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The dynamic characteristics and parametric instability of a rotating electrorheological (ER) sand-
wich beam with rotary oscillation are numerically analyzed. Assuming that the angular velocity
of an ER sandwich beam varies harmonically, the dynamic equation of the rotating beam is first
derived based on Hamilton’s principle. Then the coupling and nonlinear equation is discretized
and solved by the finite element method. The multiple scales method is employed to determine the
parametric instability of the structures. The effects of electric field on the natural frequencies, loss
factor, and regions of parametric instability are presented. The results obtained indicate that the
ER material layer has a significant effect on the vibration characteristics and parametric instability
regions, and the ER material can be used to adjust the dynamic characteristics and stability of the
rotating flexible beams.

1. Introduction

The dynamics of rotating flexible beams have been the subject of extensive research due
to a number of important applications in engineering such as manipulators, helicopters,
turbine blades, and so forth. Much research about the dynamic modeling and vibration
characteristics of fixed-shaft rotating beams has been published in recent decades. Chung
and Yoo [1] investigated the dynamic characteristics of rotating beams using finite element
method (FEM) and obtained the time responses and distribution of the deformations and
stresses at a given rotating speed. The nonlinear dynamics of a rotating beam with flexible
root attached to a rotating hub with elastic foundation has been analyzed by Al-Qaisia
[2]. He discussed the effect of root flexibility, hub stiffness, torque type, torque period and
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excitation frequency and amplitude on the dynamic behavior of the rotating beam-hub.
Lee et al. [3] investigated divergence instability and vibration of a rotating Timoshenko
beam with precone and pitch angles. The nonlinear modal analysis of a rotating beam
has been studied by Arvin and Bakhtiari-Nejad [4]. The stability and some dynamic
characteristics of the nonlinear normal modes such as the phase portrait, Poincare section,
and power spectrum diagrams have been inspected. But most research to date has examined
only the effects of steady velocity on the vibration characteristics of the flexible beam, without
considering the dynamic characteristics of speed variation of beams. Rotating flexible beams
with variable speeds, such as manipulators, demonstrate complex dynamic characteristics
because of changes in angular velocity. The beam can suffer from dynamic instability
under certain movement parameters. Therefore, the vibration stability of flexible beams
with variable angular velocity has attracted increasing attention in recent years. Abbas [5]
studied the dynamics of rotating flexible beams fixed on a flexible foundation, and using
FEM analyzed the effects of rotation speed and flexible foundation on the static buckling load
and region of vibration instability. Young and Lin [6] investigated the parametrically excited
vibration of beams with random rotary speed. Sinha et al. [7] analyzed the dynamic stability
and control of rotating flexible beams with different damping coefficients and boundary
conditions. Chung et al. [8] studied the dynamic stability of a fixed-shaft cantilever beam
with periodically harmonic swing under different swing frequencies and speeds. Turhan
and Bulut [9] studied the vibration characteristics of a rotating flexible beam with a central
rigid body under periodically variable speeds, and simulated the dynamic stability of the
system under different movement parameters. Nonlinear vibration of a variable speed
rotating beam has been analyzed by Younesian and Esmailzadeh [10]. They investigated
the parameter sensitivity and the effect of different parameters including the hub radius,
structural damping, acceleration, and the deceleration rates on the vibration amplitude.

Electrorheological (ER) materials are a kind of smart material whose physical
properties can be instantaneously and reversibly controlled with the application of an electric
field. These unusual properties enable ER materials to be employed in numerous potential
engineering applications, such as shock absorbers, clutch/brake systems, valves and
adaptive structures. One of the most commonly studied ER structures is the ER sandwich
beam, in which an ER material layer is sandwiched between two containing surface layers
[11]. These sandwich structures have the adaptive control capability of varying the damping
and stiffness of the beam by changing the strength of the applied electric field. Since Gandhi
et al. [12] first proposed the application of ER fluids to adaptive structures, much has been
achieved in the vibration control of beams [13–15]. More recently, the dynamic stability
problems of ER sandwich beams have attracted some attention. Yeh et al. [16] studied the
dynamic stability problem of an ER sandwich beam subjected to an axial dynamic force.
They found that the ER core had a significant effect on the dynamic stability regions. Yeh
and Shih [17] investigated the critical load, parametric instability, and dynamic response of
a simply supported ER adaptive beam subjected to periodic axial force. However, research
into the application of ER materials to vibration control of rotating motion beams is rare.
In our previous work [18], the feasibility of applying ER fluids to the vibration control of
rotating flexible beams was discussed. Results demonstrated that the vibration of the beam
caused by the rotating motion at different rotation speeds and acceleration could be quickly
suppressed by applying electric fields to the ER material layer. When the angular velocity of
the rotating ER sandwich beam is variable, the rotating beam would suffer from parametric
instability at some critical movement parameters. In order to successfully apply ER materials
to the vibration control of rotating beams and optimize the control effects, it is needed to
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investigate the nonlinear dynamic characteristics and vibration stabilities of the rotating ER
sandwich beam.

In this paper, the dynamic characteristics and parametric instability of a rotating ER
sandwich beam with rotary oscillation is investigated. Assuming the ER sandwich beam
to rotate around a fixed axis with time-varying harmonic periodic motion, the rotating ER
sandwich beam is regarded as a parametrically excited system. Based onHamilton’s principle
and finite element method (FEM), the governing equations of the rotating beam are obtained.
The multiple scales method is employed to determine the regions of instability for simple
and combination resonances. The effects of electric field on the natural frequency, loss factor,
and regions of parametric instability are investigated. The results of the stability analysis are
verified by investigating the time responses of the ER sandwich beam.

2. Properties of ER Fluids

ER fluids behave as Newtonian fluids in the absence of an electric field. On application
of an electric field, their physical appearance changes to resemble a solid gel. However,
their rheological response changes before and after the yield point. Due to this difference
in rheological behavior before and after the yield point, the rheology of ER fluids is
approximately modeled in pre-yield and post-yield regimes (Figure 1). The pre-yield regime
can be modeled by a linear viscoelastic model, and the post-yield regime be modeled by the
Bingham plastic model.

Existing studies [16, 17, 19, 20] demonstrate that the ER materials behave as linear
visco-elastic properties when they are filled in a sandwich beam configuration. So the shear
stress τ is related to the shear strain γ by the complex shear modulus G∗,

τ = G∗γ. (2.1)

The complex shear modulus G∗ is a function of the electric field strength applied on
the ER fluids, and can be written in the form

G∗ = G1 +G2i = G1
(
1 + ηi

)
, (2.2)

where G1 is the storage modulus, G2 is the loss modulus, η = G2/G1 is the loss factor, and
i =

√−1. So sandwich beams filled with ER fluids behave like visco-elastic damping beams
with controllable shear modulus.

3. Finite Element Modeling of Rotating ER Sandwich Beams

Because ER materials exhibit linear shear behavior at small strain levels similar to many
visco-elastic damping materials, it is found that the models developed for the viscoelastically
damped structures were potentially applicable to ER materials beams [20]. So in the present
study, the finite element model for a rotating beam with a constrained damping layer [21, 22]
is adopted to model the rotating ER sandwich beam.

3.1. Basic Kinematic Relationships of the Rotating Beam

The structure of an ER sandwich beam is shown in Figure 2. The ER material layer is sand-
wiched between two elastic surface layers. The beam with a length L and width b rotates in a
horizontal plane at an angular velocity θ̇ about the axis Y .
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Figure 1: The shear stress-shear strain relationship of ER fluids.
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Figure 2: Rotating sandwich beam filled with ER fluid core.

It is assumed that no slipping occurs at the interface between the elastic layer and
the ER fluid layer, and the transverse displacement w in a section does not vary along the
beam’s thickness. From the geometry of the deflected beam (Figure 3), the shear strain γ and
longitudinal deflection u2 of the ER fluid layer can be expressed as [11]

γ =
u1 − u3

h2
+

h

h2
w,x,

u2 =
u1 + u3

2
+
h1 − h3

4
w,x,

(3.1)

with

h = h2 +
(h1 + h3)

2
, (3.2)

where uk (k = 1, 2, 3) are the longitudinal displacements of the mid-plane of the kth layer; w
is the transverse displacements of the beam, and subscript (, x) denotes partial differentiation
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Figure 3: Kinematic relationships of deflected beam.

with respect to coordinate x; hk (k = 1, 2, 3) is the thickness of the kth layer; and k = 1, 2, 3
denote the upper face layer, the ER core layer, and the lower face layer, respectively.

3.2. Governing Equations

The kinetic energy for the rotating ER sandwich beam can be expressed as

T =
1
2

∫L

0

3∑

k=1

ρkAku̇
2
kdx +

1
2

∫L

0

3∑

k=1

ρkAkẇ
2dx, (3.3)

where ρk and Ak (k = 1, 2, 3) are the density and cross-section area of the kth layer; L is the
length of beam.

Assuming the shear strains in the elastic surface layers as well as the longitudinal and
transverse stresses in the ER fluid layer are negligible, the strain energy of the system can be
expressed as

U1 =
1
2

∫L

0

(
E1A1u

2
1,x

)
dx +

1
2

∫L

0

(
E3A3u

2
3,x

)
dx +

1
2

∫L

0
(E1I1 + E3I3)w2

,xxdx +
1
2

∫L

0
G∗A2γ

2dx,

(3.4)

where Ek (k = 1, 3) is the Young’s modulus of the upper and lower surface layers, respec-
tively; Ik (k = 1, 3) is themoment of inertia of the upper and lower surface layers, respectively;
G∗ = G1 + G2i is the complex shear modulus of the ER fluid; γ is the shear strain of the ER
material layer.

The potential energies attributable to centrifugal forces are written as [21, 22]

U2 =
1
2

∫L

0
P(x, t)w2

,xdx (3.5)

with

P(x, t) = Atρtθ̇
2
[
r(L − x) +

1
2

(
L2 − x2

)]
, (3.6)
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where θ̇ is the rotating speed,At is the cross-section of the sandwich beam, ρt is the density of
the system, x is the distance from the fixed end of the beam to any section onwhich centrifugal
forces are acting, r is the hub radius.

The work done by external forces is exerted by the rotational torque τ and the external
distributed force acting on the beam. In this study, only the transverse load q is considered.
The total work by the external forces can be expressed as

W = τθ +
∫L

0
qbwdx. (3.7)

The governing equations of the rotating ER sandwich beam are obtained by applying
Hamilton’s principle

∫ t2

t1

δ(T −U +W)dt = 0. (3.8)

3.3. Finite Element Discretization

The finite element method (FEM) is used to discretize the rotating ER sandwich beam in this
study. The elemental model presented here consists of two nodes, each of which has four
degrees of freedom. Nodal displacements are given by

qi =
{
u1j u3j wj wj,x u1k u3k wk wk,x

}T
, (3.9)

where j and k are elemental node numbers, and u1, u3, w, w,x denote the longitudinal dis-
placement of upper layer and lower layer, the transverse displacement, and the rotational
angle, respectively.

The deflection vector {u1 u2 u3 w w,x} can be expressed in terms of the nodal deflec-
tion vector qi and finite element shape functions

{
u1 u2 u3 w w,x

}
=
{
N1 N2 N3 N4 N4,x

}T
qi, (3.10)

where N1,N2,N3, and N4 are the finite element shape functions and are given by

N1 =
[
1 − ζ 0 0 0 ζ 0 0 0

]
,

N2 =
1
2

(
N1 +N3 +

h1 − h3

2
N4,x

)
,

N3 =
[
0 1 − ζ 0 0 0 ζ 0 0

]
,

N4 =
[
0 0 1 − 3ζ2 + 2ζ3

(
ζ − 2ζ2 + ζ3

)
Li 0 0 3ζ2 − 2ζ3

(−ζ2 + ζ3
)
Li

]
,

(3.11)

with ζ = x/Li and Li is the length of the element.
Substituting (3.10) into (3.3)–(3.7) and Hamilton’s principle (3.8), the element equa-

tions of the rotating sandwich beam can be obtained as follows

Meq̈e + 2θ̇Ceq̇e +
[
Ke

1 + θ̇2(Ke
2 −Me) − θ̈Ce

]
qe = Fe, (3.12)
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whereMe, Ce,Ke
1, andKe

2 are the element mass, the element gyroscopic, the element stiffness,
and the element motion-induced stiffness matrices of the rotating beam, respectively; Fe is the
element load vector. These element matrices and vector may be expressed as

Me =
∫Li

0

3∑

k=1

[
ρkAk

(
NT

kNk +NT
4N4

)]
dx,

Ce =
∫Li

0

[
3∑

k=1

ρkAk

(
NT

kN4 −NkNT
4

)]

dx,

Ke
1 =

∫Li

0

3∑

k=1

(
EkAkNT

k,xNk,x + EkIkNT
4,xxN4,xx

)
dx

+
∫Li

0

G∗A2

h2
2

(N1 −N3 + hN4,x)
T (N1 −N3 + hN4,x)dx,

Ke
2 =

1
2

∫Li

0

(
3∑

k=1

ρkAk

)[
L2 − (xi + x)2

]
NT

4,xN4,xdx

+ r

∫Li

0

(
3∑

k=1

ρkAk

)

[L − (xi + x)]NT
4,xN4,xdx,

Fe =
∫Li

0

{
3∑

k=1

[
ρkAkθ̇

2(r + xi + x)NT
k

]
−

3∑

k=1

[
ρkAkθ̈(r + xi + x)NT

4

]}

dx +
n∑

i=1

Fqi.

(3.13)

Assembling each element, the global equation of the rotating ER sandwich beam is

Mq̈ + 2θ̇Cq̇ +
[
K1 + θ̇2(K2 −M) − θ̈C

]
q = F, (3.14)

where M is the global mass matrix; C is the global gyroscopic matrices; K1 is the global
stiffness matrices, which is complex due to the complex shear modulusG∗ of the ER material;
K2 is the global motion-induced stiffness matrices, and F is the global load vector.

Since the first longitudinal natural frequency of a beam is far separated from the
first transverse natural frequency, the gyroscopic coupling terms in (3.14) could be assumed
negligible and ignored [23]. With this assumption, (3.14) can be simplified as

Mq̈ +
[
K1 + θ̇2(K2 −M)

]
q = F. (3.15)

It is assumed that the ER sandwich beam rotates around a fixed axis for a sinusoidal
periodic swing and the speed is

θ̇ = θ̇0 sin ω̃t, (3.16)

where θ̇0 is the maximum angular speed of the rotating beam and ω̃ is the frequency of the
swing. Substituting (3.16) into (3.15), the dynamic equation for the rotating ER sandwich
beam without applied external forces can be obtained as

Mq̈ +K1q +
(
θ̇0 sin ω̃t

)2(K2 −M)q = 0. (3.17)
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AssumeΦ is the normalized modal matrix ofM−1K1, (3.17) can be transformed to the
following N coupled Mathieu equations ifa linear transformation q = Φξ is introduced and
only the homogeneous part of the equation:

ξ̈i +ω2
i ξi + θ̇∗2

0 sin2(ω̃t)
N∑

k=1

hikξk = 0, (3.18)

where ω2
i are the eigenvalues of M−1K1 and hik are the elements of the complex matrix H =

−Φ−1M−1(K2 −M)Φ. ωi and hik are written as

ωi = ωi,R + iωi,I , hik = hik,R + ihik,I , i =
√
−1. (3.19)

4. Stability Analysis

Equation (3.18) represents a typical parametrically excited system because the last term on
its left-hand side is a periodic function of time. When the system parameters reach special
resonance conditions, the rotating beam will suffer divergence instability [24]. The deter-
mination problem of these conditions is called dynamic stability analysis. In this section,
stability of the solutions of (3.18)will be studied by multiscale method.

It is assumed that the dimensional maximum angular speed of the ER rotating beam
can be expressed as a function of a small value ε < 1:

θ̇∗2
0 = 4ε. (4.1)

Based on the multi-scale method, the solution for (3.18) can be written as

ξi(t, ε) = ξi0(T0, T1, . . .) + εξi1(T0, T1, . . .) + · · · , i = 1 · · ·n, (4.2)

where ξi0 and ξi1 represent the displacement function of fast and slow scales, respectively;
T0 = t is the fast time scale; and T1 = εt is the slow time scale.

Substituting (4.1) and (4.2) into (3.18), and comparing the same-order exponent, we
obtain

ε0 : D2
0ξi0 +ω2

i ξi0 = 0, (4.3)

ε1 : D2
0ξi1 +ω2

i ξi1 = −2D0D1ξi0 +
(
e2iω̃T0 + e−2iω̃T0 − 2

) n∑

k=1

hikξk0, (4.4)

whereDn = ∂/∂Tn (n = 0, 1), hik is the uniterm at row i and column k inmatrixH. It should be
noted that the effective excitation frequency is 2ω̃ in (4.4), which is originated from sin2(ω̃t)
of (3.18). This is different from the equation of motion for an axially oscillating cantilever
beam, in which has sin ω̃t instead of sin2(ω̃t) [9].

Using the first order approximation, the general solution of (4.3) can be expressed in
the form

ξi0 = Ai(T1, T2)eiωiT0 +Ai(T1, T2)e−iωiT0 , (4.5)

where Ai(T1, T2) is the complex function of slow time scale, and Ai(T1, T2) denotes the com-
plex conjugate of Ai(T1, T2).
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The solution of (4.5) is substituted into (4.4) to obtain

D2
0ξi1 +ω2

i ξi1 = − 2iωiD1Aie
iωiT0

+
n∑

k=1

hikAk

[
ei(ωk+2ω̃)T0 + ei(ωk−2ω̃)T0 − 2eiωkT0

]
+ cc,

(4.6)

where cc represents the complex conjugate of all previous items. The complex functions Ai
should be chosen to satisfy the conditions that ξi1 is bounded. If the terms on the right-
hand side of (4.6) have the excitation frequency ωi, resonance occurs because the excitation
frequency coincides with the natural frequency. These terms, called the secular terms, should
be eliminated from (4.6). So the frequency of perturbation 2ω̃ needs to be checked for its
nearness to the individual natural frequency as well as their combinations. To this order of
approximation, there are three main categories of simple and combination resonances [25].
Their respective dynamic stability behaviours will be analyzed below.

(a) Combination Resonance of Sum Type

If the variation frequency 2ω̃ approaches the sum of any two natural frequencies of the sys-
tem, summation parametric resonance may occur. The nearness of 2ω̃ to (ωp,R + ωq,R) can be
expressed by introducing a detuning parameters σ defined by

ω̃ =
1
2
(
ωp,R +ωq,R

)
+
1
2
εσ, (4.7)

where ωp,R and ωq,R are, respectively, the pth and qth natural frequency of the ER rotating
beam.

Substituting (4.7) into (4.6), the condition required to eliminate secular terms in (4.6)
can be obtained as

2iωpD1Ap + 2hppAp − hpqAqe
i[σT1−(ωp,I+ωq,I)T0] = 0,

2iωqD1Aq + 2hqqAq − hqpAqe
i[σT1−(ωp,I+ωq,I)T0] = 0,

(4.8)

where Aq and Aq are the complex conjugates of Ap and Aq, respectively. It should be
remarked that theωi and hik (i = p, q) in (4.8) are complex due to the complex shear modulus
G∗ of the ER materials layer, which are shown in (3.19).

From the condition that nontrivial solutions of (4.8) should be bounded, the bound-
aries of the unstable regions in this case are given by [9, 22]

ω̃ =
1
2
(
ωp,R +ωq,R

) ±
(
ωp,I +ωq,I

)

4
(
ωp,Iωq,I

)1/2

⎡

⎢
⎣
(εω01)2

(
h∗
pq,Rh

∗
qp,R + h∗

pq,Ih
∗
qp,I

)

ωp,Rωq,R
− 16ωp,Iωq,I

⎤

⎥
⎦

1/2

,

(4.9)

where, ωp,R and ωq,I are, respectively, the real and imaginary components of the system’s
complex eigenvalues; and h∗

ij,R and h∗
ij,I respectively represent the real and imaginary compo-

nents of h∗
ij .
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When p = q, (4.9) can be simplified into the critical condition for instability of order n
harmonic resonance,

ω̃ = 2ωp,R ± 1
2

⎡

⎢
⎢
⎣

(εω01)2
[(

h∗
pp,R

)2
+
(
h∗
pp,I

)2]

(
ωp,R

)2 − 16
(
ωp,I

)2

⎤

⎥
⎥
⎦

1/2

. (4.10)

(b) Combination Resonance of Difference Type

When the excitation frequency 2ω̃ varies around the difference between the natural frequen-
cies at orders p and q, this phenomenon is called the combination resonance of difference
type. Its boundary condition of instability can be obtained by changing the sign of ωi in the
situation above. The boundary curve of the corresponding stability and instability curves is

ω̃ = ωp,R −ωq,R ±
(
ωp,I +ωq,I

)

4
(
ωp,Iωq,I

)1/2

⎡

⎢
⎣
(εω01)2

(
h∗
pq,Rh

∗
qp,R − h∗

pq,Ih
∗
qp,I

)

ωp,Rωq,R
− 16ωp,Iωq,I

⎤

⎥
⎦

1/2

.

(4.11)

(c) No-Resonance Case

Consider the case that the excitation frequency 2ω̃ is far away from (ωp,R±ωq,R) for all possible
positive integer values of p and q. In this case, the condition required to eliminate the secular
terms in (4.6) is

D1Ai = 0, i = 1 · · ·n. (4.12)

So the particular solution of (4.6) is

ξi1 = −ω0

n∑

k=1

hikAk

[
ei(ωk+2ω̃)T0

(ωk + 2ω̃)2 −ω2
i

+
ei(ωk−2ω̃)T0

(ωk − 2ω̃)2 −ω2
i

]

+ 2ω0

N∑

k=1, k /= i

hikAk
eiωkT0

ω2
k
−ω2

i

+ cc.

(4.13)

Because there does not exist the case where 2ω̃ is simultaneously near (ωp,R + ωq,R)
and (ωp,R−ωq,R), there is no unstable solution for (4.7). Hence the system is said to be always
stable when 2ω̃ is away from (ωp,R ±ωq,R).

5. Numerical Simulation and Discussion

To validate the reliability of the calculation methods in this paper, we first assumed that the
angular speed of the rotating ER sandwich beam θ̇ = 0 and regarded it as a static cantilever
beam. The structural and material parameters of the beam in [19] were used to calculate
the natural frequencies and modal loss factors for the first five orders when the electric field
intensity E = 3.5 kV/mm. The results are shown in Table 1. We can see from the table that
although the natural frequencies at each order obtained through the method in this paper
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Table 1: Comparison of natural frequencies and loss factors obtained herein with those of [19] (L =
381mm, b = 25.4mm, h1 = h3 = 0.79mm, h2 = 0.5mm, E = 3.5 kV/mm, G∗

2 = 612500(1 + 0.011i)).

Mode Natural frequency f (Hz) Loss factor η
Present Ref. Present Ref.

1 10.011 10.005 0.00393 0.00395
2 40.091 40.051 0.00507 0.00512
3 89.125 89.028 0.00459 0.00461
4 152.926 152.702 0.00336 0.00339
5 236.396 235.761 0.00244 0.00250
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Figure 4: Complex shear modulus of ER fluids at different electric fields.

are slightly higher than that obtained from the Mead-Markus modeling method in [19], the
difference is minimal. The loss factors obtained through the two methods are basically the
same. We also used the geometric and material parameters of rotating beams at the active
restraint damping layer in [26] to calculate the natural frequencies and modal damping ratio
for the first two orders under different rotation speeds (Table 2) and found that the result
obtained from the method in this paper is almost the same as that obtained from [26].

The effects of an electric field on the dynamic characteristics and parametric instability
of the rotating ER sandwich beam were studied. The sandwich beam was constructed with
an ER material core and two elastic faces made of aluminum. The material properties and
geometrical parameters are shown in Table 3. The ER materials used in this study are same
as those described by Don [27]. Its density is 1200 kg/m2, and complex modulus can be
expressed as

G∗ = 50000E2 + (2600E + 1700)i, (5.1)

where E is the electric fields in kV/mm. The shear storage modulus G1 and the loss modulus
G2 are shown in Figure 4.

The dynamic characteristics of the rotating sandwich beam with an ER core were
investigated first. Let the angular velocity of the rotating beam θ̇ = θ̇0. Then the natural
frequencies and damping loss factors can be obtained by the eigenvalue equations

{[
K1 + θ̇2(K2 −M)

]
− (ω∗)2[M]

}
{Φ} = 0, (5.2)
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Table 2: Comparison of a rotating beam for natural frequencies and modal damping ratio obtained herein
with those of [26] (L = 300mm, b = 12.7mm, h1 = 0.762mm, h3 = 2.286mm, h2 = 0.25mm,G∗

2 = 261500(1+
0.38i)).

Angular velocity θ̇ (r.p.m)
Natural frequency Modal damping ratio

f1 (Hz) f2 (Hz) η∗
1 η∗

2

0 Ref. 20.15 104.0 0.0382 0.0235
Present 20.14 103.9 0.0384 0.0233

600 Ref. 20.58 106.8 0.0365 0.0220
Present 20.53 106.6 0.0366 0.0222

1000 Ref. 21.20 111.2 0.0340 0.0201
Present 21.17 111.1 0.0340 0.0204

Table 3: Parameters of ER sandwich beam.

Parameters of beam geometry L = 300mm, b = 20mm, h1 = h3 = 0.5mm, h2 = 2mm
Elastic layer properties (Al) ρ1 = ρ3 = 2700 kg/m3, E1 = E3 = 70Gpa
ER fluid properties [27] ρ2 = 1200 kg/m3, G∗ = 50000E2 + (2600E + 1700)i

where ω∗ is the complex frequency (rad/s) and {Φ} is the corresponding eigenvector. The
complex eigenvalue {ω∗}2 is expressed as

(ω∗)2 = ω2(1 + iη
)
, (5.3)

where η is the damping loss factor and ω is the natural frequency.
Comparisons of the natural frequencies and loss factors of ER sandwich beams with

different rotating speed are shown in Figures 5 and 6, respectively. Figure 5 shows the effects
of electric field strength on the first three natural frequencies. It is observed that the increment
of the electric field strength increases the natural frequencies of the ER sandwich beam at
different rotation speeds. Thus, the stiffness of the rotating beam increases with the strength
of the applied electric field. Figure 6 illustrates the effect of electric field strength on the
loss factors. At all rotation speeds, the loss factor first increases as the electric field strength
increases. But the loss factor declines with the strength of the electric field when the electric
field strength exceeds 0.5 kV/mm. This trend is very obvious in lower modes and less evident
in higher modes. Figures 5 and 6 also demonstrate that the natural frequency increases and
the loss factor decreases with an increase in rotating speed. That is because the stiffness of the
rotating ER beam increases with rotating speed, whereas its damping decreases with rotating
speed. Thus the natural frequencies and loss factors of the rotating ER beam can be altered
by varying the strength of the applied electric field.

The multiple scale method was used to obtain the parametric instability region of the
rotating ER sandwich beam with periodically variable angular velocity. The effects of electric
field strength on the region of parametric instability are shown in Figure 7. Figures 7(a)
and 7(b) illustrate the instability regions for the first and second order parametrically
excited resonance, respectively, and Figures 7(c) and 7(d) are the instability regions for
parametrically excited combination resonance of sum and difference types. It is noted that
increasing the electric field strength will increase the excitation frequency so that the unstable
regions shift to the right. The critical maximal rotating speed (i.e., the maximal rotating speed
when parametric instability occurs) increases and thewidth of unstable region decreases with
an increase in the strength of the electric field. Thus increasing the strength of the applied
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Figure 5: Effect of strength of electric field on the first three natural frequencies at different rotation speeds.

electric field not only moves the region of instability to a higher frequency, but also reduces
the width of the region. That is, increasing the electric field strength will increase the stability
of the beam.

The results of the stability analysis can be verified by investigating the time responses
for points A and B in Figure 7(a). The time responses for the transverse displacement are
computed at the free end of the ER sandwich beam by (3.18) using the fourth-order Runge-
Kutta method. The co-ordinates of points A and B in Figure 7(a) are (0.8, 3) and (1, 3). As
shown in Figure 7(a), point A is in the stable region and point B is in the unstable region
without an applied electric field, whereas points A and B are both in the stable region when
the electric field strength E = 0.5 kV/mm.

Comparisons of the time responses of points A and B without electric field are shown
in Figure 8. The time response for point A, as shown in Figure 8(a), is bounded by a limited
value. However, for point B, which is within the unstable region, the amplitude of the time



14 Journal of Applied Mathematics

0 0.5 1 1.5 2 2.5 3
0

0.02

0.04

0.06

0.08

L
os

s 
fa

ct
or

η

Electric field strength E (kV/mm)

η1

η2

η3

(a) Rotating speed θ̇ = 0 (r.p.m.)

0 0.5 1 1.5 2 2.5 3
0

0.02

0.04

0.06

0.08

L
os

s 
fa

ct
or

η

Electric field strength E (kV/mm)

η1

η2

η3

(b) Rotating speed θ̇ = 200 (r.p.m.)

0 0.5 1 1.5 2 2.5 3
0

0.02

0.04

0.06

0.08

L
os

s 
fa

ct
or

η

Electric field strength E (kV/mm)

η1

η2

η3

(c) Rotating speed θ̇ = 400 (r.p.m.)

0 0.5 1 1.5 2 2.5 3
0

0.02

0.04

0.06

0.08
L

os
s 

fa
ct

or
η

Electric field strength E (kV/mm)

η1

η2

η3

(d) Rotating speed θ̇ = 600 (r.p.m.)

Figure 6: Effect of strength of electric field on the first three loss factors at different rotation speeds.

response increases with time, as illustrated in Figure 8(b). Figure 9 shows the time responses
for points A and B when the electric field strength E = 0.5 kV/mm. It is demonstrated
that points A and B are both stable because the time responses are bounded. Therefore, it
is verified that the stability results of Figure 7(a) agree well with the behavior of the time
responses in Figures 8 and 9.

6. Conclusion

The dynamic characteristics and parametric instability of rotating ER sandwich beams with
a periodically variable angular velocity were studied using FEM and a multi-scale method.
The effects of electric field on the natural frequency, loss factor, and regions of parametric
instability were investigated. When the strength of the electric field is increased, the stiffness
of the ER sandwich beam increases at different rotation speeds and the instability region
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Figure 7: Instability boundaries for various applied electric fields: curve a, E = 0 kV/mm; curve b, E =
0.5 kV/mm; curve c, E = 1.0 kV/mm; curve d, E = 1.5 kV/mm; curve e, E = 2 kV/mm.
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Figure 8: Time responses of the transverse displacement at electric field E = 0 kV/mm.
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Figure 9: Time responses of the transverse displacement at electric field E = 0.5 kV/mm.

of the rotating beam moves toward the high-frequency section. The unstable regions narrow
with an increase in the strength of the electric field, while the maximum critical angular speed
required for the beam to have parametric instability increases as electric field increases. Hence
the vibration characteristics and dynamic stability of rotating ER sandwich beams can be
adjusted when they are subjected to an electric field. It was demonstrated that the ERmaterial
layer can be used to improve the parametric instability of rotating flexible beams.
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