stokes equations,”
Quarterly of Applied Mathematics, vol. 69, no. 1, pp. 147–155, 2011.

[28] Y. Zhou, “A new regularity criterion for the Navier-Stokes equations in terms of the gradient of one
velocity component,” Methods and Applications of Analysis, vol. 9, no. 4, pp. 563–578, 2002.

[29] Y. Zhou, “A new regularity criterion for the Navier-Stokes equations in terms of the direction of
vorticity,”Monatshefte für Mathematik, vol. 144, no. 3, pp. 251–257, 2005.

[30] Y. Zhou, “On regularity criteria in terms of pressure for the Navier-Stokes equations in R
3,”

Proceedings of the American Mathematical Society, vol. 134, no. 1, pp. 149–156, 2006.
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