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1 Departamento de Matemática y Ciencia de la Computación, Universidad de Santiago de Chile,
Casilla 307, Correo 2, Santiago 9160000, Chile

2 Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Santiago 7810000, Chile

Correspondence should be addressed to Carlos Lizama, carlos.lizama@usach.cl

Received 26 October 2012; Accepted 14 December 2012

Academic Editor: Józef Banaś
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Using Hausdorff measure of noncompactness and a fixed-point argument we prove the existence
of mild solutions for the semilinear integrodifferential equation subject to nonlocal initial condi-
tions u′(t) = Au(t) +

∫ t
0 B(t− s)u(s)ds+ f(t, u(t)), t ∈ [0, 1], u(0) = g(u), whereA : D(A) ⊆ X → X,

and for every t ∈ [0, 1] the maps B(t) : D(B(t)) ⊆ X → X are linear closed operators defined in
a Banach space X. We assume further that D(A) ⊆ D(B(t)) for every t ∈ [0, 1], and the functions
f : [0, 1] × X → X and g : C([0, 1];X) → X are X-valued functions which satisfy appropriate
conditions.

1. Introduction

The concept of nonlocal initial condition has been introduced to extend the study of classical
initial value problems. This notion is more precise for describing nature phenomena than the
classical notion because additional information is taken into account. For the importance of
nonlocal conditions in different fields, the reader is referred to [1–3] and the references cited
therein.

The earliest works related with problems submitted to nonlocal initial conditions were
made by Byszewski [4–7]. In these works, using methods of semigroup theory and the
Banach fixed point theorem the author has proved the existence of mild and strong solutions
for the first order Cauchy problem

u′(t) = Au(t) + f(t, u(t)), t ∈ [0, 1],

u(0) = g(u),
(1.1)
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where A is an operator defined in a Banach space X which generates a semigroup {T(t)}t�0,
and the maps f and g are suitable X-valued functions.

Henceforth, (1.1) has been extensively studied by many authors. We just mention a
few of these works. Byszewski and Lakshmikantham [8] have studied the existence and
uniqueness of mild solutions whenever f and g satisfy Lipschitz-type conditions. Ntouyas
and Tsamatos [9, 10] have studied this problem under conditions of compactness for the semi-
group generated by A and the function g. Recently, Zhu et al. [11], have investigated this
problemwithout conditions of compactness on the semigroup generated byA, or the function
f .

On the other hand, the study of abstract integrodifferential equations has been an
active topic of research in recent years because it has many applications in different areas.
In consequence, there exists an extensive literature about integrodifferential equations with
nonlocal initial conditions, (cf., e.g., [12–25]). Our work is a contribution to this theory.
Indeed, this paper is devoted to study the existence of mild solutions for the following
semilinear integrodifferential evolution equation:

u′(t) = Au(t) +
∫ t

0
B(t − s)u(s)ds + f(t, u(t)), t ∈ [0, 1],

u(0) = g(u),

(1.2)

where A : D(A) ⊆ X → X and for every t ∈ [0, 1] the mappings B(t) : D(B(t)) ⊆ X → X are
linear closed operators defined in a Banach space X. We assume further thatD(A) ⊆ D(B(t))
for every t ∈ [0, 1], and the functions f : [0, 1] × X → X and g : C([0, 1];X) → X are X-
valued functions that satisfy appropriate conditions which we will describe later. In order to
abbreviate the text of this paper, henceforth wewill denote by I the interval [0, 1], andC(I;X)
is the space of all continuous functions from I to X endowed with the uniform convergence
norm.

The classical initial value version of (1.2), that is, u(0) = u0 for some u0 ∈ X, has
been extensively studied by many researchers because it has many important applications in
different fields of natural sciences such as thermodynamics, electrodynamics, heat conduc-
tion in materials with memory, continuummechanics and population biology, among others.
For more information, see [26–28]. For this reason the study of existence and other properties
of the solutions for (1.2) is a very important problem. However, to the best of our knowledge,
the existence of mild solutions for the nonlocal initial value problem (1.2) has not been
addressed in the existing literature. Most of the authors obtain the existence of solutions and
well-posedness for (1.2) by establishing the existence of a resolvent operator {R(t)}t∈I and a
variation of parameters formula (see, [29, 30]). Using adaptation of the methods described
in [11], we are able to prove the existence of mild solutions of (1.2) under conditions of
compactness of the function g and continuity of the function t �→ R(t) for t > 0. Furthermore,
in the particular case B(t) = b(t)A for all t ∈ [0, 1], where the operator A is the infinitesimal
generator of a C0-semigroup defined in a Hilbert space H, and the kernel b is a scalar
map which satisfies appropriate hypotheses, we are able to give sufficient conditions for
the existence of mild solutions only in terms of spectral properties of the operator A and
regularity properties of the kernel b. We show that our abstract results can be applied to
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concrete situations. Indeed, we consider an example with a particular choice of the function
b and the operator A is defined by

(Aw)(t, ξ) = a1(ξ)
∂2

∂ξ2
w(t, ξ) + b1(ξ)

∂

∂ξ
w(t, ξ) + c(ξ)w(t, ξ), (1.3)

where the given coefficients a1, b1, c satisfy the usual uniform ellipticity conditions.

2. Preliminaries

Most of the notations used throughout this paper are standard. So, N, Z, R, and C denote the
set of natural integers and real and complex numbers, respectively, N0 = N ∪ {0}, R

+ = (0,∞)
and R

+
0 = [0,∞).
In this work X and Y always are complex Banach spaces with norms ‖ · ‖X and ‖ · ‖Y ;

the subscript will be dropped when there is no danger of confusion. We denote the space of
all bounded linear operators from X to Y by L(X,Y ). In the case X = Y , we will write briefly
L(X). Let A be an operator defined in X. We will denote its domain by D(A), its domain
endowed with the graph norm by [D(A)], its resolvent set by ρ(A), and its spectrum by
σ(A) = C \ ρ(A).

As we have already mentioned C(I;X) is the vector space of all continuous functions
f : I → X. This space is a Banach space endowed with the norm

∥∥f
∥∥
∞ = sup

t∈I

∥∥f(t)
∥∥
X. (2.1)

In the same manner, for n ∈ N we write Cn(I;X) for denoting the space of all functions
from I to X which are n-times differentiable. Further, C∞(I;X) represents the space of all
infinitely differentiable functions from I to X.

We denote by L1(I;X) the space of all (equivalent classes of) Bochner-measurable
functions f : I �→ X such that ‖f(t)‖X is integrable for t ∈ I. It is well known that this
space is a Banach space with the norm

∥∥f
∥∥
L1(I;X) =

∫

I

∥∥f(s)
∥∥
Xds. (2.2)

We next include some preliminaries concerning the theory of resolvent operator
{R(t)}t∈I for (1.2).

Definition 2.1. Let X be a complex Banach space. A family {R(t)}t∈I of bounded linear
operators defined in X is called a resolvent operator for (1.2) if the following conditions are
fulfilled.

(R1)For each x ∈ X, R(0)x = x and R(·)x ∈ C(I;X).

(R2)The map R : I → L([D(A)]) is strongly continuous.
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(R3) For each y ∈ D(A), the function t �→ R(t)y is continuously differentiable and

d

dt
R(t)y = AR(t)y +

∫ t

0
B(t − s)R(s)yds

= R(t)Ay +
∫ t

0
R(t − s)B(s)yds, t ∈ I.

(2.3)

In what follows we assume that there exists a resolvent operator {R(t)}t∈I for (1.2)
satisfying the following property.

(P) The function t �→ R(t) is continuous from (0, 1] to L(X) endowed with the
uniform operator norm ‖ · ‖L(X).

Note that property (P) is also named in different ways in the existing literature on the
subject, mainly the theory of C0-semigroups, namely, norm continuity for t > 0, eventually
norm continuity, or equicontinuity.

The existence of solutions of the linear problem

u′(t) = Au(t) +
∫ t

0
B(t − s)u(s)ds + f(t), t � 0,

u(0) = u0 ∈ X

(2.4)

has been studied by many authors. Assuming that f : [0,+∞) → X is locally integrable, it
follows from [29] that the function u given by

u(t) = R(t)u0 +
∫ t

0
R(t − s)f(s)ds, for t � 0, (2.5)

is a mild solution of the problem (2.4). Motivated by this result, we adopt the following con-
cept of solution.

Definition 2.2. A continuous function u ∈ C(I;X) is called a mild solution of (1.2) if the
equation

u(t) = R(t)g(u) +
∫ t

0
R(t − s)f(s, u(s))ds, t ∈ I, (2.6)

is verified.

Themain results of this paper are based on the concept of measure of noncompactness.
For general information the reader can see [31]. In this paper, we use the notion of Hausdorff
measure of noncompactness. For this reason we recall a few properties related with this
concept.
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Definition 2.3. Let S be a bounded subset of a normed space Y . The Hausdorff measure of
noncompactness of S is defined by

η(S) = inf
{
ε > 0 : S has a finite cover by balls of radius ε

}
. (2.7)

Remark 2.4. Let S1, S2 be bounded sets of a normed space Y . The Hausdorff measure of
noncompactness has the following properties.

(i) If S1 ⊆ S2, then η(S1) � η(S2).

(ii) η(S1) = η(S1), where S1 denotes the closure of A.

(iii) η(S1) = 0 if and only if S1 is totally bounded.

(iv) η(λS1) = |λ|η(S1)with λ ∈ R.

(v) η(S1 ∪ S2) = max{η(S1), η(S2)}.
(vi) η(S1 + S2) � η(S1) + η(S2), where S1 + S2 = {s1 + s2 : s1 ∈ S1, s2 ∈ S2}.
(vii) η(S1) = η(co(S1)), where co(S1) is the closed convex hull of S1.

We next collect some specific properties of the Hausdorff measure of noncompactness
which are needed to establish our results. Henceforth, when we need to compare the mea-
sures of noncompactness in X and C(I;X), we will use ζ to denote the Hausdorffmeasure of
noncompactness defined in X and γ to denote the Hausdorffmeasure of noncompactness on
C(I;X). Moreover, we will use η for the Hausdorff measure of noncompactness for general
Banach spaces Y .

Lemma 2.5. Let W ⊆ C(I;X) be a subset of continuous functions. If W is bounded and equicontin-
uous, then the set co(W) is also bounded and equicontinuous.

For the rest of the paper we will use the following notation. LetW be a set of functions
from I to X and t ∈ I fixed, and we denote W(t) = {w(t) : w ∈ W}. The proof of Lemma 2.6
can be found in [31].

Lemma 2.6. LetW ⊆ C(I;X) be a bounded set. Then ζ(W(t)) � γ(W) for all t ∈ I. Furthermore, if
W is equicontinuous on I, then ζ(W(t)) is continuous on I, and

γ(W) = sup{ζ(W(t)) : t ∈ I}. (2.8)

A set of functions W ⊆ L1(I;X) is said to be uniformly integrable if there exists a
positive function κ ∈ L1(I;R+) such that ‖w(t)‖ � κ(t) a.e. for all w ∈ W .

The next property has been studied by several authors; the reader can see [32] for more
details.

Lemma 2.7. If {un}n∈N
⊆ L1(I;X) is uniformly integrable, then for each n ∈ N the function t �→

ζ({un(t)}n∈N
) is measurable and

ζ

({∫ t

0
un(s)ds

}∞

n=1

)

� 2
∫ t

0
ζ({un(s)}∞n=1)ds. (2.9)

The next result is crucial for our work, the reader can see its proof in [33, Theorem 2].
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Lemma 2.8. Let Y be a Banach space. If W ⊆ Y is a bounded subset, then for each ε > 0, there exists
a sequence {un}n∈N

⊆ W such that

η(W) � 2η({un}∞n=1) + ε. (2.10)

The following lemma is essential for the proof of Theorem 3.2, which is the main result
of this paper. For more details of its proof, see [34, Theorem 3.1].

Lemma 2.9. For all 0 � m � n, denote Cn
m = ( n

m ). If 0 < ε < 1 and h > 0 and let

Sn = εn + Cn
1ε

n−1h + Cn
2ε

n−2h
2

2!
+ · · · + hn

n!
, n ∈ N, (2.11)

then limn→∞Sn = 0.

Clearly, a manner for proving the existence of mild solutions for (1.2) is using fixed-
point arguments. The fixed-point theorem which we will apply has been established in [34,
Lemma 2.4].

Lemma 2.10. Let S be a closed and convex subset of a complex Banach space Y , and let F : S → S
be a continuous operator such that F(S) is a bounded set. Define

F1(S) = F(S), Fn(S) = F
(
co
(
Fn−1(S)

))
, n = 2, 3, . . . . (2.12)

If there exist a constant 0 � r < 1 and n0 ∈ N such that

η(Fn0(S)) � rη(S), (2.13)

then F has a fixed point in the set S.

3. Main Results

In this section we will present our main results. Henceforth, we assume that the following
assertions hold.

(H1)There exists a resolvent operator {R(t)}t∈I for (1.2) having the property (P).

(H2)The function g : C(I;X) → X is a compact map.

(H3)The function f : I × X → X satisfies the Carathéodory type conditions; that
is, f(·, x) is measurable for all x ∈ X and f(t, ·) is continuous for almost all t ∈ I.

(H4)There exist a functionm ∈ L1(I;R+) and a nondecreasing continuous function
Φ : R

+ → R
+ such that

∥∥f(t, x)
∥∥ � m(t)Φ(‖x‖) (3.1)

for all x ∈ X and almost all t ∈ I.
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(H5)There exists a function H ∈ L1(I;R+) such that for any bounded S ⊆ X

ζ
(
f(t, S)

)
� H(t)ζ(S) (3.2)

for almost all t ∈ I.

Remark 3.1. Assuming that the function g satisfies the hypothesis (H2), it is clear that g takes
bounded set into bounded sets. For this reason, for each R � 0 we will denote by gR the
number gR = sup{‖g(u)‖ : ‖u‖∞ � R}.

The following theorem is the main result of this paper.

Theorem 3.2. If the hypotheses (H1)–(H5) are satisfied and there exists a constant R � 0 such that

KgR +KΦ(R)
∫1

0
m(s)ds � R, (3.3)

where K = sup{‖R(t)‖ : t ∈ I}, then the problem (1.2) has at least one mild solution.

Proof. Define F : C(I;X) → C(I;X) by

(Fu)(t) = R(t)g(u) +
∫ t

0
R(t − s)f(s, u(s))ds, t ∈ I, (3.4)

for all u ∈ C(I;X).
We begin showing that F is a continuous map. Let {un}n∈N

⊆ C(I;X) such that un → u
as n → ∞ (in the norm of C(I;X)). Note that

‖F(un) − F(u)‖ � K
∥∥g(un) − g(u)

∥∥ +K

∫1

0

∥∥f(s, un(s)) − f(s, u(s))
∥∥ds, (3.5)

by hypotheses (H2) and (H3) and by the dominated convergence theorem we have that
‖F(un) − F(u)‖ → 0 when n → ∞.

Let R � 0 and denote BR = {u ∈ C(I;X) : ‖u(t)‖ � R ∀t ∈ I} and note that for any
u ∈ BR we have

‖(Fu)(t)‖ �
∥∥R(t)g(u)

∥∥ +

∥∥∥∥∥

∫ t

0
R(t − s)f(s, u(s))ds

∥∥∥∥∥

� KgR +KΦ(R)
∫1

0
m(s)ds � R.

(3.6)

Therefore F : BR → BR and F(BR) is a bounded set. Moreover, by continuity of the
function t �→ R(t) on (0, 1], we have that the set F(BR) is an equicontinuous set of functions.

Define B = co(F(BR)). It follows from Lemma 2.5 that the set B is equicontinuous. In
addition, the operator F : B → B is continuous and F(B) is a bounded set of functions.
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Let ε > 0. Since the function g is a compact map, by Lemma 2.8 there exists a sequence
{vn}n∈N

⊂ F(B) such that

ζ(F(B)(t)) � 2ζ({vn(t)}∞n=1) + ε � 2ζ

(∫ t

0

{
R(t − s)f(s, un(s))

}∞
n=1ds

)

+ ε. (3.7)

By the hypothesis (H4), for each t ∈ I we have ‖R(t − s)f(s, un(s))‖ � KΦ(R)m(s).
Therefore, by the condition (H5) we have

ζ(F(B)(t)) � 4K
∫ t

0
ζ
({
f(s, un(s))

}∞
n=1ds + ε

� 4K
∫ t

0
H(s)ζ({un(s)}n∈N

) ds + ε

� 4Kγ(B)
∫ t

0
H(s)ds + ε.

(3.8)

Since the function H ∈ L1(I;R+), for α < 1/4K there exists ϕ ∈ C(I;R+) satisfying
∫1
0 |H(s) −

ϕ(s)|ds < α. Hence,

ζ(F(B)(t)) � 4Kγ(B)
[∫ t

0

∣∣H(s) − ϕ(s)
∣∣ds +

∫ t

0
ϕ(s)ds

]

+ ε

� 4Kγ(B)[α +Nt] + ε,

(3.9)

where N = ‖ϕ‖∞. Since ε > 0 is arbitrary, we have

ζ(F(B)(t)) � (a + bt)γ(B), where a = 4αK, b = 4KN. (3.10)

Let ε > 0. Since the function g is a compact map and applying the Lemma 2.8 there exists a
sequence {wn}n∈N

⊆ co(F(B)) such that

ζ
(
F2(B)(t)

)
� 2ζ

(∫ t

0

{
R(t − s)f(s,wn(s))

}∞
n=1ds

)

+ ε

� 4K
∫ t

0
ζ
{
f(s,wn(s))

}∞
n=1ds + ε

� 4K
∫ t

0
H(s)ζ

(
co
(
F1(B)(s)

))
+ ε = 4K

∫ t

0
H(s)ζ

(
F1(B)(s)

)
+ ε.

(3.11)
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Using the inequality (3.10)we have that

ζ
(
F2(B)(t)

)
� 4K

∫ t

0

[∣∣H(s) − ϕ(s)
∣
∣ +

∣
∣ϕ(s)

∣
∣](a + bs)γ(B)ds + ε

� 4K(a + bt)γ(B)
∫ t

0

∣
∣H(s) − ϕ(s)

∣
∣ds + 4KNγ(B)

(

at +
bt2

2

)

+ ε

� a(a + bt) + b

(

at +
bt2

2

)

+ ε �
(

a2 + 2bt +
(bt)2

2

)

γ(B) + ε.

(3.12)

Since ε > 0 is arbitrary, we have

ζ
(
F2(B)(t)

)
�

(

a2 + 2bt +
(bt)2

2

)

γ(B). (3.13)

By an inductive process, for all n ∈ N, it holds

ζ(Fn(B)(t)) �
(

an + Cn
1a

n−1bt + Cn
2a

n−2 (bt)
2

2!
+ · · · + (bt)n

n!

)

γ(B), (3.14)

where, for 0 � m � n, the symbol Cn
m denotes the binomial coefficient ( n

m ).
In addition, for all n ∈ N the set Fn(B) is an equicontinuous set of functions. Therefore,

using the Lemma 2.6 we conclude that

γ(Fn(B)) �
(

an + Cn
1a

n−1b + Cn
2a

n−2 b
2

2!
+ · · · + bn

n!

)

γ(B). (3.15)

Since 0 � a < 1 and b > 0, it follows from Lemma 2.7 that there exists n0 ∈ N such that

(

an0 + Cn0
1 an0−1b + Cn0

2 an0−2 b
2

2!
+ · · · + bn0

n0!

)

= r < 1. (3.16)

Consequently, γ(Fn0(B)) � rγ(B). It follows from Lemma 2.9 that F has a fixed point
in B, and this fixed point is a mild solution of (1.2).

Our next result is relatedwith a particular case of (1.2). Consider the following Volterra
equation of convolution type:

u′(t) = Au(t) +
∫ t

0
b(t − s)Au(s)ds + f(t, u(t)), t ∈ I,

u(0) = g(u),

(3.17)
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where A is a closed linear operator defined on a Hilbert space H, the kernel b ∈ L1
loc(R

+;R),
and the function f is an appropriate H-valued map.

Since (3.17) is a convolution type equation, it is natural to employ the Laplace
transform for its study.

Let X be a Banach space and a ∈ L1
loc(R

+;R). We say that the function a is Laplace
transformable if there is ω ∈ R such that

∫∞
0 e−ωt|a(t)|dt < ∞. In addition, we denote by

â(λ) =
∫∞
0 e−λta(t)dt, for Re λ > ω, the Laplace transform of the function a.
We need the following definitions for proving the existence of a resolvent operator for

(3.17). These concepts have been introduced by Prüss in [28].

Definition 3.3. Let a ∈ L1
loc(R

+;R) be Laplace transformable and k ∈ N. We say that the
function a is k-regular if there exists a constant C > 0 such that

∣
∣
∣λnâ(n)(λ)

∣
∣
∣ � C|â(λ)| (3.18)

for all Re λ � ω and 0 < n � k.

Convolutions of k-regular functions are again k-regular. Moreover, integration and differen-
tiation are operations which preserve k-regularity as well. See [28, page 70].

Definition 3.4. Let f ∈ C∞(R+;R). We say that f is a completely monotone function if and
only if (−1)nf (n)(λ) � 0 for all λ > 0 and n ∈ N.

Definition 3.5. Let a ∈ L1
loc(R

+;R) such that a is Laplace transformable. We say that a is
completely positive function if and only if

1
λâ(λ)

,
−â′(λ)

(â(λ))2
(3.19)

are completely monotone functions.

Finally, we recall that a one-parameter family {T(t)}t�0 of bounded and linear operat-
ors is said to be exponentially bounded of type (M,ω) if there are constantsM � 1 andω ∈ R

such that

‖T(t)‖ � Meωt, ∀t � 0. (3.20)

The next proposition guarantees the existence of a resolvent operator for (3.17)
satisfying the property (P). With this purpose we will introduce the conditions (C1) and
(C2).

(C1) The kernel a defined by a(t) = 1 +
∫ t
0 b(s)ds, for all t � 0, is 2-regular and

completely positive.
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(C2) The operatorA is the generator of a semigroup of type (M,ω) and there exists
μ0 > ω such that

lim
|μ|→∞

∥
∥
∥
∥
∥
∥

1

b̂
(
μ0 + iμ

)
+ 1

(
μ0 + iμ

b̂
(
μ0 + iμ

)
+ 1

−A

)−1∥∥
∥
∥
∥
∥
= 0. (3.21)

Proposition 3.6. Suppose thatA is the generator of aC0-semigroup of type (M,ω) in a Hilbert space
H. If the conditions (C1)-(C2)are satisfied, then there exists a resolvent operator {R(t)}t∈I for (3.17)
having the property (P).

Proof. Integrating in time (3.17)we get

u(t) =
∫ t

0
a(t − s)Au(s)ds +

∫ t

0
f(s, u(s)) + g(u). (3.22)

Since the scalar kernel a is completely positive and A generates a C0-semigroup, it follows
from [28, Theorem 4.2] that there exists a family of operators {R(t)}t∈I strongly continuous,
exponentially bounded which commutes with A, satisfying

R(t)x = x +
∫ t

0
a(t − s)AR(s)xds, ∀x ∈ D(A). (3.23)

On the other hand, using the condition (C2) and since the scalar kernel a is 2-regular, it
follows from [35, Theorem 2.2] that the function t �→ R(t) is continuous for t > 0. Further,
since a ∈ C1(R+;R), it follows from (3.23) that for all x ∈ D(A) the map R(·)x is differentiable
for all t � 0 and satisfies

d

dt
R(t)x = AR(t)x +

∫ t

0
b(t − s)AR(s)x ds, t ∈ I. (3.24)

From the quality (3.24), we conclude that {R(t)}t∈I is a resolvent operator for (3.17) having
the property (P).

Corollary 3.7. Suppose that A generates a C0-semigroup of type (M,ω) in a Hilbert space H.
Assume further that the conditions (C1)-(C2) are fulfilled. If the hypotheses (H2)–(H5) are satisfied
and there exists R � 0 such that

KgR +KΦ(R)
∫1

0
m(s)ds � R, where K = sup{‖R(t)‖ : t ∈ I}, (3.25)

then (3.17) has at least one mild solution.

Proof. It follows from Proposition 3.6 that there exists a resolvent operator {R(t)}t∈I for the
equation and this resolvent operator has the property (P). Since the hypotheses (H2)–(H5)
are satisfied, we apply Theorem 3.2 and conclude that (3.17) has at least one mild solution.
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4. Applications

In this section we apply the abstract results which we have obtained in the preceding section
to study the existence of solutions for a partial differential equation submitted to nonlocal
initial conditions. This type of equations arises in the study of heat conduction in materials
with memory (see [26, 27]). Specifically, we will study the following problem:

∂w(t, ξ)
∂t

= Aw(t, ξ) +
∫ t

0
βe−α(t−s)Aw(s, ξ)ds + p1(t)p2(w(t, ξ)), t ∈ I,

w(t, 0) = w(t, 2π), for t ∈ I,

w(0, ξ) =
∫1

0

∫ ξ

0
qk(s, ξ)w

(
s, y

)
dsdy, 0 � ξ � 2π,

(4.1)

where k : I × [0, 2π] → R
+ is a continuous function such that k(t, 2π) = 0 for all t ∈ I, the

constant q ∈ R
+ and the constants α, β satisfy the relation −α � β � 0 � α. The operator A is

defined by

(Aw)(t, ξ) = a1(ξ)
∂2

∂ξ2
w(t, ξ) + b1(ξ)

∂

∂ξ
w(t, ξ) + c(ξ)w(t, ξ), (4.2)

where the coefficients a1, b1, c satisfy the usual uniformly ellipticity conditions, and D(A) =
{v ∈ L2([0, 2π];R) : v′′L2([0, 2π];R)}. The functions p1 : I → R

+ and p2 : R → R satisfy
appropriate conditions which will be specified later.

Identifying u(t) = w(t, ·) we model this problem in the space X = L2(T;R), where the
group T is defined as the quotient R/2πZ. We will use the identification between functions
on T and 2π-periodic functions on R. Specifically, in what follows we denote by L2(T;R) the
space of 2π-periodic and square integrable functions from R into R. Consequently, (4.1) is
rewritten as

u′(t) = Au(t) +
∫ t

0
b(t − s)Au(s)ds + f(t, u(t)), t ∈ I,

u(0) = g(u),

(4.3)

where the function g : C(I;X) → X is defined by g(w)(ξ) =
∫1
0

∫ ξ
0 qk(s, ξ)w(s, y)dsdy, and

f(t, u(t)) = p1(t)p2(u(t)), where p1 is integrable on I, and p2 is a bounded function satisfying
a Lipschitz type condition with Lipschitz constant L.

We will prove that there exists q > 0 sufficiently small such that (4.3) has a mild
solution on L2(T;R).

With this purpose, we begin noting that ‖g‖ � q(2π)1/2(
∫2π
0

∫1
0 k(s, ξ)

2dsdξ)
1/2

.
Moreover, it is a well-known fact that the g is a compact map.

Further, the function f satisfies ‖f(t, u(t))‖ � p1(t)Φ(‖u(t)‖), with Φ(‖u(t)‖) ≡ ‖p2‖
and ‖f(t, u1(t)) − f(t, u2(t))‖ � Lp1(t)‖u1 − u2‖. Thus, the conditions (H2)–(H5) are fulfilled.
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Define a(t) = 1 +
∫ t
0 βe

−αsds, for all t ∈ R
+
0 . Since the kernel b defined by b(t) = βe−αt is

2-regular, it follows that a is 2-regular. Furthermore, we claim that a is completely positive.
In fact, we have

â(λ) =
λ + α + β

λ(λ + α)
. (4.4)

Define the functions f1 and f2 by f1(λ) = 1/(λâ(λ)) and f2(λ) = −â′(λ)/[â(λ)]2, respectively.
In other words

f1(λ) =
λ + α

λ + α + β
, f2(λ) =

λ2 + 2
(
α + β

)
λ + αβ + α2

(
λ + α + β

)2 . (4.5)

A direct calculation shows that

f
(n)
1 (λ) =

(−1)n+1β(n + 1)!
(
λ + α + β

)n+1 , f
(n)
2 (λ) =

(−1)n+1β(α + β
)
(n + 1)!

(
λ + α + β

)n+2 for n ∈ N. (4.6)

Since −α � β � 0 � α, we have that f1 and f2 are completely monotone. Thus, the kernel a is
completely positive.

On the other hand, it follows from [36] that A generates an analytic, noncompact
semigroup {T(t)}t�0 on L2(T;R). In addition, there exists a constant M > 0 such that

M = sup{‖T(t)‖ : t � 0} < +∞. (4.7)

It follows from the preceding fact and the Hille-Yosida theorem that z ∈ ρ(A) for all z ∈ C

such that Re(z) > 0. Let z = μ0 + iμ. By direct computation we have

Re

(
μ0 + iμ

b̂
(
μ0 + iμ

)
+ 1

)

=
μ3
0 + μ2

0α + μ2
0

(
α + β

)
+ μ0α

(
α + β

)
+ μ0μ

2 − μ2β
(
α + β

)2 + 2μ0
(
α + β

)
+ μ2

0 + μ2
. (4.8)

Hence, Re((μ0 + iμ)/(b̃(μ0 + iμ) + 1)) > 0 for all z = μ0 + iμ, such that μ0 > 0. This implies that

(
μ0 + iμ

b̃
(
μ0 + iμ

)
+ 1

−A

)−1
∈ L(X), ∀μ0 > 0. (4.9)

Since the semigroup generated by A is an analytic semigroup we have

∥∥∥∥∥∥

1

b̂
(
μ0 + iμ

)
+ 1

(
μ0 + iμ

b̂
(
μ0 + iμ

)
+ 1

−A

)−1∥∥∥∥∥∥
�

∥∥∥∥
M

μ0 + iμ

∥∥∥∥. (4.10)
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Therefore,

lim
|μ|→∞

∥
∥
∥
∥
∥
∥

1

b̂
(
μ0 + iμ

)
+ 1

(
μ0 + iμ

b̂
(
μ0 + iμ

)
+ 1

−A

)−1∥∥
∥
∥
∥
∥
= 0. (4.11)

It follows from Proposition 3.6 that (4.3) admits a resolvent operator {R(t)}t∈I satisfying
property (P).

Let K = sup{‖R(t)‖ : t ∈ I} and c = (2π)1/2(
∫2π
0

∫1
0 k(s, ξ)

2dsdξ)
1/2

.
A direct computation shows that for each R � 0 the number gR is equal to gR = qcR.
Therefore the expression (KgR +KΦ(R)

∫1
0 m(s)ds) is equivalent to (qcKR+ ‖p1‖1LK).

Since there exists q > 0 such that qcK < 1, then there exists R � 0 such that

qcKR +
∥
∥p1

∥
∥
1LK � R. (4.12)

From Corollary 3.7 we conclude that there exists a mild solution of (4.1).
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