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We suggest and analyze some implicit iterative methods for solving the extended general
nonconvex variational inequalities using the projection technique. We show that the convergence
of these iterative methods requires only the gh-pseudomonotonicity, which is a weaker condition
than gh-monotonicity. We also discuss several special cases. Our method of proof is very simple as
compared with other techniques.

1. Introduction

Variational inequalities, which were introduced and studied in early sixties, contain wealth of
new ideas. Variational inequalities can be considered as a natural extension of the variational
principles. It is well known that the variational inequalities characterize the optimality con-
ditions of the differentiable convex functions on the convex sets in normed spaces. In recent
years, Noor [1–6] has introduced and studied a new class of variational inequalities involving
three different operators, which is called the extended general variational inequalities. Noor
[1–6] has shown that the minimum of a differentiable nonconvex (gh-convex) function on the
nonconvex set (gh-convex) can be characterized by the class of extended general variational
inequalities. The class of extended general variational include the general variational inequal-
ities [1–33] and variational inequalities as special cases. This clearly shows that the extended
general variational inequalities are more general and unifying ones. For applications,
physical formulation, numerical methods, and other aspects of variational inequalities, see
[1–35] and the references therein. However, all the work carried out in this direction assumes
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that the underlying set is a convex set. In many practical situations, a choice set may not
be a convex set so that the existing results may not be applicable. To handle such situations,
Noor [20–25] has introduced and considered a new class of variational inequalities, called the
general nonconvex variational inequality on the uniformly prox-regular sets. It is well known
that uniformly prox-regular sets are nonconvex and include the convex sets as special cases,
see [8, 9, 32]. Using the projection operator, Noor [27] proved a new characterization of the
projection operator for the prox-regular sets. Using this characterization, one can easily show
that nonconvex projection operator is Lipschitz continuous, which is a new result. Using this
new characterization of the projection of the prox-regular sets, one can establish the equiv-
alence between the nonconvex variational inequalities and the fixed point problems. This
equivalence is useful to study various concepts for the nonconvex variational inequalities.

Motivated and inspired by the recent activities in this dynamic field, we consider the
extended general noncomvex variational inequalities on the prox-regular sets. We use the
projection technique to establish the equivalence between the extended general nonconvex
variational inequalities and the fixed point problems. We use this alternative formulation to
some unified implicit and extragradient methods for solving the extended general nonconvex
variational inequalities. These new methods include the modified projection method of Noor
[27] and the extragradient method of Korpelevič [11] as special cases. Themainmotivation of
this paper is to improve the convergence criteria.We show that the convergence of the implicit
iterative methods requires only the gh-pseudomonotonicity, which is weaker condition that
gh-monotonicity. It is worth mentioning that we do not need the Lipschitz continuity of the
operator. In this sense, our result represents an improvement and refinement of the known
results. Our method of proof is very simple.

2. Basic Concepts

Let H be a real Hilbert space whose inner product and norm are denoted by 〈·, ·〉 and ‖ · ‖,
respectively. LetK be a nonempty closed convex set inH. The basic concepts and definitions
used in this paper are exactly the same as in Noor [20, 22]. We now recall some basic concepts
and results from nonsmooth analysis [9, 32].

Definition 2.1 (see [9, 32]). The proximal normal cone of K at u ∈ H is given by

NP
K(u) := {ξ ∈ H : u ∈ PK[u + αξ]}, (2.1)

where α > 0 is a constant and

PK[u] = {u∗ ∈ K : dK(u) = ‖u − u∗‖}. (2.2)

Here dK(·) is the usual distance function to the subset K, that is,

dK(u) = inf
v∈K

‖v − u‖. (2.3)

The proximal normal cone NP
K(u) has the following characterization.
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Lemma 2.2. Let K be a nonempty, closed and convex subset in H. Then ζ ∈ NP
K(u), if and only if,

there exists a constant α > 0 such that

〈ζ, v − u〉 ≤ α‖v − u‖2, ∀v ∈ K. (2.4)

Definition 2.3. The Clarke normal cone, denoted byNC
K(u), is defined as

NC
K(u) = co

[
NP

K(u)
]
, (2.5)

where co means the closure of the convex hull. Clearly NP
K(u) ⊂ NC

K(u), but the converse is
not true. Note that NP

K(u) is always closed and convex, whereas NC
K(u) is convex, but may

not be closed [32].

Definition 2.4 (see [29]). For a given r ∈ (0,∞], a subsetKr is said to be normalized uniformly
r-prox-regular if and only if every nonzero proximal normal toKr can be realized by an r-ball,
that is, for all u ∈ Kr and 0/= ξ ∈ NP

Kr
(u), one has

〈
(ξ)
‖ξ‖ , v − u

〉
≤
(

1
2r

)
‖v − u‖2, ∀v ∈ Kr. (2.6)

It is clear that the class of normalized uniformly prox-regular sets is sufficiently large to
include the class of convex sets, p-convex sets,C1,1 submanifolds (possibly with boundary) of
H, the images under a C1,1 diffeomorphism of convex sets, and many other nonconvex sets,
see [11, 29]. It is well known [9, 32] that the union of two disjoint intervals [a, b] and [c, d] is
a prox regular set with r = (c − b)/2. Obviously, for r = ∞, the uniformly prox-regularity of
Kr is equivalent to the convexity of K. This class of uniformly prox-regular sets have played
an important part in many nonconvex applications such as optimization, dynamic systems,
and differential inclusions. It is known that if Kr is a uniformly prox-regular set, then the
proximal normal cone NP

Kr
(u) is closed as a set-valued mapping.

We now recall the well-known proposition which summarizes some important
properties of the uniformly prox-regular sets Kr .

Lemma 2.5. LetK be a nonempty closed subset ofH, r ∈ (0,∞] and setKr = {u ∈ H : dK(u) < r}.
If Kr is uniformly prox-regular, then

(i) for all u ∈ Kr, PKr (u)/= ∅,
(ii) for all r ′ ∈ (0, r), PKr is Lipschitz continuous with constant r/(r − r ′) on Kr ′ .

For given nonlinear operators T, g, h, we consider the problem of finding u ∈ H :
h(u) ∈ Kr such that

〈
ρTu + h(u) − g(u), g(v) − h(u)

〉
+ γ

∥∥g(v) − h(u)
∥∥2 ≥ 0, ∀v ∈ H : g(v) ∈ Kr, (2.7)

which is called the extended general nonconvex variational inequality. Here γ > 0 and ρ > 0 are
constants.



4 Journal of Applied Mathematics

We remark that if g = h, then problem (2.7) is equivalent to finding u ∈ H : g(u) ∈ Kr

such that

〈
ρTu, g(v) − g(u)

〉
+ γ

∥∥g(v) − g(u)
∥∥2 ≥ 0, ∀v ∈ H : g(v) ∈ Kr, (2.8)

which is called the general nonconvex variational inequality, introduced and studied by Noor
[27].

We note that, ifKr ≡ K, the convex set inH, then problem (2.7) is equivalent to finding
u ∈ H : h(u) ∈ K such that

〈
Tu + h(u) − g(u), g(v) − h(u)

〉 ≥ 0, ∀v ∈ H : g(v) ∈ K, (2.9)

which is known as the extended general variational inequality, introduced and studied by
Noor [1–6]. For the applications, numerical methods, formulation, and other aspects of the
extended general variational inequalities (2.8), see [1–6, 30, 31] and the references therein.

If g ≡ h ≡ I, the identity operator, then both problems (2.7) and (2.8) are equivalent to
finding u ∈ Kr such that

〈
ρTu, v − u

〉
+ γ‖v − u‖2 ≥ 0, ∀v ∈ Kr, (2.10)

which is called the nonconvex variational inequality. For the formulation and numerical
methods for the nonconvex variational inequalities, see [3, 8, 18–27].

We note that ifKr ≡ K, the convex set inH, then problem (2.8) is equivalent to finding
u ∈ H : g(u) ∈ K such that

〈
Tu, g(v) − g(u)

〉 ≥ 0, ∀v ∈ H : g(v) ∈ K. (2.11)

Inequality of type (2.11) is called the general variational inequality involving two operators,
which was introduced and studied byNoor [14] in 1988. It has been shown that the minimum
of the differentiable g-convex function on a g-convex set can be characterized by the general
variational inequality of type (3.4). It has been shown that a wide class of odd-order and
nonsymmetric problems can be studied via the general variational inequalities. For the
numerical method, sensitivity analysis, dynamical systems, and other aspects of general
variational inequalities, see [7, 15, 16]. For g = I, the identity operator, one can obtain
the original variational inequality, which was introduced and studied by Stampacchia [33]
in 1964. It turned out that a number of unrelated obstacle, free, moving, unilateral, and
equilibrium problems arising in various branches of pure and applied sciences can be studied
via variational inequalities, see [1–35] and the references therein.

If Kr is a nonconvex (uniformly prox-regular) set, then problem (2.7) is equivalent to
finding u ∈ H : g(u) ∈ Kr such that

0 ∈ ρTu + h(u) − g(u) +NP
Kr
(h(u)), (2.12)

which is called the extended general nonconvex variational inclusion problem associated
with general nonconvex variational inequality (2.7). Here NP

Kr
(h(u)) denotes the normal
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cone of Kr at h(u) in the sense of nonconvex analysis. This equivalent formulation plays a
crucial and basic part in this paper. We would like to point out that this equivalent formu-
lation allows us to use the projection operator technique for solving the general nonconvex
variational inequalities of the type (2.7).

We now prove that the projection operator PKr has the following characterization for
the prox-regular sets. This result is due to Noor [27]. We include its proof for the sake of com-
pleteness and to convey an idea of the technique.

Lemma 2.6 (see [27]). Let Kr be a prox-regular and closed set in H. Then, for a given z ∈ H, u ∈
Kr satisfies the inequality

〈u − z, v − u〉 + γ‖v − u‖2, ∀v ∈ Kr, (2.13)

if and only if,

u = PKr [z], (2.14)

where PKr is the projection of H onto the prox-regular set Kr .

Proof. Let u ∈ Kr . Then, for given z ∈ H, we have

(2.13) ⇐⇒ u − z ∈ NP
Kr
(u)

⇐⇒ z ∈
(
I +NP

Kr

)−1
(u)

⇐⇒ u =
(
I +NP

Kr

)−1
[z] = PKr [z],

(2.15)

where PKr = (I +NP
Kr
)−1 is the projection operator.

We note that, if Kr ≡ K, the closed convex set, then Lemma 2.6 is a well-known result,
see [10]. Using Lemma 2.6, one can easily prove that the nonconvex projection operator PKr

is Lipschitz continuous.

Definition 2.7. An operator T : H → H with respect to the arbitrary operators g, h is said to
be gh-pseudomonotone, if and only if,

〈
ρTu, g(v) − h(u)

〉
+ ργ

∥∥g(v) − h(v)
∥∥2 ≥ 0 =⇒ −〈Tv, h(v) − g(u)

〉
+ γ

∥∥g(u) − h(v)
∥∥2 ≥ 0,

∀u, v ∈ H.

(2.16)

3. Main Results

It is known that the extended general nonconvex variational inequalities (2.7) are equivalent
to the fixed point problem. One can also prove this result using Lemma 2.6.
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Lemma 3.1. u ∈ H : h(u) ∈ Kr is a solution of the general nonconvex variational inequality (2.7) if
and only if u ∈ H : h(u) ∈ Kr satisfies the relation

h(u) = PKr

[
g(u) − ρTu

]
, (3.1)

where PKr is the projection of H onto the uniformly prox-regular set Kr .

Lemma 3.1 implies that (2.7) is equivalent to the fixed point problem (3.1). This
alternative equivalent formulation is very useful from the numerical and theoretical points of
view. Using the fixed point formulation (3.1), we suggest and analyze the following iterative
methods for solving the extended general nonconvex variational inequality (2.7).

Algorithm 3.2. For a given u0 ∈ H, find the approximate solution un+1 by the iterative scheme

h(un+1) = PKr

[
g(un) − ρTun

]
, n = 0, 1, . . . , (3.2)

which is called the explicit iterative method. For the convergence analysis of Algorithm 3.2,
see Noor [19].

We again use the fixed point formulation is used to suggest and analyze the following
iterative method for solving (2.7).

Algorithm 3.3. For a given u0 ∈ H, find the approximate solution un+1 by the iterative scheme

h(un+1) = PKr

[
g(un) − ρTun+1

]
, n = 0, 1, . . . . (3.3)

Algorithm 3.3 is an implicit iterative method for solving the extended general nonconvex
variational inequalities (2.7) and is a new one. Using Lemma 2.6, one can rewrite
Algorithm 3.3 in the following equivalent form.

Algorithm 3.4. For a given u0 ∈ H, find the approximate solution un+1 by the iterative schemes

〈
ρTun+1 + h(un+1) − g(un), g(v) − h(un+1)

〉
+ γ

∥∥g(v) − h(un+1)
∥∥2 ≥ 0, ∀v ∈ H : g(v) ∈ Kr.

(3.4)

To implement Algorithm 3.3, we use the predictor-corrector technique. We use
Algorithm 3.2 as predictor and Algorithm 3.3 as a corrector to obtain the following predictor-
corrector method for solving the extended general nonconvex variational inequality (2.7).

Algorithm 3.5. For a given u0 ∈ H, find the approximate solution un+1 by the iterative schemes

g(wn) = PKr

[
g(un) − ρTun

]
,

h(un+1) = PKr

[
g(un) − ρTwn

]
, n = 0, 1, . . . .

(3.5)

Algorithm 3.5 is known as the extended extragradient method. This method includes
the extragradient method of Korpelevič [11] for h = g = I. Here we would like to point out
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that the implicit method (Algorithm 3.3) and the extragradient method (Algorithm 3.5) are
equivalent.

We now consider the convergence analysis of Algorithm 3.3, and this is the main
motivation of our next result.

Theorem 3.6. Let u ∈ H : h(u) ∈ Kr be a solution of (2.7) and let un+1 be the approximate solution
obtained from Algorithm 3.3. If the operator T is gh-pseudomonotone, then

∥∥g(u) − h(un+1)
∥∥2 ≤ ∥∥g(u) − g(un)

∥∥2 − ∥∥(g(un) − h(un+1)
∥∥2
. (3.6)

Proof. Let u ∈ H : h(u) ∈ Kr be a solution of (2.7). Then

〈
ρTv, h(v) − g(u)

〉
+ γ

∥∥g(u) − h(v)
∥∥2 ≥ 0, ∀v ∈ H : g(v) ∈ Kr, (3.7)

since the operator T is gh-pseudomonotone. Take v = un+1 in (3.7), we have

〈
ρTun+1, h(un+1) − g(u)

〉
+ γ

∥∥g(u) − h(un+1)
∥∥2 ≥ 0. (3.8)

Taking v = u in (3.4), we have

〈
ρTun+1 + h(un+1) − g(un), g(u) − h(un+1)

〉
+ γ

∥∥g(u) − h(un+1)
∥∥2 ≥ 0. (3.9)

From (3.8) and (3.9), we have

〈
h(un+1) − g(un), g(u) − h(un+1)

〉
+
〈
ρTun+1, g(u) − h(un+1)

〉
+
∥∥g(u) − h(un+1)

∥∥2 ≥ 0.
(3.10)

It is well known that

2〈v, u〉 = ‖u + v‖2 − ‖v‖2 − ‖u‖2, ∀u, v ∈ H. (3.11)

Using (3.11), from (3.10), one can easily obtain

∥∥g(u) − h(un+1)
∥∥2les

∥∥g(u) − g(un)
∥∥2 − ∥∥(g(un) − h(un+1)

∥∥2
, (3.12)

the required result (3.6).

Theorem 3.7. Let u ∈ H : h(u) ∈ Kr be a solution of (2.7) and let un+1 be the approximate solution
obtained from Algorithm 3.3. Let H be a finite dimensional space. Then limn→∞(h(un+)) = g(u).

Proof. Let u ∈ H : h(u) ∈ Kr be a solution of (2.7). Then, the sequence {‖h(un) − g(u)‖} is
nonincreasing and bounded and

∞∑
n=0

∥∥h(un+1) − g(un)
∥∥2 ≤ ∥∥g(u0) − g(u)

∥∥2
, (3.13)



8 Journal of Applied Mathematics

which implies

lim
n→∞

∥∥h(un+1) − g(un)
∥∥ = 0. (3.14)

Let û be a cluster point of {un}. Then, there exists a subsequence {uni} such that {uni}
converges to û. Replacing un+1 by uni in (3.4), taking the limits in (3.4) and using (3.14),
we have

〈
ρTû, g(v) − h(û)

〉
+ γ

∥∥g(v) − h(û)
∥∥2 ≥ 0, ∀v ∈ H : g(v) ∈ Kr. (3.15)

This shows that û ∈ H : h(û) ∈ Kr solves the extended general nonconvex variational
inequality (2.7) and

∥∥h(un+1) − g(û)
∥∥2 ≤ ∥∥g(un) − g(û)

∥∥2
, (3.16)

which implies that the sequence {un} has a unique cluster point, and limn→∞(h(un+1)) = g(û)
is the solution of (2.7), the required result.

We again use the fixed point formulation (3.1) to suggest the following method for
solving (2.7).

Algorithm 3.8. For a given u0 ∈ H, find the approximate solution un+1 by the iterative schemes

h(un+1) = PKr

[
g(un+1) − ρTun+1

]
, n = 0, 1, 2, . . . , (3.17)

which is also known an implicit method. To implement this method, we use the prediction-
correction technique. We use Algorithm 3.2 as the predictor and Algorithm 3.8 as the
corrector. Consequently, we obtain the following iterative method.

Algorithm 3.9. For a given u0 ∈ H, find the approximate solution un+1 by the iterative
schemes:

h
(
yn

)
= PKr

[
g(un) − ρTun

]
,

h(un+1) = PKr

[
g
(
yn

) − ρTyn

]
, n = 0, 1, 2, . . . .

(3.18)

Algorithm 3.9 is called the two-step or predictor-corrector method for solving the extended
general nonconvex variational inequality (2.7).

For a given step size η > 0, one can suggest and analyze the following two-step
iterative method.

Algorithm 3.10. For a given u0 ∈ H, find the approximate solution by the iterative schemes:

h
(
yn

)
= PKr

[
g(un) − ρTun

]
,

h(un+1) = PKr

[
g(un) − η

{
g(un) − g

(
yn

)
+ ρTyn

}]
, n = 0, 1, 2, . . . .

(3.19)
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Note that for η = 1, Algorithm 3.10 reduces to Algorithm 3.9. Using the technique of Noor
[16], one may study the convergence analysis of Algorithms 3.9 and 3.10.

4. Conclusion

In this paper, we have introduced and considered a new class of general variational
inequalities, which is called the general nonconvex variational inequalities. Some new
characterizations of the nonconvex projection operator are proved. We have established the
equivalent between the general nonconvex variational inequalities and fixed point problem
using the technique of the projection operator. This equivalence is used to suggest and
analyze some iterative methods for solving the nonconvex general variational inequalities.
Several special cases are also discussed. Results proved in this paper can be extended for
multivalued and system of general nonconvex variational inequalities using the technique of
this paper. The comparison of the iterative method for solving nonconvex general variational
inequalities is an interesting problem for future research. We hope that the ideas and
technique of this paper may stimulate further research in this field.
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