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This paper addresses production-inventory problem for the manufacturer by explicitly taking into
account multistage and varying demand. A nonlinear hybrid integer constrained optimization is
modeled to minimize the total cost including setup cost and holding cost in the planning horizon.
A genetic algorithm is developed for the problem. A series of computational experiments with
different sizes is used to demonstrate the efficiency and universality of the genetic algorithm in
terms of the running time and solution quality. At last the combination of crossover probability
and mutation probability is tested for all problems and a law is found for large size.

1. Introduction

Production-inventory control plays a vital role in the management of manufacturing
enterprises. During production process we often hope that the volume of a given product
is just enough to satisfy customers’ demand without overextending the production line and
manufacturing too many. The redundant inventory will cut down our net profit. On the other
hand, lacking supply will also make a heavy loss when a big order is placed. So there must
be an optimal production quantity.

Many researchers are interested in this problem and it has been investigated from
various perspectives. Goyal and Giri [1] develop two different models for the production-
inventory problem, in which the demand, production, and deterioration rates of a product
are assumed to vary with time over an infinite planning horizon. Shortages of a cycle
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are allowed to be backlogged partially. Huang [2] proposes an optimal integrated vendor-
buyer inventory policy for flawed items in a just-in-time manufacturing environment. The
production process is assumed to deteriorate during processing and produces a certain
number of defective items. The objective is to minimize the total joint annual costs incurred
by the vendor and the buyer. Hill [3] considers the problem of a vendor supplying a product
to a buyer with the product manufactured in batches at a finite rate. And the structure of
the globally-optimal solution is derived. Gayon et al. [4] formulate the joint production-
control and inventory-allocation problem as a Markov decision process and characterize the
structure of the optimal policy. They draw a conclusion that the optimal inventory-allocation
policy is a state-dependent multilevel rationing policy, with the rationing level for each class
nondecreasing in the number of announced orders. An adaptive control approach with a
feedback is applied to track the inventory levels toward their goal levels by Alshamrani [5, 6].

Considering uncertainty, Doğru et al. [7] develop a stochastic program to allow
preferential component allocation for minimizing total inventory cost in assemble-to-order
inventory systems with identical component lead times. Zijm and Houtum [8] compare the
optimal base stock policy under stochastic circumstance with an MRP system in terms of cost
effectiveness given a predefined target customer service level. And they also take stochastic
lead times into consideration in a multistage production-to-order system. According to
setting safety lead times, it leads to similar decomposition structures as those derived for
multistage inventory systems. Kleywegt et al. [9] formulate the inventory routing problem
as a Markov decision process. Gupta and Wang [10] investigate credit terms in inventory
problem with random demand. They prove that the structure of the optimal inventory policy
is not affected by credit terms under a discrete time of the retailer’s operations, although the
value of the optimal policy parameter is.

Ouyang et al. [11] address the same problem based on a deterministic model by
fuzzifying the rate of interest charges, the rate of interest earned, and the deterioration rate
into the triangular fuzzy number. Hsieh [12] proposes two fuzzy inventory models with
fuzzy parameters for crisp order quantity, or for fuzzy order quantity under decision maker’s
preference. He demonstrates that the optimal order quantity or the optimal fuzzy order
quantity of the two models are the real numbers. The optimal solutions can be specified to
meet classical production inventory models under a given condition. References [13–16] also
focus on the fuzzy optimal inventory problem.

Chao et al. [17] research operational decisions in dynamic inventory management
are correlated with and constrained by financial flows of the firm. A general framework
for incorporating financial states of an organization in multiperiod inventory models with
lost sales is proposed. Hopp and Xu [18] propose a static approximation of dynamic
demand substitution behavior based on a fluid network model and a service-inventory
mapping. The interdependent inventory/service, price, and product assortment decisions
in noncompetitive and competitive scenarios with demand substitution are analyzed. Olsen
and Parker [19] investigate consumer behavior of potentially leaving the firm’s market
when he encounters an inventory stockout at a retailer under the stochastic demand
distribution in a time-dynamic context. A single firm and a duopoly case are modeled,
respectively.

Many researches of perishable inventory problem are investigated. Broekmeulen and
Donselaar [20] take into account of the age of the inventory for perishable products at
retailers. The new policy they conclude leads to substantial cost reductions compared with a
base policy that does not take into account the age of inventories. Duan et al. [21] propose two
kinds of inventory models, with and without backlogging, respectively, for perishable items.
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At last they draw a conclusion that the proposed model is generalization of present ones.
Gumasta et al. [22] consider the transportation of perishable goods fromdistributer to retailer.
They simultaneously maximize the revenue and minimize transportation and inventory cost
so as to maximize the net profit. Other related researches under stochastic circumstance can
be referenced in [23, 24]. And Markov model for an inventory system with perishable items
can be referenced in [25–27] and so on.

Some researchers are interested in discussing backorder problem in inventory. Yao
and Chiang [28] take the storing cost a, backorder cost b, cost of placing an order c,
total demand r, order quantity q, and shortage quantity as the triangular fuzzy numbers
and use the signed distance method to defuzzify. Gürler et al. [29] consider bayesian
updating of demand and backorder distributions in a partial backorder newsvendor model.
In order to model the relationship between risks and risk propagation in supply chain, Shin
et al. [30] apply bayesian belief network to develop alternative backorder replenishment
plan to minimize the total replenishment cost and expected risk cost. Hu et al. [31]
and Shah and Soni [32] assume production elapsed time and demand to be a fuzzy
random variable with backorder, respectively. We can also refer to [33–38] about backorder
aspect.

The method for assembly line balancing problem is very similar to the inventory
problem. Sotskov et al. [39, 40] minimize the number of stations m for processing n
partially ordered operations within the given cycle time. They derive necessary and sufficient
conditions when optimality of the line balance b is stable with respect to sufficiently small
variations of the operation times. Özcan and Toklu [41–43] and Purnomo et al. [44] research
two-sided assembly lines balancing problem. Kellegöz and Toklu [45] address a branch and
bound algorithm to solve the problem. Compared with the existing algorithm, the proposed
algorithm outperforms it in terms of both CPU times and quality of feasible solutions
found.

The traditional deterministic inventory models are based on the assumption that
the demand rate is constant and order cycle is inflexible. As we all know the total
cost is the integral of the production-inventory function because the production time is
the same and the maximum inventory in every stage is also equal. But actually there
is more than one customer. Demand cycles of these customers are different and the
demand rate of every customer is also varying. This is multistage and varying demand
production-inventory problem without stockout. In the planning horizon, which is the
sum of all stages, what we face to decide is also when and how many quantity to
produce in order to minimize the total cost subject to meeting every stage demand.
Under the circumstance the traditional unconstrained optimization method is not suitable
for the issue although it is still linear. Because according to every demand and its
cycle there are different maximum inventory in every stage under different production
schedules which means production frequency and production time. We have to define the
maximum inventory in every stage for the sake of obtaining the objective function. And
this definition relation is only determined by the constraint. So constrained optimization
method will be applied to solve the problem. Motivated by the above case we model a
hybrid integer programming to characterize the problem and solve it by using genetic
algorithm.

The remainder of the paper is organized as follows. Section 2 is dedicated to the
description of the modeling approach. Section 3 presents a genetic algorithm to solve the
problem. Section 4 reports our computational results on test instance. Finally, conclusions are
drawn in Section 5.
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Figure 1: Production-inventory status.

2. Production-Inventory Model

2.1. Problem Description

In multistage production-inventory system, every stage extent is versatile, demand rate is
also different and production rate is a constant and is more than demand rate in every stage.
The production-inventory status is drawn in Figure 1 according to the production rate and
demand rate in every stage. The planning horizon is made up of five stages. Ti denotes the
extent of stage i. There are twice production in Figure 1. The production mode is as shown
in Figure 1(a). The first production begins from Stage 1 and ends in Stage 2 lasting t1 time
long. And at time t1 the inventory reaches maximum. The maximum inventory in the first
production is consumed in the end of Stage 3. We call it a production cycle from Stage 1
to Stage 3. Stage 3 is called the end of one production cycle. The second production cycle
includes Stage 4 and Stage 5 lasting t2 time long. Figure 1(b) depicts another case of twice
production. The first production cycle is from Stage 1 to Stage 4 and the second production
cycle is in Stage 5 alone.

In fact there are four production schemes under the circumstance of twice production.
Except the above two schemes mentioned, one is that the first production is in Stage 1 alone
and the second production starts from Stage 2 to Stage 5. The other is that the first production
begins from Stage 1 to Stage 3 and the second production starts from Stage 4 to Stage 5.
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One extreme case is five times production in planning horizon, that is, production
occurs in every stage and the quantity as inventory in every stage only satisfies the current
stage demand. The other extreme case is only once production in planning horizon. The
best production times and quantity are specified by the total cost which bears setup cost of
production and carrying cost held in inventory. And we will find the best production scheme
under all production times.

2.2. Model

2.2.1. Denotations Definition

First we define some denotations in our model to express the above conception.

Parameters are defined as follows.

P : Production rate.

n: The extent of stages.

m: Production times, m = 1, 2, . . . , n.

Ti: Demand extent of stage i, i = 1, 2, . . . , n.

Ri: Demand rate in stage i, i = 1, 2, . . . , n.

K: Setup cost of production once.

h: Holding cost per unit volume per unit time held in inventory.

T : Planning horizon. Obviously T equals to the sum of Ti, that is, T =
∑n

i=1 Ti.

Variables are defined as follows:

xi =

{
1, if the production begins from stage i,

0, otherwise,
i = 1, 2, . . . , n. (2.1)

tik: The production time of one production cycle which begins from stage i and ends
in stage k, 1 ≤ i ≤ k ≤ n

vik =

{
1, if tik > 0,
0, otherwise,

1 ≤ i ≤ k ≤ n. (2.2)

Qi: The inventory level at the beginning of stage i, i = 1, 2, . . . , n

Qijk: The maximum inventory level at time tik in stage j, 1 ≤ i ≤ j ≤ k ≤ n. The
variable maximum inventoryQijk is positive if and only if tik belongs to the interval
(
∑j−1

l=i Tl,
∑j

l=i Tl)

wijk =

{
1, if Qijk > 0,
0, otherwise,

1 ≤ i ≤ j ≤ k ≤ n. (2.3)
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2.2.2. Constraints

(1) Because the stockout is not permitted, the total quantity should be equal to the sum
of demands in the planning horizon. And the quantity in every production in a
certain stage interval should satisfy the demand in the same stage interval:

P
n∑

i=1

n∑

k≥i
tik =

n∑

i=1

RiTi, (2.4)

Ptik = vik

k∑

l=i

RlTl, 1 ≤ i ≤ k ≤ n. (2.5)

(2) Production times in the planning horizon are calculated by the following formula:

n∑

i=1

xi = m (2.6)

(3) Production time should be less than demand time:

tik ≤
k∑

l=i

Tl, 1 ≤ i ≤ k ≤ n. (2.7)

(4) The logic variables should satisfy the following:

vik = xi

(

1 −Φ

(
k∑

l=i+1

xl

))

xk+1, 1 ≤ i ≤ k ≤ n. (2.8)

The binary function Φ(a) is defined as

Φ(a) =

{
1, if a > 0,
0, otherwise.

(2.9)

Formula (2.8) means vik = 1 if and only if xi = 1, xk+1 = 1 and every xl = 0, l =
i, . . . , k are met simultaneously.

(5) The inventory level Qi at the beginning of stage i is derived by the following:

Qi = max
l≤j≤k

{

wijk

(

Ψ
(
j − i
) i−1∑

s=l

(P − Rs)Ts + Ψ
(
i − (j + 1

)) k∑

s=i

RsTs

)}

, (2.10)

where i ≥ 2, 1 ≤ l ≤ i ≤ k ≤ n and

Ψ(a) =

{
1, if a ≥ 0,
0, otherwise.

(2.11)
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It is the fact that a new production begins in stage iwhenQi becomes zero. In other
case Qi is always more than zero. When the production time lasts tik time long in a
production cycle, the first itemΨ(j−i)∑i−1

s=l(P −Rs)Ts in formula (2.10) indicates the
inventory at the beginning of stage j which is before stage i. And the second item
Ψ(i − (j + 1))

∑k
s=i RsTs in formula (2.10) indicates the inventory at the beginning of

stage j which is after stage i. For different j and k, the variable wijk may be zero.
Only when wijk equals to one, Qi is the right inventory at the beginning of stage i.
So we solve it by maximization.

(6) The relationship between the logic variables wijk and vik and continuous variable
tik is characterized as follows:

wijk = vikΦ

(

tik −
j−1∑

l=i

Tl

)

Ψ

(
j∑

l=i

Tl − tik

)

, 1 ≤ i ≤ j ≤ k ≤ n. (2.12)

(7) The maximum inventory level Qijk is deduced according to the following:

Qijk = wijk

(

Qj +

(

tik −
j−1∑

l=i

Tl

)
(
P − Rj

)
)

, 1 ≤ i ≤ j ≤ k ≤ n, (2.13)

(8) when wijk = 1 and production time is tik, the item (tik −
∑j−1

l=i Tl)(P − Rj) in formula
(2.13) means the new inventory level during stage j. So Qijk is the sum of the
inventory Qj at the beginning of stage j and (tik − ∑j−1

l=i Tl)(P − Rj). At last the
variables are defined as:

xi, tik, Qi,Qijk ≥ 0, vik,wijk ∈ {0, 1}, 1 ≤ i ≤ j ≤ k ≤ n. (2.14)

The initial conditions are t1 = 0 and S1 = Sn+1 = 0.

2.2.3. Objective

The sum cost holds setup cost of production and carrying cost held in inventory. So the
objective is to minimize the sum cost.

When producing m times in the planning horizon the total setup cost is mK where K
is setup cost producing once. In every production cycle we suppose that production time is
tik and wijk = 1, 1 ≤ i ≤ j ≤ k ≤ n. Then we employ formula (2.4) to formula (2.13) to get the
values of Ql and Qijk, 1 ≤ i ≤ j ≤ k ≤ n.

Ql and Ql+1 are the inventory levels at the beginning of stage l and stage l + 1,
respectively. Because the inventory figures from stage i to stage j − 1 are all trapezoids. The
area of a trapezoid is calculated by (Ql +Ql+1)T/2. In fact the inventory figure of stage i is a
triangle for the inventory level Qi is zero such as inventory figure of Stage 1 in Figure 1(b).
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We may take a triangle as a degenerate trapezoid in which one edge length is zero. So we use
uniform area formula. From stage i to stage j − 1 when j is more than i, the holding cost is

h

2

j−1∑

l=i

(Ql +Ql+1)Tl, (2.15)

where h is holding cost per unit volume per unit time held in inventory.
In stage j where production stops the inventory figure is made up of two trapezoids

such as the inventory figure of the Stage 3 in Figure 1(b). So the holding cost in stage j is

h

2

(
(
Qj +Qijk

)
(

tik −
j−1∑

l=i

Tl

)

+
(
Qijk +Qj+1

)
(

j∑

l=i

Tl − tik

))

. (2.16)

The case from stage j + 1 to stage k is similar to stage i to stage j − 1. Therefore, the
holding cost from stage j + 1 to stage k is

h

2

k∑

l=j+1

(Ql +Ql+1)Tl. (2.17)

So given production times m, we could solve the minimal average total cost under
every possible production mode in the planning horizon T as

min

⎧
⎨

⎩

1
T

⎛

⎝mK +
h

2

n∑

i=1

∑

j≥i

∑

k≥j
wijk

(
j−1∑

l=i

(Ql +Ql+1)Tl +
(
Qj +Qijk

)
(

tik −
j−1∑

l=i

Tl

)

+
(
Qijk +Qj+1

)
(

j∑

l=i

Tl − tik

)

+
k∑

l=j+1

(Ql +Ql+1)Tl

⎞

⎠

⎞

⎠

⎫
⎬

⎭
.

(2.18)

For every possible production times m, we minimize the average total cost in the
planning horizon. So the objective is

min
1≤m≤n

F = min

⎧
⎨

⎩

1
T

⎛

⎝mK +
h

2

n∑

i=1

∑

j≥i

∑

k≥j
wijk

(
j−1∑

l=i

(Ql +Ql+1)Tl +
(
Qj +Qijk

)
(

tik −
j−1∑

l=i

Tl

)

+
(
Qijk +Qj+1

)
(

j∑

l=i

Tl − tik

)

+
k∑

l=j+1

(Ql +Ql+1)Tl

⎞

⎠

⎞

⎠

⎫
⎬

⎭
.

(2.19)
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Figure 2: Example of single parent crossover operating.

3. Solution Procedure

We solve the solution by employing Genetic Algorithm (GA). GA is a stochastic search
method that works on a population of the solutions simultaneously and searches large
and complicated fields based on the mechanics of natural genetics and evolutionary
principles. In addition, it is particularly suitable for optimization problems with an objective
function subject to numerous constraints. GA has demonstrated considerable success in these
optimization problems and received more and more attentions during the past decades.

3.1. Chromosome Encoding and Decoding

We encode each chromosome as anm string of integers whose components are the production
cycles. Suppose that there are n stages in the planning horizon. We generatem integers ai, i =
1, 2, . . . , m randomly to satisfy a1 + a2 + · · · + am = n. For example, let n = 10 and m = 4. A
chromosome ismay be (2 5 1 2). It means there is total 4 times production. The first production
cycle is from Stage 1 to Stage 2. The second is from Stage 3 to Stage 7. The third is in Stage 8
alone. And the last production cycle is from Stage 9 to Stage 10.

The decoding procedure is as follows. When a chromosome is determined, we could
decode this chromosome to get vik first. Then according to formula (2.5) we could obtain tik.
By formula (2.10) and formula (2.13)we would find wijk, Qi and Qijk finally.

3.2. Crossover

Crossover generates offspring by operating parent chromosomes. Let parameter Pc be the
crossover probability. A chromosome will be selected as a parent when r < Pc, where r
is a random number generated from the interval [0, 1]. We apply single parent crossover
operator. For a selected parent chromosome with m integers, n1 and n2 are stochastically
generated from the interval [1, m] and different. We exchange the value of location n1 and the
value of location n2 in the parent chromosome. Figure 2 shows an example. The stochastically
generated number is 2 and 3. An offspring (2 1 5 2) is obtained after exchanging 5 and 1. The
crossover operator aims to change production scheme under a fixed production times.

3.3. Mutation

Mutation modifies a chromosome to form an offspring. Let parameter Pm be the mutation
probability. A chromosome will be selected as a parent when r < Pm, where r is a random
number generated from the interval [0, 1]. We randomly choose a location p in a selected
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Offspring 1:

Offspring:

5

5

+ 2

2

2 1

1 2

7

q = 6 > 5

(a) Case 1: q is more than the value of position
p

Offspring 2:

Offspring:

4 + 1 = 5

q = 2 < 5

2 2

22

1 1

1

4

5

(b) Case 2: q is less than the value of position p

Figure 3: Example of mutation operating.

Table 1: Demand data in Problem 1.

Stage number 1 2 3 4 5 6 7 8 9 10
Demand extent 14 14 12 3 13 17 12 15 7 12
Demand rate 102 73 264 152 119 61 29 292 215 211

chromosome. Then generate an integer stochastically, q, from the interval [1, n]. Then we
compare the value of location p in the chromosome and q. For the offspring (2 1 5 2), p is 3
and q is 6. Obviously 5 is less than 6. So we sum the values of right position p and substitute
the new sum, 7, for origin value, 5. The case of mutation is depicted in Figure 3(a). If q is less
than 5, let the sum of two numbers which are bothmore than 0 equals to 5. For example, q = 2,
which is less than 5, we find two numbers a1 and a2 randomly satisfying a1 + a2 = 5. Then a1

and a2 replace 5. The case of mutation is drawn in Figure 3(b) where a1 = 4 and a2 = 1. The
mutation operator aims to change production times by increasing or decreasing it.

3.4. Evaluation Function and Selection

Evaluation function is to evaluate the quality of a chromosome. We define evaluation value
of a chromosome as the objective function of the corresponding solution.

The selection strategy means how to choose the chromosomes in the current
population will create offspring for the next generation. We take the roulette wheel as
selection mechanism, in which each chromosome is assigned a slice of a circular roulette
wheel and the size of the slice is proportional to the chromosome’s evaluation value.

4. Computational Results

In this sectionwe perform a series of computational experiments to evaluate the GAproposed
in Section 3 in different size problems. The experiments have been coded in C programming
and implemented on an Athlon 3.10GHz PC, with 3.12GB of RAM, running onWindows XP.

In order to test the efficiency and universality of the GA, we generate four groups
of data randomly in which stages are 10, 20, 50, and 100, named problems 1, 2, 3, and
4, respectively. Tables 1, 2, 3 and 4 show the exact values of demand extent and demand
rate of every problem. The production rate is set as 320 in these problems. The setup cost
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Table 2: Demand data in Problem 2.

Stage number 1 2 3 4 5 6 7 8 9 10
Demand extent 14 3 11 17 6 15 9 13 16 13
Demand rate 169 60 54 240 246 68 202 18 123 107
Stage number 11 12 13 14 15 16 17 18 19 20
Demand extent 15 4 4 3 8 6 8 5 14 8
Demand rate 24 14 280 48 265 218 216 27 49 22

Table 3: Demand data in Problem 3.

Stage number 1 2 3 4 5 6 7 8 9 10
Demand extent 4 14 4 5 4 12 10 7 7 9
Demand rate 229 230 84 263 121 167 254 70 121 188
Stage number 11 12 13 14 15 16 17 18 19 20
Demand extent 13 9 20 20 23 3 7 12 14 9
Demand rate 26 158 233 227 153 146 27 149 280 165
Stage number 21 22 23 24 25 26 27 28 29 30
Demand extent 4 3 6 7 12 9 9 4 6 10
Demand rate 267 194 295 12 224 290 274 77 246 281
Stage number 31 32 33 34 35 36 37 38 39 40
Demand extent 7 12 9 10 13 9 3 7 6 7
Demand rate 167 282 17 184 105 214 37 194 161 161
Stage number 41 42 43 44 45 46 47 48 49 50
Demand extent 6 14 11 3 6 3 6 14 8 13
Demand rate 244 145 144 160 117 173 18 236 268 246

of production once and holding cost per unit volume per unit time are $2 and $10000,
respectively. The parameters in our GA are chosen as follows. The population size PS = 30,
crossover probability Pc = 0.6, and mutation probability Pm = 0.5.

We execute the GA in 30 independent runs on each problem. The evaluation value
is recorded for every trial in every problem and shown in Figure 4. Table 5 displays the
computational results including number of generations, the best found evaluation value,
average evaluation value, standard deviation, and average running time for the 30 trials in
the four problems. Because the scale of every problem is different, the smaller the problem
is the fewer the number of generations is. The results reveal that the proposed GA could
effectively solve the problem in different sizes.

Because the parameters in the proposed GA, crossover probability and mutation
probability, play a crucial role of the result, we also test the best combination of the two
parameters for all problems. Both crossover probability and mutation probability vary from
0.1 to 0.9 when the step is 0.1. So there are 81 combinations in every problem. The average
evaluation value is obtained from 30 independent trials under all combinations. Figure 5
displays the comparison results. The best combination is shown as Table 6. It is obvious
that the average evaluation value in Table 6 is much better than that in Table 5 for the same
problem.

For Problem 1 the best combination parameters are (0.4, 0.5) and (0.9, 0.8). This
indicates that Problem 1 is not sensitive to the two parameters. Owing to the small size of
Problem 1, if the number of generations increases we could find better solution than the
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Table 4: Demand data in Problem 4.

Stage number 1 2 3 4 5 6 7 8 9 10
Demand extent 4 8 7 14 12 3 12 12 6 13
Demand rate 70 202 53 22 78 231 203 22 219 239
Stage number 11 12 13 14 15 16 17 18 19 20
Demand extent 11 10 10 9 9 6 14 10 7 11
Demand rate 149 23 239 72 231 168 111 234 79 87
Stage number 21 22 23 24 25 26 27 28 29 30
Demand extent 14 12 11 5 9 7 12 3 14 6
Demand rate 203 210 106 145 32 24 136 115 245 93
Stage number 31 32 33 34 35 36 37 38 39 40
Demand extent 11 12 6 4 4 4 13 9 7 10
Demand rate 97 209 289 238 174 114 174 194 124 94
Stage number 41 42 43 44 45 46 47 48 49 50
Demand extent 6 3 8 14 9 13 13 7 13 7
Demand rate 238 149 80 95 93 161 229 58 198 188
Stage number 51 52 53 54 55 56 57 58 59 60
Demand extent 4 8 6 10 6 4 7 4 9 8
Demand rate 242 250 293 159 180 198 185 83 285 262
Stage number 61 62 63 64 65 66 67 68 69 70
Demand extent 8 7 5 7 10 14 8 10 13 4
Demand rate 273 183 228 50 93 211 121 70 78 236
Stage number 71 72 73 74 75 76 77 78 79 80
Demand extent 6 7 9 10 3 4 12 5 5 13
Demand rate 133 218 167 30 127 48 195 222 213 238
Stage number 81 82 83 84 85 86 87 88 89 90
Demand extent 4 10 6 5 4 10 12 11 9 14
Demand rate 22 298 170 28 283 127 72 210 274 59
Stage No. 91 92 93 94 95 96 97 98 99 100
Demand extent 10 8 10 13 3 8 3 7 8 6
Demand rate 75 59 222 202 239 105 113 16 100 299

Table 5: Computational results statistics.

Problem number 1 2 3 4
The number of generations 100 500 1000 2000
The best found evaluation value 1409.4977 1366.0474 1665.7842 1715.5158
The average evaluation value 1411.9887 1417.7661 1695.2008 1746.4505
Standard deviation 1.6308 32.4708 21.1338 13.45
The average running time (sec.) 0.45 1.8 4.22 8.48

Table 6: The best combination of (Pc, Pm).

Problem number 1 2 3 4
The best combination (0.4, 0.5), (0.9, 0.8) (0.4, 0.2) (0.6, 0.1) (0.6, 0.1)
The average evaluation value 1410.8025 1398.782 1596.6894 1676.5948
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Table 7: The partial best solutions and evaluation values.

Problem number The stages in a continuous production cycle Evaluation value

1 (3, 4), (6, 7), (8, 9) 1409.4977

2 (1, 2), (5, 6), (7, 8), (14, 15, 16), (17, 18, 19, 20) 1332.6984

3 (1, 2, 3), (4, 5), (7, 8), (16, 17), (19, 20), (21, 22, 23, 24), (26, 27,
28), (30, 31), (32, 33), (36, 37), (44, 45), (46, 47), (49, 50)

1487.9055

4
(2, 3), (6, 7, 8), (11, 12), (13, 14), (18, 19), (24, 25), (29, 30),

(33, 34), (41, 42),(53, 54), (57, 58), (63, 64), (70, 71),
(75, 76), (80, 81), (82, 83, 84), (95, 96, 97, 98)

1584.0483
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Figure 4: Computational results.

former under any combination parameters. For example, when the number of generations
reaches 1000, the average evaluation value is 1419.8273 from the 30 trials under the
worst combination (0.1, 0.2) whose average evaluation value is 1482.9856 and number of
generations is 100 in Figure 5(a). At the same time the average running time is only one
second.

We find a law in Figures 5(c) and 5(d) that when given a value of crossover probability,
the average evaluation value almost increases with the increase of mutation probability. And
we test other experiments generated randomly where stage is from 60 to 90 (in which step is
10) under all combination parameters. The results reflect the same law. However, it is not the
same case in Figures 5(a) and 5(b). This demonstrates that when the problem size is large the
mutation probability should be small. So we could only find the best crossover probability.
The best combination in Problems 3 and 4 is the same in Table 6. But it is just by chance
because in the latter experiments we do not find the same best combination.

Table 7 reports the partial best solutions and evaluation values found during search
under the best combination parameters for the four problems. The stages in a bracket in
Table 7 indicate that they are in one continuous production cycle. And the stage which does
not appear in Table 7 for every problem means a production cycle. For example, the first
production cycle is from Stage 1 to Stage 2 in Problem 2. The second and the third production
cycle are in Stage 3 and Stage 4, respectively. And the last production cycle starts from Stage
17 to Stage 20. So there are total twelve production cycles in Problem 2.

The most cases are that one production cycle includes two stages in Table 7. When one
production cycle includes two stages, the sum cost is obviously smaller if the demand rate in
the first stage is more than that in the second stage. So we can conclude from Table 7 that all
demands rate of two successional stages in one production cycle satisfy the above condition.



14 Journal of Applied Mathematics

1500

1480

1460

1440

1420

1400

1380

1360

0.10.3

0.5

0.7 0.9

0.1
0.5

0.9

M
ut

at
io

n 

Crossover probability

T
he

 a
ve

ra
ge

 e
va

lu
at

io
n 

va
lu

e

1360–1380
1380–1400
1400-1420
1420–1440

1440–1460
1460–1480
1480–1500

pr
ob

ab
ili

ty

(a) For Problem 1

1500

1520

1480

1460

1440

1420

1400

1380

1360

0.3
0.7 0.9

0.1
0.5 0.1

0.5

0.9

Crossover probability

T
he

 a
ve

ra
ge

 e
va

lu
at

io
n 

va
lu

e

1360–1380
1380–1400
1400-1420
1420–1440

1440–1460
1460–1480
1480–1500
1500–1520

M
ut

at
io

n 
pr

ob
ab

ili
ty

(b) For Problem 2

Crossover probability

T
he

 a
ve

ra
ge

 e
va

lu
at

io
n 

va
lu

e

0.3
0.7 0.9

0.1
0.5 0.1

0.5

0.9

1720

1700

1680

1660

1640

1620

1600

1580

1580–1600
1600–1620
1620–1640
1640–1660

1660–1680
1680–1700
1700–1720

M
ut

at
io

n 

pr
ob

ab
ili

ty

(c) For Problem 3

Crossover probability

0.3
0.7 0.9

0.1
0.5 0.1

0.5

0.9

T
he

 a
ve

ra
ge

 e
va

lu
at

io
n 

va
lu

e

1720

1700

1680

1660

1640

1620

1780

1760

1740

1720–1740
1740–1760
1760–1780

1620–1640
1640–1660
1660–1680
1680–1700

1700–1720

M
ut

at
io

n 
pr

ob
ab

ili
ty

(d) For Problem 4

Figure 5: Comparison results with combination of Pc and Pm.

There is similar regular pattern for demands rate of three and four successional stages in
one production cycle except a case in Problem 2 from Stage 14 to Stage 16. For demand rate
in Stage 1 is almost equivalent to that in Stage 2 in Problem 3, we consider that it does not
violate the rule. The demand rate in Stage 14 in Problem 2 is much less than those in the next
two stages, but the three stages are still included in one production cycle. The main reason
is that the demand extent in Stage 14 is very short (only 3). Among the four problems, the
maximum number of stages included in a continuous cycle are four, whereas the last three
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problems it occurs only once. And demand rate in the first stage is greater than the sum of
those in the latter three stages in Problem 2 and 4.

By increasing the number of stages and demands rate, the total cost must increase.
But the average cost may not always be so. Although the stage number in Problem 2 is twice
of it in Problem 1 and the demand rate in Problem 2 is also more than that in Problem 1, the
average cost of Problem 2 is less than that of Problem 1. This suggests that the best production
mode (production times and volume of production) could reduce the average cost. So the
total cost must cut down.

5. Conclusion

In this paper it is found that the efficient and effective production-inventory strategy
could reduce unnecessary funding, inventory cost, and production cycle. Furthermore, the
production-inventory problem with multistage and varying demands, in which every stage
extent is different, is investigated. Moreover, we generate a hybrid integer model to optimize
the production-inventory process and a GA to find a better solution. Computational results
illustrate that the proposed GA yields a high-quality solution relatively fast. According to the
tests of combination parameters we find the law between the average evaluation value and
mutation probability under the large size.
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