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We develop an analytical approach to the performance analysis and optimization of wireless
cellular networks for which different types of calls are prioritized based on a channel reservation
scheme. We assume that the channel occupancy time differs for new and handover calls. We
obtain simple formulas for calculating quality of service (QoS) metrics and solve some problems
related to finding the optimal values of guard channels as well as present the results of numerical
experiments.

1. Introduction

In wireless cellular networks, when a subscriber crosses the boundary of a cell (while
on a call), the subscriber releases this cell’s channel and requests an empty channel in a
neighboring cell. This process is called a handover. If a neighboring cell has at least one empty
channel, then such a handover call (h-call) is delivered continuously and almost transparently
to the subscriber; otherwise, the call is dropped. Usually, dropping an ongoing call from a
different cell is less desirable than blocking new attempts originating within the cell (o-calls).
Thus, h-calls are considered to be more important (have a higher priority) than o-calls.

There are various prioritization schemes for h-calls in wireless networks. Efficient
methods for minimizing the rate of dropped h-calls include reserving a number of channels
(guard channels) specifically for h-calls, imposing a threshold for o-calls, and queuing h-calls.
A detailed review of papers investigating these methods can be found in [1–3].
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In this paper, we consider a model with call admission control (CAC) based on guard
channels schemes (GC schemes) and without queuing of h-calls. In almost all existing papers,
it has been assumed that h-calls and o-calls have identical channel occupancy times. Due
to this assumption, the function of a cell is described by a one-dimensional Markov chain,
and the authors managed to find simple recursive formulas for calculating the probabilities
of dropping h-calls and of blocking o-calls. The classical guard channels (CGC) reservation
scheme [4], as well as a generalized reservation scheme called fractional guard channels
(FGC) and its own special case, that is, uniform fractional guard channels (UFGC) [5],
was considered. However, the identity channel occupancy times assumption for calls of
different types is rather limiting and unrealistic [6–8]. Therefore, one-dimensional Markov
chains do not adequately describe such networks, and further research on multidimensional
models is required. However, when using multidimensional models, we face the famous
“curse of dimensionality”. To address this problem, a few papers have suggested various
approximation schemes. A detailed review of approximate methods can be found in [9].

In this paper, we develop an analytical approach to the calculation of models without
h-call queues, in which o- and h-calls are not assumed to have identical channel occupancy
times. First, we briefly review the results of well-known papers that study such models.
One of the first works to investigate such models was [6]. This paper examined models
featuring various reservation strategies for h-calls or establishing thresholds for o-calls.
For the latter type of model, simple formulas are easily developed for calculating the loss
probability of h-calls as well as the blocking probability of o-calls. The development of simple
formulas is possible because there is an explicit solution to an appropriate set of global
equilibrium equations (SGEE) for the state probabilities. However, there is no closed form
solution to the corresponding equations for models with CAC based on the GC scheme;
therefore, the authors suggested approximation formulas for QoS calculations based on
some heuristic considerations. The accuracy of the suggested formulas was determined by
simulation. The authors also suggested another approximation scheme, which they dubbed
traditional and in which different occupancy times are replaced by a single time by following
a defined procedure. It was shown that the traditional scheme gives a rough approximation,
especially as the true occupancy times of different calls differ substantially. The common idea
underlying both approximation methods is the unification of the channel occupancy times of
polytypic calls with appropriate schemes. A similar approximation approach based on this
idea is proposed in [7], and another approach is suggested in paper [8], which offers high
accuracy in models for which the parameters for different call types differ substantially. For
models with identical parameters, however, its results are less accurate.

In this paper, we develop an analytical approach for calculating models of a wireless
network with nonidentical channel occupancy times for h- and o-calls in which the CAC
are based on CGC, FGC, and UFGC schemes. We prove that the formulas suggested in
[6, 7] are not merely approximations but are exact if the model satisfies a local balance
condition (for more information about this condition, see [10]); otherwise, these formulas
are approximations. We use these formulas to find the optimal number of guard channels for
CAC based on CGC scheme.

Even though we consider a monoservice network for the sake of simplifying both our
models and any intermediate calculations, the results that we achieve can be easily adapted
for multiservice networks.

This paper is organized as follows. In Section 2, well-known QoS calculation algo-
rithms are given for the CGC scheme. In Section 3, a new analytical approach is developed
for the study of models with the FGC scheme, and, as a particular case, we obtain results for
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the CGC scheme. Section 4 contains the results of selecting the optimal number of guard
channels for the CAC based on CGC scheme. In Section 5, we provide some concluding
remarks. Finally, in an appendix, we provide proofs of all required facts.

2. Approximate Methods for CAC Based on the CGC Scheme

First, we will analyze the model of a cell belonging to a homogeneous wireless network with
a CAC based on the CGC scheme. Henceforth, a homogeneous network is defined as one
for which the traffic parameters of all cells within the network are statistically identical; that
is, we can study the function of a representative cell in isolation. This assumption is true for
practically all networks with small cells (e.g., networks with microcells).

The representative cell contains N channels, 1 < N < ∞, which are used by Poisson
flows of o- and h-calls. The intensity of an x-call is denoted by λx, where x ∈ {o, h}. If at
least one free channel exists upon the arrival of an h-call, then the call seizes one of the
free channels; otherwise, the call is dropped. A new arriving call is accepted only when the
number of busy channels is less than m, for some fixed m satisfying 1 ≤ m ≤ N (in the case
where m = N, there are no restrictions on new calls); otherwise, the new call is blocked.

The distribution functions corresponding to the channel occupancy times of both types
of calls are exponential, but their parameters differ by the intensity of handling of n- and h-
calls, which are given by μo and μh, respectively. Generally speaking, μo /=μh.

Remark 2.1. The abovementioned channel occupancy times are defined not only in terms of
required service times for different call types but also in terms of the subscriber mobility
within cells. In all existing works, it has been assumed that the required service times of x-
calls and the time spent by subscribers within the cell have exponential distributions with
parameters τx and γx, x ∈ {o, h}, respectively. Thus, the channel occupancy time of x-calls is
defined as the minimum of two exponentially distributed stochastic variables; that is, for an
x-call, it has an exponential form with parameter μx = τx + γx, x ∈ {o, h}. Based on practical
considerations, the residence duration may differ greatly between different types of calls;
hence, the channel occupancy times will also differ.

Cell functionality is described by a two-dimensional Markov chain (MC); that is, the
state of the given system at an arbitrary moment in time is described by a two-dimensional
vector k = (k0, kh), where ko(kh) indicates the number of n-calls (h-calls) in the cell. Thus,
the state space of the corresponding MC is determined as follows:

S := {k : ko = 0, 1, ..., m; kh = 0, 1, ...,N; ko + kh ≤ N}. (2.1)

Let us denote the stationary probability of state k ∈ S as p(k). Stationary probabilities
are found from the appropriate SGEE and then used to calculate all the required QoS metrics
of the model. The primary QoSmetrics are the loss probability of h-calls (Ph) and the blocking
probability of o-calls (Po). They are defined as follows when using the above-mentioned CGC
admission control:

Ph =
∑

k∈S
p(k)I(ko + kh = N),

Po =
∑

k∈S
p(k)I(ko + kh ≥ m).

(2.2)
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Henceforth, let I(A) denote the indicator function of event A. From Formulas (2.2),
we obtain Po = Ph whenm = N.

We should note that for practical networks, this SGEE has large dimension, which
explains why its exact solution is computationally difficult. In [8], for the case λo � λh,
μo � μh the following algorithm for approximating the values of the QoS metrics from (2.2)
is developed based on strict mathematical justifications.

Step 1. Calculate the following parameters:

ρi
(
j
)
=
(
ν
j

h/j!
)
ρ
i
(0), i = 0, m, j = 0,N − i, (2.3)

where ρi(0) = (
∑m

j=0(ν
j

h
/j!))

−1
,

π(〈i〉) =
(
νio/i!

)∏i

j=1
Λ
(
j
)
π(〈0〉), i = 1, m , (2.4)

where (〈0〉) = (1 +
∑m

i=1(ν
i
o/i!)

∏i
j=1Λ(j)), Λ(i + 1) = ρi(0)

∑m−1−i
j=0 (νj

h
/j!), i = 0, m − 1.

Step 2. Calculate the approximate values of the QoS metrics in (2.2):

Ph ≈
m∑

i=0

EB(νh,N − i)π(〈i〉), (2.5)

Po ≈
m∑

i=0

N−i∑

j=m−i
ρi
(
j
)
π(〈i〉), (2.6)

where EB(ν, s) is the Erlang B-formula, that is, EB(ν, s) = (νs/s!)(
∑s

i=0(ν
i/i!))−1.

In the above algorithm, the following notation is used: νx = λx/μx, x ∈ {o, h}. The
results achieved with this algorithm nearly coincide with those from exact calculations under
the indicated above conditions: λo � λh, μo � μh. Under these conditions, the exact values
of the QoS metrics for a model of moderate dimensions are calculated with SGEE.

The authors in [6] also introduced an approximation algorithm for solving this
problem, which was based on the following heuristic considerations. Because the QoSmetrics
Ph and Po increase in proportion to the incoming traffic load νh and νo, a one-dimensional
birth and death process is used as a research model. The different channel occupation times
are replaced with their averages, and the traffic intensities are replaced by their loads; that
is, the following approximations are made: μo = μh = 1, λo = νo, λh = νh. The authors in [6]
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Table 1: Comparison of different algorithms for the case N = 10, λo = 1, λh = 5, μo = 1, μh = 5.

m
Po Ph

[8] [6] Traditional [8] [6] Traditional
1 0.7310586 0.7746003 0.8374876 3.4676E − 07 1.24228E − 07 8.88776E − 06
2 0.4621171 0.4891989 0.5577866 1.1128E − 06 1.87684E − 07 9.67381E − 06
3 0.2516532 0.2588479 0.2998047 3.1089E − 06 3.26787E − 07 1.10285E − 05
4 0.1163676 0.1153544 0.1327018 7.2415E − 06 6.15877E − 07 1.29415E − 05
5 0.0453591 0.0435004 0.0492806 1.3815E − 05 1.20496E − 06 1.54023E − 05
6 0.0149759 0.0140255 0.0156344 2.1738E − 05 2.39303E − 06 1.84346E − 05
7 0.0042446 0.0039216 0.0043088 2.8994E − 05 4.77667E − 06 2.21056E − 05
8 0.0010474 0.0009644 0.0010449 3.4104E − 05 9.54873E − 06 2.65221E − 05
9 0.0002249 0.0002101 0.0002227 3.6928E − 05 1.90954E − 05 3.18253E − 05

proposed the following formulas for approximating the QoS metrics in (2.2):

Ph ≈ ρN,

Po ≈
N∑

i=m

ρi,
(2.7)

where

ρi =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

νi

i!
· ρ0, if i ≤ m,

νm · νi−mh

i!
· ρ0, if m + 1 ≤ i ≤ N,

ρ0 =

(
m∑

i=0

νi

i!
+

N∑

i=m+1

νm · νi−m
h

i!

)−1
, ν = νo + νh.

(2.8)

The authors noted that it is impossible to measure the accuracy of their proposed
formulas analytically; therefore, they demonstrated the high accuracy of these formulas with
simulations.

Another way of transforming a two-dimensional model to an approximate one-
dimensional model proceeds by replacing different average channel occupation times with
the weighted average μ = ν/λ, where λ = λo + λh. Such an approach to the problem solution
is called traditional [6]. In this case, QoS parameter calculations require the use of formulas
(2.7); however, in formulas (2.8), parameters νh and νo are defined as follows: νh = λh/μ,
νo = λo/μ.

The authors in [6] also proved the low accuracy of this traditional approach, especially
when μo and μh vary greatly. As was expected, the results of the last two approaches coincide
at μo = μh.

Tables 1, 2, and 3 contain the results of numerical experiments for the above three
methods. Comparison of these methods shows that the results contained in [6], do not differ
significantly, even when the condition λo � λh, μo � μh does not hold (see Tables 2 and 3).
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Table 2: Comparison of different algorithms for the case N = 10, λo = 5, λh = 1, μo = 5, μh = 1.

m
Po Ph

[8] [6] Traditional [8] [6] Traditional
1 0.73105860 0.77460030 0.7035873 3.4676E − 07 1.24228E − 07 8.29989E − 12
2 0.46211714 0.48919887 0.42770452 1.1128E − 06 1.87684E − 07 3.20498E − 11
3 0.25165324 0.25884799 0.22508059 3.1089E − 06 3.26787E − 07 1.5623E − 10
4 0.11636757 0.11535437 0.10127703 7.2415E − 06 6.15877E − 07 8.58268E − 10
5 0.04535909 0.04350037 0.03875433 1.3815E − 05 1.20496E − 06 4.9833E − 09
6 0.01497587 0.01402552 0.01267733 2.1738E − 05 2.39303E − 06 2.95839E − 08
7 0.00424458 0.00392164 0.00358918 2.8994E − 05 4.77667E − 06 1.76973E − 07
8 0.00104741 0.00096442 0.00089234 3.4104E − 05 9.54873E − 06 1.06105E − 06
9 0.00022489 0.00021005 0.00019732 3.6928E − 05 1.90954E − 05 6.36523E − 06

Table 3: Comparison of different algorithms for the case N = 10, λo = λh = 5, μo = μh = 5.

m
Po Ph

[8] [6] Traditional [8] [6] Traditional
1 0.73105860 0.77460030 0.7746003 3.4676E − 07 1.24228E − 07 1.24228E − 07
2 0.46211714 0.48919887 0.48919887 1.1128E − 06 1.87684E − 07 1.87684E − 07
3 0.25165324 0.25884799 0.25884799 3.1089E − 06 3.26787E − 07 3.26787E − 07
4 0.11636757 0.11535437 0.11535437 7.2415E − 06 6.15877E − 07 6.15877E − 07
5 0.04535909 0.04350037 0.04350037 1.3815E − 05 1.20496E − 06 1.20496E − 06
6 0.01497587 0.01402552 0.01402552 2.1738E − 05 2.39303E − 06 2.39303E − 06
7 0.00424458 0.00392164 0.00392164 2.8994E − 05 4.77667E − 06 4.77667E − 06
8 0.00104741 0.00096442 0.00096442 3.4104E − 05 9.54873E − 06 9.54873E − 06
9 0.00022489 0.00021005 0.00021005 3.6928E − 05 1.90954E − 05 1.90954E − 05

3. An Analytical Method for CAC Based on FGC and UFGC Schemes

In this method, as in the CGC scheme, an h-call is accepted if there is at least one free channel
upon its arrival; otherwise, the call is dropped. An arriving o-call is accepted with probability
βi if upon its arrival the number of busy channels equals i, i = 0, 1, . . . ,N − 1; thus, the call is
blocked with probability 1 − βi. Obviously, the CGC scheme is a special case of this scheme.
Indeed, by setting βi = 1 for all i = 0, 1, . . . , m − 1 and βi = 0 for all i = m,m + 1, . . . ,N − 1
in the FGC scheme, we obtain the CAC based on the CGC scheme; by setting βi = α for all
i = 0, 1, . . . ,N − 1, the FGC scheme reduces to the UFGC scheme with admission probability
α [5].

The stationary distribution of state probabilities is defined by solving the appropriate
SGEE. The solution of an SGEE again presents problems with exact calculation for high-dim-
ensional state spaces (2.1). To overcome this problem, the authors in [6] applied the above-
mentioned heuristic assumption and proposed the following algorithm for the approximate
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calculation of QoS metrics:

Ph ≈ ρN,

P0 ≈
N∑

i=0

(
1 − βi

)
ρi, βN = 0,

(3.1)

where

ρi =
1
i!
·

i−1∏

j=0

(
βjνo + νh

) · ρ0,

ρ0 =

⎛

⎝
N∑

i=0

1
i!
·

i−1∏

j=0

(
βjνo + νh

)
⎞

⎠
−1

.

(3.2)

Here, we offer strict analysis of these formulas; moreover, we will prove that the
formulas are exact if the system satisfies the local balance condition.

In the FGC scheme, as in the CGC scheme, the cell state at any time is described
by a bidimensional vector k = (ko, kh), where ko(kh) denotes the number of n-calls (h-
calls) occupying channels. Additionally, the state space of the model is defined by (2.1). The
intensities q(k,k′), k, k′ ∈ S of transitions between states of this two-dimensional MC are
defined as follows:

q
(
k,k′) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

λoβi, if ko + kh = i, k′ = k + e1,

λh, if k′ = k + e2,

koμh, if k′ = k − e1,

khμh, if k′ = k − e2,

0 otherwise,

(3.3)

where e1 = (1, 0), e2 = (0, 1).
Because the loss probability of an h-call and the blocking probability of an o-call are

determined by the number of busy channels (see Formulas (2.2)), consider the following
partition of the state space (2.1):

S =
N⋃

i=0

Si, Si

⋂
Sj = ∅, i /= j, (3.4)

where S = {k ∈ S : ko + kh = i}.
Let us denote the probability of the merged state Si by π(i), that is,

π(i) :=
∑

k∈Si

p(k). (3.5)
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Thus,

N∑

i=0

π(i) = 1. (3.6)

Then, the initial QoS metrics from (2.2) are defined via the stationary probabilities of
the merged states as follows:

Ph = π(N),

Po =
N∑

i=0

(
1 − βi

)
π(i) .

(3.7)

Hence, to calculate the QoS metrics in (2.2), it is sufficient to find the merged state
probabilities π(i) rather than calculating the probabilities of all states k ∈ S.

Proposition 3.1. If the system satisfies the local balance condition, then the merged state probabilities
are defined as follows:

π
(
j
)
=

1
j!

j−1∏

i=0

(
νoβi + νh

)
π(0), j = 1, . . . ,N, (3.8)

where π(0) = (
∑N

j=0(1/j!)
∏j−1

i=0 (νoβi + νh))
−1
.

The proof is provided in the appendix.
Thus, taking (3.7) into account, we deduce that the proposed algorithm (8)–(11) in [6]

is accurate and not merely an approximation as long as the system satisfies the local balance
condition.

By applying these formulas to the special cases, we obtain exact formulas for the QoS
metrics (2.2) when using the CAC based on both the CGC scheme and the UFGC scheme.
Thus, for the CGC scheme we have that

Ph = π(0) ·
(

ν

νh

)m

· ν
N
h

N!
,

Po = π(0) ·
(

ν

νh

)m

·
N∑

i=m+1

νi
h

i!
,

(3.9)

where

π(0) =

(
m∑

i=0

νi

i!
+
(

ν

νh

)m

·
N∑

i=m+1

νih
i!

)−1
. (3.10)
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For the UFGC scheme, the following formulas are obtained:

Ph =
AN

N!
· π(0),

Po = 1 − α,

(3.11)

where A := ανo + νh, π(0) = (
∑N

j=0(A
j/j!))

−1
.

Note that closed-form solutions (3.9)–(22) might be considered refined approxima-
tions for the similar model that features identical channel occupancy times for heterogeneous
calls [5], that is, when μo = μh. Indeed, formulas (3.11) completely coincide with the exact
results given in [5] in the case that the admission probability α is equal to 1; small deviations
arise when α is close to 1.

4. Selection of Optimal Values for the Parameters of CAC Based on the
CGC Scheme

The problem of how to provide a given level of handling quality for different call types
is scientifically and practically very interesting. The solution of such problems requires
some regulated parameters. Thus, in some networks, for which the distribution of channels
between cells is fixed, only call admission control parameters can be regulated because
controlling loads present a difficult task and one that is sometimes practically impossible.

It is extremely difficult to develop a method for finding the optimal parameter values
for the FGC scheme, as this strategy contains a large number (exactly N) of controlled
parameters (i.e., βi, i = 0, 1, . . . ,N − 1). However, even if it was possible to calculate the
optimal values of βi, i = 0, 1, . . . ,N − 1, the practical realization of the resulting randomized
call admission strategies would still include methodological difficulties. Thus, we address
several problems arising from trying to find optimal parameter values for the CGC scheme to
meet the required QoS level. The following scheme has only one controlled parameter (m).

First, we will study the problem of organizing the fair handling of different call
types. As stated above, as m increases, the probability of h-call loss increases, whereas the
probability of o-call blocking decreases; thus, at m = N, we obtain an equilibrium of Po = Ph.
In other words, at m = N, we have absolutely fair handling.

However, in real life, absolutely fair handling is not required, and so we may choose
to introduce the concept of ε-fair handling, which denotes handling at which Po − Ph < ε,
for a given number ε > 0. Thus, the problem of finding ε-fair handling can be defined
mathematically as follows:

m∗ = arg min
m

{Po(m) − Ph(m) < ε}. (4.1)

Considering that Po (N) = Ph (N) and assuming the monotonicity of Po(m) and
Ph(m), we can apply the dichotomy method to solve the equation in (4.1). We now describe
the general algorithm. The initial uncertainty interval [1,N] is split in half; that is, we set
b = int(N + 1)/2, where int(x) is the integer part of x. If condition (4.1) is satisfied at this
point, then we next consider the interval [1, b]; otherwise, we consider the interval [b, N].
The algorithm correctly terminates by locating an interval of unitary length whose right limit
satisfies condition (4.1) but whose left limit does not. As a result, this right limit will be
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Table 4: Solutions for the problem (4.1).

N 10 10 10 20 20 20 20 20 20 20
νo 10 10 10 15 15 15 15 15 15 15
νh 2/3 2/3 2/3 2/3 2/3 2/3 2 2 2 2
ε 0.4 0.3 ≤0.2 0.2 0.3 0.4 0.4 0.3 0.2 ≤0.1
m∗ 8 9 10 16 13 11 13 15 17 20

the required value ofm∗. This algorithm has a finite number of steps because by the condition
that Po (N) = Ph (N), condition (4.1) is satisfied in the worst case when m = N. The results
of solving (4.1) are given in Table 4.

Now let the QoS for different call types be measured by the limit values of the loss and
blocking probabilities; that is, the limitations for their upper bounds are set as follows:

Po(m) ≤ εo,

Ph(m) ≤ εh,
(4.2)

where εo > 0 and εh > 0 are given parameters.
Then, the optimization problem is formulated as follows: find the extreme values of

the parameter m satisfying (4.2). Let us first consider the following problem:

m = arg min
m

{Po(m) ≤ εo, Ph(m) ≤ εh}. (4.3)

Given the monotonicity of Po(m) and Ph(m), we propose the following algorithm for
solving problem (4.3).

Step 1. If εo < Po(N) or εh < Ph(1), then there is no solution.

Step 2. If εo > Po(1) and εh > Ph(1), then m = 1.

Step 3. If Po(N) < εo < Po(1) and Ph(1) < εh < Po(N), then solve the following problem:

m1 = arg min
m

{Po(m) ≤ εo} (4.4)

.

Step 4. If Ph(m1) > εh, then there is no solution; otherwise the solution is given by m = m1.

Note that the dichotomy method can be used to solve the problem in Step 3 due to the
monotonicity of Po(m).

A similar method is developed for solving the following problem:

m = arg max
m

{Po(m) ≤ εo, Ph(m) ≤ εh}. (4.5)
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Table 5: Solutions for the problem (4.3), (4.5) in the case ofN = 10.

νo 0.1 0.1 0.1 0.1 0.5 0.5 0.5 0.5 0.5 1.0
νh 4/3 4/3 4/3 1.0 1.0 1.0 1.0 1.0 1.0 2.0
εo 10−2 10−2 10−2 10−2 10−3 10−3 10−3 10−3 10−3 10−3

εh 10−4 10−5 10−6 10−3 10−4 10−5 10−6 10−7 10−8 10−7

[m,m] [6, 10] [6, 10] ∅ [5, 10] [6, 10] [6, 10] [6, 10] [6, 10] [6, 6] ∅

Combining the solutions of problems (4.3) and (4.5), we obtain a range of values for
the parameter m meeting conditions (4.2). The results of the solutions of these problems are
given in Table 5, where the symbol ∅ indicates no solution.

It is possible to pose other similar QoS optimization problems; however, due to space
limitations, they are not considered here.

5. Conclusion

We have provided exact and simple formulas for the calculation and optimization of QoS
metrics for traditional wireless network models, assuming that the two fundamentally
different types of calls (new and handover) do not have identical channel occupancy times.
It is important to note that the adaptation of the proposed approach for next generation
networks is straightforward.

Appendix

To prove the above-mentioned proposition, we must first prove the following lemmas.

Lemma A.1. If the system satisfies the local balance condition, then the following equations hold:

νoβi−1π(i − 1) = E(ko | i)π(i), (A.1)

νhπ(i − 1) = E(kh | i)π(i), i = 1, . . . ,N, (A.2)

where E(· | ·) denotes conditional mathematical expectation.

Lemma A.2. If the system satisfies the local balance condition, then the following equations hold:

(
νoβi−1 + νh

)
π(i − 1) = iπ(i), i = 1, . . . ,N. (A.3)

Proof of Lemma A.1. We use a technique proposed in [11], and we begin with proving the first
equation. From (3.3), we conclude that the set of local equilibrium equations (SLEE) for the
states k ∈ Si, i = 1, . . . ,N has the form

νoβi−1p(ko − 1, kh)I(ko ≥ 1) = kop(ko, kh). (A.4)
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Summing both parts of (A.4) for all possible k ∈ Si, we obtain

νoβi−1
∑

k∈Si

p(ko − 1, kh)I(ko ≥ 1) =
∑

k∈Si

kop(ko, kh) . (A.5)

From (3.5), we conclude that

∑

k∈Si

p(ko − 1, kh)I(ko ≥ 1) = π(i − 1). (A.6)

Let us rearrange the right hand side of (A.5) as follows:

∑

k∈Si

kop(k) =
∑

k∈Si

ko ·
p(k)
π(i)

· π(i). (A.7)

From the definition of conditional probability, we obtain that

P(k | i) = P(k | ko + kh = i) =

⎧
⎪⎨

⎪⎩

p(k)
π(i)

, if k ∈ Si,

0, otherwise.
(A.8)

Then, in light of (A.8), we deduce the following from (A.7):

∑

k∈Si

kop(k) =

(
∑

k∈Si

koP(k | i)
)
π(i) = E(ko | i)π(i). (A.9)

Finally, using (A.6) and (A.9), we obtain

νoβi−1π(i − 1) = E(ko | i)π(i). (A.10)

The second equation is proved similarly.

Proof of Lemma A.2. Summing over the parts of the equation in Lemma A.1, we obtain

(
νoβi−1 + νh

)
π(i − 1) = (E(ko | i) + E(kk | i))π(i) = E(ko + kh | i)π(i) = iπ(i). (A.11)

Thus, Lemma A.2 also follows.
Consequently, from Lemma A.2, taking into account the normalization condition in

(3.6), we conclude that the proposition holds.
Now let us suppose that the system does not satisfy the local balance condition; one

can use the following approach. Taking into account the relations in (3.3), we conclude that
the SGEE for the states k ∈ Si has the following form:

(
λoβi−1 + λh + koμo + khμh

)
p(k) = λoβi−2p(k − e1) + λhp(k − e2) + (ko + 1)μop(k + e1)

+ (kh + 1)μhp(k + e2).
(A.12)
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For notational simplicity, we assume that the states k, k+ei, k−ei, i = 1, 2 appearing in
(A.12) are in the state space (2.1); otherwise, the corresponding terms are zeroed. Summing
both sides of (A.12) over all possible k ∈ Si, after collecting similar terms and accounting for
(3.5), one obtains

(
λoβi−1 + λh

)
π(i − 1) =

∑

k∈Si

(
koμo + khμh

)
p(k). (A.13)

Now, various schemes may be used for the unification of channel occupancy times. If
we use the heuristic from [6], that is, we set μo = μh = 1 and λo = νo, λh = νh then from (A.13),
we obtain

(
νoβi−1 + νh

)
π(i − 1) =

∑

k∈Si

(ko + kh)p(k). (A.14)

By using the proof schemes from our lemmas, we conclude that right side of (A.14) is
equal to iπ(i); that is, we obtain equation from Lemma A.2.
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