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By using a complex transform, we impose a system of fractional order in the sense of Riemann-
Liouville fractional operators. The analytic solution for this system is discussed. Here, we
introduce a method of homotopy perturbation to obtain the approximate solutions. Moreover,
applications are illustrated.

1. Introduction

Fractional models have been studied by many researchers to sufficiently describe the opera-
tion of variety of computational, physical, and biological processes and systems. Accordingly,
considerable attention has been paid to the solution of fractional differential equations,
integral equations, and fractional partial differential equations of physical phenomena.
Most of these fractional differential equations have analytic solutions, approximation,
and numerical techniques [1–3]. Numerical and analytical methods have included finite
difference methods such as Adomian decomposition method, variational iteration method,
homotopy perturbation method, and homotopy analysis method [4–7].

The idea of the fractional calculus (i.e., calculus of integrals and derivatives of any
arbitrary real or complex order)was planted over 300 years ago. Abel in 1823 investigated the
generalized tautochrone problem and for the first time applied fractional calculus techniques
in a physical problem. Later Liouville applied fractional calculus to problems in potential
theory. Since that time the fractional calculus has drawn the attention of many researchers in
all areas of sciences (see [8–10]).

One of the most frequently used tools in the theory of fractional calculus is furnished
by the Riemann-Liouville operators. It possesses advantages of fast convergence, higher
stability, and higher accuracy to derive different types of numerical algorithms. In this
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paper, we will deal with scalar linear time-space fractional differential equations. The time
is taken in sense of the Riemann-Liouville fractional operators. Also, This type of differential
equation arises in many interesting applications. For example, the Fokker-Planck partial
differential equation, bond pricing equations, and the Black-Scholes equations are in this class
of differential equations (partial and fractional).

In [11], the author used complex transform to obtain a system of fractional order
(nonhomogeneous) keeping the equivalency properties. By employing the homotopy
perturbationmethod, the analytic solution is presented for coupled system of fractional order.
Furthermore, applications are imposed such as wave equations of fractional order.

2. Fractional Calculus

This section concerns with some preliminaries and notations regarding the fractional cal-
culus.

Definition 2.1. The fractional (arbitrary) order integral of the function f of order α > 0 is de-
fined by

Iαaf(t) =
∫ t

a

(t − τ)α−1

Γ(α)
f(τ)dτ. (2.1)

When a = 0, we write Iαaf(t) = f(t) ∗ φα(t), where (∗) denoted the convolution product (see
[12]), φα(t) = tα−1/Γ(α), t > 0 and φα(t) = 0, t ≤ 0 and φα → δ(t) as α → 0 where δ(t) is the
delta function.

Definition 2.2. The fractional (arbitrary) order derivative of the function f of order 0 ≤ α < 1
is defined by

Dα
af(t) =

d

dt

∫ t

a

(t − τ)−α

Γ(1 − α)
f(τ)dτ =

d

dt
I1−αa f(t). (2.2)

Remark 2.3. From Definitions 2.1 and 2.2, a = 0, we have

Dαtμ =
Γ
(
μ + 1

)
Γ
(
μ − α + 1

) tμ−α, μ > −1; 0 < α < 1,

Iαtμ =
Γ
(
μ + 1

)
Γ
(
μ + α + 1

) tμ+α, μ > −1; α > 0.

(2.3)

The Leibniz rule is

Dα
a

[
f(t)g(t)

]
=

∞∑
k=0

(
α
k

)
Dα−k

a f(t)Dk
ag(t) =

∞∑
k=0

(
α
k

)
Dα−k

a g(t)Dk
af(t), (2.4)
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where

(
α
k

)
=

Γ(α + 1)
Γ(k + 1)Γ(α + 1 − k)

. (2.5)

Definition 2.4. The Caputo fractional derivative of order μ > 0 is defined, for a smooth
function f(t) by

cDμf(t) :=
1

Γ
(
n − μ

)
∫ t

0

f (n)(ζ)

(t − ζ)μ−n+1
dζ, (2.6)

where n = [μ] + 1, (the notation [μ] stands for the largest integer not greater than μ).
Note that there is a relationship between Riemann-Liouville differential operator and

the Caputo operator

D
μ
af(t) =

1
Γ
(
1 − μ

) f(a)
(t − a)μ

+ cD
μ
af(t), (2.7)

and they are equivalent in a physical problem (i.e., a problem which specifies the initial
conditions).

In this paper, we consider the following fractional differential equation:

Dαu(t, z) = a(t, z)uzz + b(t, z)uz + c(t, z)u + f(t, z), (2.8)

where a/= 0, b, c, u, f are complex valued functions, analytic in the domain D := J × U; J =
[0, T], T ∈ (0,∞) and U := {z ∈ C, |z| ≤ 1}.

The above equation involves well-known time fractional diffusion equations.

3. Complex Transforms

In this section, we will transform the fractional differential equation (2.8) into a coupled
nonlinear system of fractional order has similar form. It was shown in [11] that the complex
transform

u(t, z) = σ(z)u(t, z), (3.1)

where σ /= 0 is a complex valued function of complex variable z ∈ U, reduces (2.8) into the
system

Dαv = a1vzz − a2wzz + b1vz − b2wz + c1v − c2w

Dαw = a1wzz + a2vzz + b1wz + b2vz + c1w + c2v,
(3.2)
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where

a1 = a1, a2 = a2

b1 = b1 +
2σ1z(a1σ1 + a2σ2) + 2σ2z(a1σ2 − a2σ1)

σ2
1 + σ2

2

b2 = b2 − 2σ1z(a1σ2 − a2σ1) + 2σ2z(a2σ2 − a1σ1)
σ2
1 + σ2

2

c1 = c1 +
σ1zz(a1σ1 + a2σ2) + σ2zz(a1σ2 − a2σ1) + σ1z(b1σ1 + b2σ2) + σ2z(b1σ2 − b2σ1)

σ2
1 + σ2

2

c2 = c2 − σ1zz(a1σ2 − a2σ1) + σ2zz(a1σ1 − a2σ2) + σ1z(b1σ2 − b2σ1) − σ2z(b1σ1 + b2σ2)
σ2
1 + σ2

2

.

σ(z) := σ1(z) + iσ2(z), u(t, z) = v(t, z) + iw(t, z)

a(t, z) = a1(t, z) + ia2(t, z), b(t, z) = b1(t, z) + ib2(t, z)

c(t, z) = c1(t, z) + ic2(t, z), u(t, z) = v(t, z) + iw(t, z).
(3.3)

Also, it was shown that the complex transform

u(t, z) = ρ(t, z)u(t, z), (3.4)

reduces the nonhomogenous equation

Dαu(t, z) = a(t, z)uzz + b(t, z)uz + c(t, z)u + f(t, z), (3.5)

into the system

Dαv = a1vzz − a2wzz + b1vz − b2wz + c1v − c2w + f1

Dαw = a1wzz + a2vzz + b1wz + b2vz + c1w + c2v + f2,
(3.6)

where

a1 = a1, a2 = a2

b1 = b1 +
2ρ1z

(
a1ρ1 + a2ρ2

)
+ 2ρ2z

(
a1ρ2 − a2ρ1

)
ρ21 + ρ22

b2 = b2 −
2ρ1z

(
a1ρ2 − a2ρ1

)
+ 2ρ2z

(
a2ρ2 − a1ρ1

)
ρ21 + ρ22

c1 = c1 +
ρ1zz
(
a1ρ1 + a2ρ2

)
+ ρ2zz

(
a1ρ2 − a2ρ1

)
+ ρ1z

(
b1ρ1 + b2ρ2

)
+ ρ2z

(
b1ρ2 − b2ρ1

)
ρ21 + ρ22
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c2 = c2 −
ρ1zz
(
a1ρ2 − a2ρ1

)
+ ρ2zz

(
a1ρ1 − a2ρ2

)
+ ρ1z

(
b1ρ2 − b2ρ1

) − ρ2z
(
b1ρ1 + b2ρ2

)
ρ21 + ρ22

f1 =
ρ1
(
f1 − h1

)
+ ρ2
(
f2 − h2

)
ρ21 + ρ22

f2 =
ρ2
(
f1 − h1

)
+ ρ1
(
f2 − h2

)
ρ21 + ρ22

,

f =
f

ρ
− αρt

ρ
I1−αu = f1 + if2

h1 = ρ1tI
1−αv − ρ2tI

1−αw

h2 = ρ2tI
1−αv + ρ1tI

1−αw,

ρ(t, z) := ρ1(t, z) + iρ2(t, z)/= 0.

(3.7)

4. Numerical Solution

Let us put

F1(t, z, v,w) = φ1(t, z) − L1(v,w) −N1(v,w)

F2(t, z, v,w) = φ2(t, z) − L2(v,w) −N2(v,w),
(4.1)

where φ1(t, z) and φ2(t, z) are arbitrary functions;

L1(v,w) = −	1(v) + 	1(w) = −
(
a1vzz + b1vz + c1v

)
+
(
a2wzz + b2wz + c2w

)
,

L2(v,w) = −(	2(v) + 	2(w)) = −
(
a2vzz + b2vz + c2v + a1wzz + b1wz + c1w

) (4.2)

are the linear parts of F1 and F2, respectively. While N1 and N2 are the nonlinear parts of F1

and F2, respectively. Moreover, let us set the homotopy system

(
1 − p

)
Dαv(t, z) + pDαv(t, z) − φ1(t, z) + L1(v,w) +N1(v,w) = 0, p ∈ [0, 1]
(
1 − p

)
Dαw(t, z) + pDαw(t, z) − φ2(t, z) + L2(v,w) +N2(v,w) = 0,

(4.3)

where

v(t, z) =
∞∑
n=0

vn(t, z)pn, w(t, z) =
∞∑
n=0

wn(t, z)pn,

N1(v,w) =
∞∑
k=0

Nkp
k, N2(v,w) =

∞∑
k=0

Ñkp
k.

(4.4)
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Hence we obtain the following system:

Dα

⎛
⎜⎜⎜⎜⎜⎜⎝

v0(t, z)
v1(t, z)
v2(t, z)

...
vn(t, z)

⎞
⎟⎟⎟⎟⎟⎟⎠

= 	1

⎛
⎜⎜⎜⎜⎜⎜⎝

0
v0(t, z)
v1(t, z)

...
vn−1(t, z)

⎞
⎟⎟⎟⎟⎟⎟⎠

− 	1

⎛
⎜⎜⎜⎜⎜⎜⎝

0
w0(t, z)
w1(t, z)

...
wn−1(t, z)

⎞
⎟⎟⎟⎟⎟⎟⎠

−

⎛
⎜⎜⎜⎜⎜⎜⎝

0
N0(v0(t, z))

N1(v0(t, z), v1(t, z))
...

Nn−1(v0(t, z), v1(t, z), . . . , vn−1(t, z))

⎞
⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎝

0
φ1(t, z)

0
...
0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

Dα

⎛
⎜⎜⎜⎜⎜⎜⎝

w0(t, z)
w1(t, z)
w2(t, z)

...
wn(t, z)

⎞
⎟⎟⎟⎟⎟⎟⎠

= 	2

⎛
⎜⎜⎜⎜⎜⎜⎝

0
v0(t, z)
v1(t, z)

...
vn−1(t, z)

⎞
⎟⎟⎟⎟⎟⎟⎠

+ 	2

⎛
⎜⎜⎜⎜⎜⎜⎝

0
w0(t, z)
w1(t, z)

...
wn−1(t, z)

⎞
⎟⎟⎟⎟⎟⎟⎠

−

⎛
⎜⎜⎜⎜⎜⎜⎝

0
Ñ0(w0(t, z))

Ñ1(w0(t, z), w1(t, z))
...

Ñn−1(w0(t, z), w1(t, z), . . . , wn−1(t, z))

⎞
⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎝

0
φ2(t, z)

0
...
0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

(4.5)

where

v0(t, z) =
k−1∑
j=0

ν(z)v(j)
0

tj

j!
, α ∈ (k − 1, k), ν(z) =

∞∑
n=0

νnz
n,

v1(t, z) = − Iα(L1v0(t, z)) − IαN0(v0(t, z)) + Iαφ1(t, z),

...

vn(t, z) = −Iα(L1vn−1(t, z)) − IαNn−1(v0(t, z), . . . , vn−1(t, z)),

w0(t, z) =
k−1∑
j=0

�(z)w(j)
0

tj

j!
, α ∈ (k − 1, k), �(z) =

∞∑
n=0

�nz
n,

w1(t, z) = − Iα(L2w0(t, z)) − IαÑ0(w0(t, z)) + Iαφ2(t, z),

...

wn(t, z) = − Iα(L2wn−1(t, z)) − IαÑn−1(w0(t, z), . . . , wn−1(t, z)).

(4.6)
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Consequently, we have the approximate solution

v(t, z) =
∞∑
j=0

ν(z)v(j)
0

tj

j!
− Iα

⎛
⎝ ∞∑

j=0

L1vj(t, z) +
∞∑
j=0

Nj − φ1(t, z)

⎞
⎠

w(t, z) =
∞∑
j=0

�(z)w(j)
0

tj

j!
− Iα

⎛
⎝ ∞∑

j=0

L2wj(t, z) +
∞∑
j=0

Ñj − φ2(t, z)

⎞
⎠.

(4.7)

Thus, we impose a nonlinear integral equation in the following formula:

v(t, z) =
∞∑
j=0

ν(z)v(j)
0

tj

j!
+
∫ t

0

(t − τ)α−1

Γ(α)
F1(τ, ζ, u)dτ

w(t, z) =
∞∑
j=0

�(z)w(j)
0

tj

j!
+
∫ t

0

(t − τ)α−1

Γ(α)
F2(τ, ζ, u)dτ.

(4.8)

Now we can sake the main result of this section.

Theorem 4.1. Consider the fractional differential system (3.6) subject to the initial conditions

(
v(m)(0, z) = v

(m)
0 (z), w(m)(0, z) = w

(m)
0 (z), m = 0, 1, 2, . . . , k − 1

)
. (4.9)

The homotopy perturbation technique implies that the initial value problem ((3.6)–(4.9)) can
be expressed as a nonlinear integral equation of the form (4.8).

We proceed to prove the analytical convergence of our solution.

Theorem 4.2. Suppose the sequence un(t, z) =
(

vn(t,z)
wn(t,z)

)
of the homotopy series v(t, z) =∑∞

n=0 vn(t, z)pn and w(t, z) =
∑∞

n=0 wn(t, z)pn is defined for p ∈ [0, 1]. Assume the initial
approximation u0(t, z) =

(
v0(t,z)
w0(t,z)

)
inside the domain of the solution u(t, z) =

(
v(t,z)
w(t,z)

)
. If ‖un+1‖ ≤

ρ‖un‖ for all n, where 0 < ρ < 1, then the solution is absolutely convergent when p = 1.

Proof. Let Cn(t, z) be the sequence of partial sum of the homotopy series. Our aim is to show
that Cn(t, z) is a Cauchy sequence. Consider

‖Cn+1(t, z) − Cn(t, z)‖ = ‖un+1(t, z)‖

≤ ρ‖un(t, z)‖ ≤ ρ2‖un−1(t, z)‖

≤ · · · ≤ ρn+1‖u0(t, z)‖.

(4.10)
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For n ≥ m,n ∈ N, we have

‖Cn(t, z) − Cm(t, z)‖ = ‖Cn(t, z) − Cn−1(t, z) + Cn−1(t, z) − Cn−2(t, z)+· · ·+Cm+1(t, z) − Cm(t, z)‖
≤ ‖Cn(t, z) − Cn−1(t, z)‖ + ‖Cn−1(t, z) − Cn−2(t, z)‖
+ · · · + ‖Cm+1(t, z) − Cm(t, z)‖

≤ 1 − ρn−m

1 − ρ
ρm+1‖u0(t, z)‖.

(4.11)

Hence

lim
n,m→∞

‖Cn(t, z) − Cm(t, z)‖ = 0; (4.12)

therefore,Cn(t, z) is a Cauchy sequence in the complex Banach space and consequently yields
that the series solution is convergent. This completes the proof.

Recently the homotopy methods are used to obtain approximate analytic solutions
of the time-fractional nonlinear equation and time-space-fractional nonlinear equation (see
[12–17]).

5. Applications

In this section, we will consider the pump wave equations along the fiber (Schrödinger
equations). These types of equations are the fundamental equations for describing non-
relativistic quantum mechanical behavior taking the form

iDαu(t, z) = −1
2
uzz(t, z) − |u|2u(t, z). (5.1)

Under the transform u = u = v + iw such that either |u|2 = |v|2 or |u|2 = |w|2, we have
the uncoupled system

iDαv(t, z) = −1
2
vzz(t, z) − |v|2v(t, z)

iDαw(t, z) = −1
2
wzz(t, z) − |w|2w(t, z),

(5.2)

where 0 < α ≤ 1. Subject to the initial conditions

v0(0, z) = eiz, w0(0, z) = 1. (5.3)
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Operating (5.2) by Iα, we have

iv(t, z) = v0(0, z) + Iα
[
−1
2
vzz(t, z) − |v|2v(t, z)

]

iw(t, z) = w0(0, z) + Iα
[
−1
2
wzz(t, z) − |w|2w(t, z)

]
.

(5.4)

By the same computation as in Section 5, we receive

v0 = eiz, w0 = 1

v1 =
itα

2Γ(α + 1)
eiz, w1 =

itα

Γ(α + 1)

v2 =
(itα)2

22Γ(2α + 1)
eiz, w2 =

(itα)2

Γ(2α + 1)

...

vn =
(itα)n

2nΓ(nα + 1)
eiz, wn =

(itα)n

Γ(nα + 1)
.

(5.5)

Thus the solution u is given by

u(t, z) =

( ∞∑
n=0

(itα)n

2nΓ(nα + 1)
eiz,

∞∑
n=0

(itα)n

Γ(nα + 1)

)T

. (5.6)

Moreover, under the same transform, (5.1) reduces to coupled system

iDαv(t, z) = −1
2
vzz(t, z) −

(
|v|2 + |w|2

)
v(t, z)

iDαw(t, z) = −1
2
wzz(t, z) −

(
|v|2 + |w|2

)
w(t, z),

(5.7)

Operating (5.7) by Iα, we have

iv(t, z) = v0(0, z) + Iα
[
−1
2
vzz(t, z) −

(
|v|2 + |w|2

)
v(t, z)

]

iw(t, z) = w0(0, z) + Iα
[
−1
2
wzz(t, z) −

(
|v|2 + |w|2

)
w(t, z)

]
.

(5.8)

Therefore,

u(t, z) =

( ∞∑
n=0

(itα)n

2nΓ(nα + 1)
eiz,

∞∑
n=0

(itα)n

Γ(nα + 1)

)T

,
∣∣∣eiz
∣∣∣ = 1. (5.9)
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(a) (b)

(c) (d)

(e) (f)

Figure 1: ((a)–(d)) The solution v when α = 0.5, α = 0.75, α = 0.9, and α = 1, respectively. ((e),(f)) the
solution (u, v) when α = 0.5 and α = 1.

6. Conclusion

We suggested two types of complex transforms for systems of fractional differential equa-
tions.We concluded that the complex fractional differential equations can be transformed into
coupled and uncoupled system of homogeneous and nonhomogeneous types. Moreover, we
employed the homotopy perturbation scheme for solving the nonlinear complex fractional
differential systems. The convergence of the method is discussed in a domain that contains
the initial solution. The Schrödinger equation is illustrated as an application. This type of
equation is used in the quantum mechanics, which describes how the quantum state of a
physical system changes with time. In the standard quantum mechanics, the wave function
is the most complete explanation that can be specified to a physical system. Solutions of the
Schrdinger’s equation describe not only molecular, atomic, and subatomic systems, but also
macroscopic systems (see Figure 1).
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