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We have introduced a new nonassociative class of Abel-Grassmann’s groupoid, namely,
intraregular and characterized it in terms of its (∈,∈ ∨q)-fuzzy quasi-ideals.

1. Introduction

Fuzzy set theory and its applications in several branches of science are growing day by
day. These applications can be found in various fields such as computer science, artificial
intelligence, operation research, management science, control engineering, robotics, expert
systems, and many others. Fuzzy mappings are used in fuzzy image processing, fuzzy
data bases, fuzzy decision making, and fuzzy linear programming. It has wide range of
applications in engineering such as civil engineering, mechanical engineering, industrial
engineering, and computer engineering. Moreover, the usage of fuzzification can be found
in mechanics, economics, fuzzy systems, and genetic algorithms.

In [1], Mordeson has discovered the grand exploration of fuzzy semigroups, where
theoretical exploration of fuzzy semigroups and their applications used in fuzzy coding,
fuzzy finite state mechanics, and fuzzy languages. The use of fuzzification in automata and
formal language has widely been explored.

Fuzzy set theory on semigroups has already been developed. In [2], Murali defined the
concept of belongingness of a fuzzy point to a fuzzy subset under a natural equivalence on a
fuzzy subset. The idea of quasicoincidence of a fuzzy point with a fuzzy set is defined in [3].
Bhakat and Das [4, 5] gave the concept of (α, β)-fuzzy subgroups by using the “belongs to”
relation ∈ and “quasicoincident with” relation q between a fuzzy point and a fuzzy subgroup,
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and introduced the concept of an (∈,∈ ∨q)-fuzzy subgroups, where α, β ∈ {∈, q,∈ ∨q,∈ ∧q}
and α/= ∈ ∧q. Davvaz defined (∈,∈ ∨q)-fuzzy subnearrings and ideals of a near ring in [6].
Jun and Song initiated the study of (α, β)-fuzzy interior ideals of a semigroup in [7]. In [8]
regular semigroups are characterized by the properties of their (∈,∈ ∨q)-fuzzy ideals. In [9]
semigroups are characterized by the properties of their (∈,∈ ∨q)-fuzzy ideals.

In this paper, we have introduced (∈,∈ ∨q)-fuzzy ideals in a new nonassociative
algebraic structure, that is, in an AG-groupoid and developed some new results. We have
defined an intraregular AG-groupoid and characterized it by the properties of its (∈,∈ ∨q)-
fuzzy ideals.

2. AG-groupoids

A groupoid is called an AG-groupoid if it satisfies the left invertive law, that is, (ab)c =
(cb)a. Every AG-groupoid satisfies the medial law (ab)(cd) = (ac)(bd). It is basically a
nonassociative algebraic structure in between a groupoid and a commutative semigroup. It is
important to mention here that if an AG-groupoid contains identity or even right identity,
then it becomes a commutative monoid. An AG-groupoid not necessarily contains a left
identity, and if it contains a left identity, then it is unique [10]. An AG-groupoid S with left
identity satisfies the paramedial law, that is, (ab)(cd) = (db)(ca) and S = S2. Moreover, S
satisfies the following law:

a(bc) = b(ac), ∀a, b, c, d ∈ S. (2.1)

Let S be an AG-groupoid. By an AG-subgroupoid of S, we mean a nonempty subsetA
of S such thatA2 ⊆ A. A nonempty subsetA of an AG-groupoid S is called a left (right) ideal
of S if SA ⊆ A(AS ⊆ A), and it is called a two-sided ideal if it is both left and a right ideal of
S. A nonempty subset A of an AG-groupoid S is called quasi-ideal of S if SQ ∩ QS ⊆ Q. A
nonempty subset A of an AG-groupoid S is called a generalized bi-ideal of S if (AS)A ⊆ A,
and an AG-subgroupoidA of S is called a bi-ideal of S if (AS)A ⊆ A. A nonempty subsetA of
an AG-groupoid S is called an interior ideal of S if (SA)S ⊆ A. A subsetA of an AG-groupoid
S is called semiprime if for all a ∈ S,a2 ∈ A implies that a ∈ A.

If S is an AG-groupoid with left identity e, then S = S2. It is easy to see that every one
sided ideal of S is quasi-ideal of S. In [11], it is given that L[a] = a ∪ Sa, I[a] = a ∪ Sa ∪ aS
and Q[a] = a ∪ (aS ∩ Sa) are principal left ideal, principal two-sided ideal, and principal
quasi-ideal of S generated by a. Moreover using (2.1), left invertive law, paramedial law, and
medial law, we get the following equations:

a(Sa) = S(aa) = Sa2, (Sa)a = (aa)S = a2S, (Sa)(Sa) = (SS)(aa) = Sa2. (2.2)

To obtain some more useful equations, we use medial, paramedial laws, and (2.1), we
get the following:

(Sa)2 = (Sa)(Sa) = (SS)a2 = (aa)(SS) = S((aa)S)

= (SS)((aa)S) =
(
Sa2

)
SS =

(
Sa2

)
S.

(2.3)



Journal of Applied Mathematics 3

Therefore,

Sa2 = a2S =
(
Sa2

)
S. (2.4)

The following definitions are available in [1].
A fuzzy subset f of an AG-groupoid S is called a fuzzy AG-subgroupoid of S if

f(xy) ≥ f(x) ∧ f(y) for all x, y ∈ S. A fuzzy subset f of an AG-groupoid S is called a
fuzzy left (right) ideal of S if f(xy) ≥ f(y)(f(xy) ≥ f(x)) for all x, y ∈ S.

A fuzzy subset f of an AG-groupoid S is called a fuzzy two-sided ideal of S if it is
both a fuzzy left and a fuzzy right ideal of S. A fuzzy subset f of an AG-groupoid S is called
a fuzzy quasi-ideal of S if f ◦ S ∩ S ◦ f ⊆ f . A fuzzy subset f of an AG-groupoid S is called a
fuzzy generalized bi-ideal of S if f((xa)y) ≥ f(x) ∧ f(y), for all x, a and y ∈ S. A fuzzy AG-
subgroupoid f of an AG-groupoid S is called a fuzzy bi-ideal of S if f((xa)y) ≥ f(x) ∧ f(y),
for all x, a, and y ∈ S. A fuzzy AG-subgroupoid f of an AG-groupoid S is called a fuzzy
interior ideal of S if f((xa)y) ≥ f(a), for all x, a and y ∈ S.

A fuzzy subset f of an AG-groupoid S is called fuzzy semiprime if f(a) ≥ f(a2), for
all a ∈ S.

Let f and g be any two fuzzy subsets of an AG-groupoid S. Then, the product f ◦ g is
defined by

(
f ◦ g)(a) =

⎧
⎪⎨
⎪⎩

∨
a=bc

{
f(b) ∧ g(c)

}
, if there exist b, c ∈ S, such that a = bc,

0, otherwise.
(2.5)

The symbols f ∩ g and f ∪ g will mean the following fuzzy subsets of S:
(
f ∩ g

)
(x) = min

{
f(x), g(x)

}
= f(x) ∧ g(x), ∀x in S,(

f ∪ g
)
(x) = max

{
f(x), g(x)

}
= f(x) ∨ g(x), ∀x in S. (2.6)

Let f be a fuzzy subset of an AG-groupoid S and t ∈ (0, 1]. Then, xt ∈ f means
f(x) ≥ t, xtqf means f(x) + t > 1, xtα∨ βf means xtαf or xtβf , where α, β denotes any one of
∈,q,∈ ∨q,∈ ∧q. xtα ∧ βf means xtαf and xtβf , xtαf means xtαf does not holds.

Let f and g be any two fuzzy subsets of an AG-groupoid S. Then, the product f◦0.5 g
is defined by

(
f◦0.5 g

)
(a) =

⎧
⎪⎨
⎪⎩

∨
a=bc

{
f(b) ∧ g(c)

}
, if there exist b, c ∈ S, such that a = bc,

0, otherwise.
(2.7)

The following definitions for AG-groupoids are same as for semigroups in [8].

Definition 2.1. A fuzzy subset δ of an AG-groupoid S is called an (∈,∈ ∨q)-fuzzy AG-
subgroupoid of S if for all x, y ∈ S and t, r ∈ (0, 1], it satisfies the following:

xt ∈ δ, yr ∈ δ implies that
(
xy

)
min{t,r} ∈ ∨qδ. (2.8)
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Definition 2.2. A fuzzy subset δ of S is called an (∈,∈ ∨q)-fuzzy left (right) ideal of S if for all
x, y ∈ S and t, r ∈ (0, 1], it satisfies the following:

xt ∈ δ implies
(
yx

)
t ∈ ∨qδ (

xt ∈ δ implies
(
xy

)
t ∈ ∨qδ). (2.9)

Definition 2.3. A fuzzy AG-subgroupoid f of an AG-groupoid S is called an (∈,∈ ∨q)-fuzzy
interior ideal of S if for all x, y, z ∈ S and t, r ∈ (0, 1], the following condition holds:

yt ∈ f implies
((
xy

)
z
)
t ∈ ∨qf. (2.10)

Definition 2.4. A fuzzy subset f of an AG-groupoid S is called an (∈,∈ ∨q)-fuzzy quasi-ideal
of S if it satisfies f(x) ≥ min(f ◦ CS(x), CS ◦ f(x), 0.5), where CS is the fuzzy subset of S
mapping every element of S on 1.

Definition 2.5. A fuzzy subset f of an AG-groupoid S is called an (∈,∈ ∨q)-fuzzy generalized
bi-ideal of S if xt ∈ f and zr ∈ S implies ((xy)z)min{t,r} ∈ ∨qf , for all x, y, z ∈ S and t, r ∈ (0, 1].

Definition 2.6. A fuzzy subset f of an AG-groupoid S is called an (∈,∈ ∨q)-fuzzy bi-ideal of S
if for all x, y, z ∈ S and t, r ∈ (0, 1], the following conditions hold.

(i) If xt ∈ f and yr ∈ S, then (xy)min{t,r} ∈ ∨qf ,
(ii) If xt ∈ f and zr ∈ S, then ((xy)z)min{t,r} ∈ ∨qf .

Definition 2.7. A fuzzy subset f of an AG-groupoid S is said to be (∈,∈ ∨q)-fuzzy semiprime
if it satisfies the following:

x2
t ∈ f =⇒ xt ∈ ∨qf (2.11)

for all x ∈ S and t ∈ (0, 1].

The proofs of the following four theorems are same as in [8].

Theorem 2.8. Let δ be a fuzzy subset of S. Then, δ is an (∈,∈ ∨q)-fuzzy AG-subgroupoid of S if
δ(xy) ≥ min{δ(x), δ(y), 0.5}.

Theorem 2.9. A fuzzy subset δ of an AG-groupoid S is called an (∈,∈ ∨q)-fuzzy left (right) ideal of
S if

δ
(
xy

) ≥ min
{
δ
(
y
)
, 0.5

}(
δ
(
xy

) ≥ min{δ(x), 0.5}). (2.12)

Theorem 2.10. A fuzzy subset f of an AG-groupoid S is an(∈,∈ ∨q)-fuzzy interior ideal of S if and
only if it satisfies the following conditions:

(i) f(xy) ≥ min{f(x), f(y), 0.5} for all x, y ∈ S,

(ii) f((xy)z) ≥ min{f(y), 0.5} for all x, y, z ∈ S.

Theorem 2.11. Let f be a fuzzy subset of S. Then, f is an (∈,∈ ∨q)-fuzzy bi-ideal of S if and only if
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(i) f(xy) ≥ min{f(x), f(y), 0.5} for all x, y ∈ S,

(ii) f((xy)z) ≥ min{f(x), f(z), 0.5} for all x, y, z ∈ S.

Theorem 2.12. A fuzzy subset f of an AG-groupoid S is (∈,∈ ∨q)-fuzzy semiprime if and only if
f(x) ≥ f(x2) ∧ 0.5, for all x ∈ S.

Proof. It is easy.

Here we begin with examples of AG-groupoids:

Example 2.13. Let us consider an AG-groupoid S = {1, 2, 3} in the following multiplication
table.

. 1 2 3

1 2 3 2
2 2 2 2
3 2 2 2.

(2.13)

Clearly S is noncommutative and nonassociative, because 1.2/= 2.1 and (1.2).2/= 1.(2.2). Note
that S has no left identity. Define a fuzzy subset F : S → [0, 1] as follows:

F(x) =

⎧
⎪⎪⎨
⎪⎪⎩

0.8 for x = 1
0.7 for x = 2
0.6 for x = 3.

(2.14)

Then, clearly F is an (∈,∈ ∨q)-fuzzy ideal of S.

Example 2.14. Let S = {1, 2, 3, 4}, and the binary operation “·” be defined on S as follows:

. 1 2 3 4

1 1 2 3 4
2 4 3 3 3
3 3 3 3 3
4 2 3 3 3.

(2.15)

Then, (S, ·) is an AG-groupoid with left identity 1. Define a fuzzy subset F : S → [0, 1] as
follows:

F(x) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0.9 for x = 1
0.7 for x = 2
0.6 for x = 3
0.6 for x = 3.

(2.16)

Then, clearly F is an (∈,∈ ∨q)-fuzzy ideal of S.
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Lemma 2.15. Intersection of two ideals of an AG-groupoid with left identity is either empty or an
ideal.

Proof. It is straightforward.

3. (∈,∈ ∨q)-Fuzzy Quasi-Ideals of an Intraregular AG-groupoid

An element a of an AG-groupoid S is called intraregular if there exist x, y ∈ S such that
a = (xa2)y, and S is called intraregular if every element of S is intraregular.

Example 3.1. Let S = {a, b, c, d, e}, and the binary operation “·” be defined on S as follows:

· 1 2 3 4 5 6

1 1 1 1 1 1 1
2 1 2 1 1 1 1
3 1 1 6 3 4 5
4 1 1 5 6 3 4
5 1 1 4 5 6 3
6 1 1 3 4 5 6.

(3.1)

It can be easily checked by the test given in [12] that (S, ·) is an AG-groupoid. Also, 1 =
(1 · 12) · 1, 2 = (2 · 22) · 2, 3 = (4 · 32) · 5, 4 = (5 · 42) · 5, 5 = (3 · 52) · 4 and 6 = (6 · 62) · 6. Therefore,
(S, ·) is an intraregular AG-groupoid. Define a fuzzy subset f : S → [0, 1] as follows:

f(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.9 for x = 1
0.8 for x = 2
0.7 for x = 3
0.7 for x = 4
0.6 for x = 5
0.5 for x = 6.

(3.2)

Then, clearly f is an (∈,∈ ∨q)-fuzzy quasi-ideal of S.

Theorem 3.2 (See [13]). For an intraregular AG-groupoid S with left identity, the following
statements are equivalent:

(i) A is a left ideal of S,

(ii) A is a right ideal of S,

(iii) A is an ideal of S,

(iv) A is a bi-ideal of S,

(v) A is a generalized bi-ideal of S,

(vi) A is an interior ideal of S,

(vii) A is a quasi-ideal of S,

(viii) AS = A and SA = A.
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Theorem 3.3 (See [14]). In intraregular AG-groupoid S with left identity, the following are
equivalent.

(i) A fuzzy subset f of S is an (∈,∈ ∨q)-fuzzy right ideal.
(ii) A fuzzy subset f of S is an (∈,∈ ∨q)-fuzzy left ideal.
(iii) A fuzzy subset f of S is an (∈,∈ ∨q)-fuzzy bi-ideal.
(iv) A fuzzy subset f of S is an (∈,∈ ∨q)-fuzzy interior ideal.
(v) A fuzzy subset f of S is an (∈,∈ ∨q)-fuzzy quasi-ideal.

Definition 3.4. Let f and g be fuzzy subsets of an AG-groupoid S. We define the fuzzy subsets
f0.5, f∧0.5g, and f◦0.5g of S as follows:

(i) f0.5(a) = f(a) ∧ 0.5,

(ii) (f∧0.5g)(a) = (f ∧ g)(a) ∧ 0.5.

Definition 3.5. Let A be any subset of an AG-groupoid S. Then, the characteristic function
(CA)0.5 is defined as

(CA)0.5(a) =

{
0.5 if a ∈ A,

0, otherwise.
(3.3)

Lemma 3.6 (See [14]). The following properties hold in an AG-groupoid S.

(i) A is an AG-subgroupoid of S if and only if (CA)0.5 is an (∈,∈ ∨q)-fuzzy AG-subgroupoid
of S.

(ii) A is a left (right, two sided) ideal of S if and only if (CA)0.5 is an (∈,∈ ∨q)-fuzzy left (right,
two-sided) ideal of S.

(iii) A is left (quasi) ideal of an AG-groupoid S if and only if (CA)0.5 is (∈,∈ ∨q)-fuzzy left
(quasi)-ideal.

(iv) For any nonempty subsets A and B of S,CA◦0.5CB = (CAB)0.5 and CA∧0.5CB = (CA∩B)0.5.

(v) A nonempty subsets A of S semiprime if and only if (CA)0.5 is semiprime.

Lemma 3.7. If S is an AG-groupoid with left identity, then Sa is quasi-ideal of S.

Proof. Using paramedial, medial, and left invertive laws, we get:

S(Sa) ∩ (Sa)S ⊆ S(Sa) = (SS)(Sa) = (aS)(SS) = (aS)S = (SS)a = Sa. (3.4)

Hence, Sa is a quasi-ideal of S.

Theorem 3.8. For an AG-groupoid with left identity e, the following are equivalent:

(i) S is intraregular,

(ii) I ∩ J = IJ (I ∩ J ⊆ IJ), for all quasi-ideals I and J ,

(iii) f∧0.5g = f◦0.5g (f∧0.5g ≤ f◦0.5g), for all (∈,∈ ∨q)-fuzzy quasi-ideals f and g.
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Proof. (i)⇒(iii) Let f and g be (∈,∈ ∨q)-fuzzy quasi-ideals of an intraregular AG-groupoid
S with left identity. Then, by Theorem 3.3, f and g become (∈,∈ ∨q)-fuzzy ideals of S. For
each a in S, there exists x, y in S such that a = (xa2)y and since S = S2, so for y in S there
exists u, v in S such that y = uv. Now, using paramedial law, medial law, and (2.1), we get
the following:

a =
(
xa2

)
y =

(
xa2

)
(uv) = (vu)

(
a2x

)
= a2((vu)x) = (a(vu))(ax). (3.5)

Then,

(
f◦0.5g

)
(a) =

∨
a=pq

{
f
(
p
) ∧ g

(
q
) ∧ 0.5

}

=
∨

a=(a(vu))(ax)

{
f(a(vu)) ∧ g(ax) ∧ 0.5

}

≥ f(a) ∧ g(a) ∧ 0.5 = f∧0.5g(a).

(3.6)

Therefore, f◦0.5g ≥ f∧0.5g. Also, one has

f◦0.5g(a) = f ◦ g(a) ∧ 0.5

=
∨
a=bc

f(b) ∧ g(c) ∧ 0.5

=
∨
a=bc

(
f(b) ∧ 0.5

) ∧ (
g(c) ∧ 0.5

) ∧ 0.5

≤
∨
a=bc

f(bc) ∧ g(bc) ∧ 0.5 = f∧0.5g(a).

(3.7)

Therefore, f◦0.5g ≤ f∧0.5g. Hence, f◦0.5g(a) = f∧0.5g(a).
(iii)⇒(ii) Let I and J be the quasi-ideals of an AG-groupoid Swith left identity and let

a ∈ I ∩ J . Then, by hypothesis and Lemma 3.6, we get the following:

(
CIJ

)
0.5(a) =

(
CI◦0.5CJ

)
(a) =

(
CI∧0.5CJ

)
(a)

=
(
CI∩J

)
0.5(a) = 0.5.

(3.8)

Therefore, a ∈ IJ . Now, if a ∈ IJ , then

(
CI∩J

)
0.5(a) =

(
CIJ

)
0.5(a) = 0.5. (3.9)

Therefore, a ∈ I ∩ J . Thus, IJ = I ∩ J .
(ii)⇒(i) Since Sa is a quasi-ideal of an AG-groupoid S with left identity containing a,

by (ii), medial law, left invertive law, and paramedial law, we obtain that

Sa ∩ Sa = (Sa)(Sa) = (SS)(aa) =
(
a2S

)
S = ((aa)(SS))S

= ((SS)(aa))S =
(
Sa2

)
S.

(3.10)
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Hence, S is intraregular.

Corollary 3.9. Let S be an AG-groupoid with left identity e, then S is intraregular if and only if every
quasi-ideal of S is idempotent.

Corollary 3.10. For an AG-groupoid S with left identity, the following conditions are equivalent.

(i) S is intraregular.

(ii) (f∧0.5 g)∧0.5 h ≤ (f◦0.5 g)◦0.5 h, for all (∈,∈ ∨q)-fuzzy quasi-ideals f , g and (∈,∈ ∨q)-
fuzzy left ideal h of S.

(iii) (f∧0.5 g)∧0.5 h ≤ (f◦0.5 g)◦0.5 h, for all (∈,∈ ∨q)-fuzzy quasi-ideals f , g and h of S.

Proof. (i)⇒(iii) Let f and g be (∈,∈ ∨q) fuzzy quasi-ideals and h be an (∈,∈ ∨q)-fuzzy left
ideal of an intraregular AG-groupoid with left identity e. Since S is intraregular. Therefore,
for a ∈ S, there exists x, y in S such that a = (xa2)y. Now, using (2.1), left invertive law,
paramedial and medial laws, we get the following:

a =
(
xa2

)
y = (x(aa))y = (a(xa))y =

(
y(xa)

)
a

=
(
y
(
x
((

xa2
)
y
)))

a =
(
y
((

xa2
)(

xy
)))

a =
((

xa2
)(

y
(
xy

)))
a =

((
xa2

)(
xy2

))
a

=
((

y2x
)(

a2x
))

a =
(
a2
((

y2x
)
x
))

a =
((

a
(
y2x

))
(ax)

)
a.

(3.11)

Then,

((
f◦0.5 g

)◦0.5 h
)
(a) =

∨
a=pq

(
f◦0.5 g

)(
p
) ∧ h

(
q
) ∧ 0.5

=
∨

a=((a(y2x))(ax))a

(
f◦0.5 g

)((
a
(
y2x

))
(ax)

)
∧ h(a) ∧ 0.5

≥ (
f◦0.5 g

)((
a
(
y2x

))
(ax)

)
∧ h(a) ∧ 0.5

=
∨

(a(y2x))(ax)=cd
f(c) ∧ g(d) ∧ h(a) ∧ 0.5

≥ f
(
a
(
y2x

))
∧ g(ax) ∧ h(a) ∧ 0.5

=
(
f∧0.5 g∧0.5 h

)
(a).

(3.12)

(iii)⇒(ii) It is obvious.
(ii)⇒(i) Let f and g be (∈,∈ ∨q)-fuzzy quasi-ideals of an AG-groupoid S with left

identity. Then,

((
CS∧0.5 f

)∧0.5 g
)
(a) =

(
CS∧0.5 f

)
(a) ∧ g(a) ∧ 0.5

= CS(a) ∧ f(a) ∧ 0.5 ∧ g(a) ∧ 0.5

= 1 ∧ f(a) ∧ g(a) ∧ 0.5 = f∧0.5 g(a).

(3.13)
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Thus, ((CS∧0.5 f)∧0.5 g) = f∧0.5 g. Also,

CS◦0.5 f(a) =
∨
a=pq

CS

(
p
) ∧ f

(
q
) ∧ 0.5

=
∨
a=ea

CS(e) ∧ f(a) ∧ 0.5

= f(a) ∧ 0.5 ≤ f(a).

(3.14)

Thus, CS◦0.5 g ≤ f . Now, using (ii), we get the following:

(
f∧0.5 g

)
(a) =

((
CS∧0.5 f

)∧0.5 g
)
(a) ≤ ((

CS◦0.5 f
)◦0.5 g

)
(a) ≤ f◦0.5 g(a). (3.15)

Therefore, by Theorem 3.8, S is intraregular.

Lemma 3.11. Let S be an AG-groupoid with left identity, then (aS)a2 ⊆ (aS)a, for some a in S.

Proof. Using paramedial law, medial law, left invertive law, and (2.1), we get the following:

(aS)a2 = (aa)(Sa) = [(Sa)a]a = [(aa)(SS)]a = [(SS)(aa)]a

= [a{(SS)a}]a ⊆ (aS)a.
(3.16)

Lemma 3.12. Let S be an AG-groupoid with left identity, then (aS)[(aS)a] ⊆ (aS)a, for some a in
S.

Proof. Using left invertive law and (2.1), we get the following:

(aS)[(aS)a] = [{(aS)a}S]a = [(Sa)(aS)]a = [a(Sa)]Sa ⊆ (aS)a. (3.17)

Lemma 3.13. If S is an AG-groupoid with left identity, then (aS)(Sa) = (aS)a, for some a in S.

Proof. Using paramedial law, medial law, and (2.1), we get the following:

(aS)(Sa) = [(Sa)S]a = [(Sa)(SS)]a = [(SS)(aS)]a = (a(SS))a = (aS)a. (3.18)

Theorem 3.14. Let S be an AG-groupoid with left identity, then B[a] = a ∪ a2 ∪ (aS)a is a bi-ideal
of S.
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Proof. Using Lemmas 3.13, 3.11, 3.12, left invertive law, and (2.1), we get the following:

(B[a]S)B[a] =
[{

a ∪ a2 ∪ (aS)a
}
S
][
a ∪ a2 ∪ (aS)a

]

=
[
aS ∪ a2S ∪ ((aS)a)S

][
a ∪ a2 ∪ (aS)a

]

=
[
aS ∪ a2S ∪ (Sa)(aS)

][
a ∪ a2 ∪ (aS)a

]

=
[
aS ∪ a2S ∪ a((Sa)S)

][
a ∪ a2 ∪ (aS)a

]

⊆ [aS ∪ aS ∪ aS]
[
a ∪ a2 ∪ (aS)a

]

= (aS)
(
a ∪ a2 ∪ (aS)a

)

= (aS)a ∪ (aS)a2 ∪ (aS){(aS)a}
⊆ (aS)a ∪ (aS)a2 ∪ (aS)(Sa)

⊆ (aS)a ⊆
(
a ∪ a2 ∪ (aS)a

)
.

(3.19)

Thus a ∪ a2 ∪ (aS)a is a bi-ideal.

Theorem 3.15. For an AG-groupoid with left identity e, the following are equivalent.

(i) S is intraregular.

(ii) Q[a] ∩ B[a] = Q[a]B[a], for some a in S.

(iii) Q ∩ B = QB, for every quasi-ideal Q and bi-ideal B of S.

Proof. (i)⇒(iii) Let Q be a quasi-ideal and B be a bi-ideal of an intraregular AG-groupoid S
with left identity. Then, by Theorem 3.2, Q and B become ideals of S. Let a ∈ Q ∩ B. Now
since S is intraregular so for each a in S there exists x, y in S such that a = (xa2)y. Now, since
a = (a(vu))(ax); thus,

a = (a(vu))(ax) ∈ (Q(SS))(BS) ⊆ QB. (3.20)

Therefore, Q ∩ B ⊆ QB. Next let qb ∈ QB, for some q ∈ Q and b ∈ B. Then qb ∈ QS ⊆ Q and
qb ∈ SB ⊆ B. Thus QB ⊆ Q ∩ B. Hence, Q ∩ B = QB.

(iii)⇒(ii) It is obvious.
(ii)⇒(i) For a in S,B[a] = a ∪ a2 ∪ (aS)a and Q[a] = a ∪ (Sa ∩ aS) are bi- and quasi-

ideals of S generated by a. Therefore using left invertive law, medial law, and (ii), we get the
following:

[a ∪ (Sa ∩ aS)] ∩ a ∪ a2 ∪ (aS)a = [a ∪ (Sa ∩ aS)]
[
a ∪ a2 ∪ (aS)a

]

⊆ [Sa]
[
a ∪ a2 ∪ (aS)a

]

⊆ (Sa)a ∪ (Sa)a2 ∪ (Sa)[(aS)a]

= Sa2 ∪ [S(aS)](aa) ⊆ Sa2.

(3.21)

Hence by (2.4), S is intraregular.
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Theorem 3.16. For an AG-groupoid with left identity e, the following are equivalent.

(i) S is intraregular.

(ii) f∧0.5 g = f◦0.5 g, where f is any (∈,∈ ∨q)-fuzzy quasi-ideal and g is any (∈,∈ ∨q)-fuzzy
bi-ideal.

Proof. (i)⇒(ii) Let f be an (∈,∈ ∨q)-fuzzy quasi-ideal and g be an (∈,∈ ∨q)-fuzzy bi-ideal
of an intraregular AG-groupoid S with left identity. Then, by Theorem 3.3, f and g become
(∈,∈ ∨q)-fuzzy ideals of S. Since S is intraregular, so for each a in S there exists x, y in S such
that a = (xa2)y. Now, since a = (a(vu))(ax),

(
f◦0.5 g

)
(a) =

∨
a=pq

{
f
(
p
) ∧ g

(
q
) ∧ 0.5

}

≥ f(a(vu)) ∧ g(ax) ∧ 0.5

≥ f(a) ∧ g(a) ∧ 0.5 = f∧0.5 g(a).

(3.22)

Thus, f◦0.5 g ≥ f∧0.5 g. Also

f◦0.5 g(a) = f ◦ g(a) ∧ 0.5 =
∨
a=bc

f(b) ∧ g(c) ∧ 0.5

=
∨
a=bc

(
f(b) ∧ 0.5

) ∧ (
g(c) ∧ 0.5

) ∧ 0.5

≤
∨
a=bc

f(bc) ∧ (
g(bc) ∧ 0.5

)
= f∧0.5 g(a).

(3.23)

Therefore, f◦0.5 g ≤ f∧0.5 g. Hence, f◦0.5 g(a) = f∧0.5 g(a).
(ii)⇒(i) Let a ∈ Q ∩ B. Then, by hypothesis and Lemma 3.6, we get the following:

(
CQB

)
0.5(a) =

(
CQ◦0.5CB

)
(a) =

(
CQ∧0.5CB

)
(a)

=
(
CQ∩L

)
0.5(a) = 0.5.

(3.24)

Therefore, a ∈ QB. Now, if a ∈ QB, then

(
CQ∩B

)
0.5(a) =

(
CQB

)
0.5(a) = 0.5. (3.25)

Therefore, a ∈ Q ∩ B. Thus, QB = Q ∩ B. Hence by Theorem 3.15, S is intraregular.

Lemma 3.17. If I is an ideal of an intraregular AG-groupoid S with left identity, then I = I2.

Proof. It is straightforward.

Theorem 3.18. For an AG-groupoid S with left identity, the following are equivalent.

(i) S is intraregular.

(ii) Q[a] ∩ L[a] ∩ B[a] = (Q[a]L[a])B[a], for some a in S.

(iii) Q ∩ L ∩ B = (QL)B, for any quasi-ideal Q, left ideal L, and bi-ideal B of S.
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Proof. (i)⇒(iii) Let Q be a quasi-ideal, L be a left ideal, and B be a bi-ideal of an intraregular
AG-groupoid S with left identity. Since S is intraregular, for each a ∈ S, there exist x, y ∈ S
such that a = (xa2)y. Then, by Theorem 3.2,Q, L, and B become ideals of S. Then, using (2.1),
left invertive law, paramedial and medial law, we obtain that

a =
(
xa2

)
y = (x(aa))y = (a(xa))y =

(
y(xa)

)
a

=
(
y(xa)

)((
y(xa)

)
a
)
=
(
a
(
y(xa)

))(
(xa)y

) ∈ Q(S(SL))((SB)S)

⊆ (QL)B.

(3.26)

(iii)⇒(ii) It is obvious.
(ii)⇒(i) For a in S,L[a] = a ∪ Sa, Q[a] = a ∪ (Sa ∩ aS) and B[a] = a ∪ a2 ∪ (aS)a are

left, quasi and bi-ideals of S generated by a. Therefore using medial law, left invertive law
and (ii), we get the following:

[a ∪ (Sa ∩ aS)] ∩ [a ∪ Sa] ∩
[
a ∪ a2 ∪ (aS)a

]
= ([a ∪ (Sa ∩ aS)][a ∪ Sa])

[
a ∪ a2 ∪ (aS)a

]

⊆ {(Sa)(Sa)}
[
a ∪ a2 ∪ (aS)a

]

=
(
Sa2

)[
a ∪ a2 ∪ (aS)a

]

=
(
Sa2

)
a ∪

(
Sa2

)
a2 ∪

(
Sa2

)
[(aS)a] ⊆ Sa2.

(3.27)

Hence by (2.4), S is intraregular.

Theorem 3.19. For an AG-groupoid S with left identity, the following are equivalent.

(i) S is intraregular.

(ii) (f∧0.5 g)∧0.5h = (f◦0.5 g)◦0.5h, for (∈,∈ ∨q)-fuzzy quasi ideal f , (∈,∈ ∨q)-fuzzy left-ideal
g and (∈,∈ ∨q)-fuzzy bi-ideal h of S.

Proof. (i)⇒(ii) Let f be an (∈,∈ ∨q)-fuzzy quasi-ideal, g be an (∈,∈ ∨q)-fuzzy left ideal, and
h be an (∈,∈ ∨q)-fuzzy bi-ideal of an intraregular AG-groupoid Swith left identity. Since S is
intraregular, for each a ∈ S there exist x, y ∈ S such that a = (xa2)y. Then, by Theorem 3.3, f ,
g, and h become (∈,∈ ∨q)-fuzzy ideals of S. Then, using (2.1), left invertive law, paramedial
and medial law, we obtain that

a =
(
xa2

)
y = (x(aa))y = (a(xa))y =

(
y(xa)

)
a

=
(
y(xa)

)((
y(xa)

)
a
)
=
(
a
(
y(xa)

))(
(xa)y

)
.

(3.28)
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Now,

((
f◦0.5g

)◦0.5 h
)
(a) =

∨
a=pq

(
f◦0.5 g

)(
p
) ∧ h

(
q
) ∧ 0.5

=
∨

a=(a(y(xa)))((xa)y)
f◦0.5 g

(
a
(
y(xa)

)) ∧ h
(
(xa)y

) ∧ 0.5

≥ (
f◦0.5 g

)(
a
(
y(xa)

)) ∧ h(a) ∧ 0.5

=

⎧
⎨
⎩

∨

a(y(xa))=uv
f(u) ∧ g(v)

⎫
⎬
⎭ ∧ h(a) ∧ 0.5

=

⎧
⎨
⎩

∨

a(y(xa))=uv
f(a) ∧ g

(
y(xa)

) ∧ 0.5

⎫
⎬
⎭ ∧ h(a) ∧ 0.5

≥ {
f(a) ∧ g(a) ∧ 0.5

} ∧ h(a) ∧ 0.5

= f(a) ∧ g(a) ∧ h(a) ∧ 0.5 =
[(
f∧0.5 g

)∧0.5h
]
(a).

(3.29)

Therefore, (f∧0.5 g)∧0.5 h ≤ (f◦0.5 g)◦0.5 h. Also

((
f◦0.5 g

)◦0.5 h
)
(a) =

∨
a=pq

(
f◦0.5 g

)(
p
) ∧ h

(
q
) ∧ 0.5

=
∨
a=pq

⎧
⎨
⎩

∨
p=cd

f(c) ∧ g(d) ∧ 0.5

⎫
⎬
⎭ ∧ h

(
q
) ∧ 0.5

≤
∨
a=pq

⎧
⎨
⎩

∨
p=cd

f(cd) ∧ g(cd) ∧ 0.5

⎫
⎬
⎭ ∧ h

(
pq

) ∧ 0.5

=
∨
a=pq

{
f
(
p
) ∧ g

(
p
) ∧ 0.5

} ∧ h
(
pq

) ∧ 0.5

≤
∨
a=pq

f
(
pq

) ∧ g
(
pq

) ∧ h
(
pq

) ∧ 0.5

= f(a) ∧ g(a) ∧ h(a) ∧ 0.5

=
[(
f∧0.5 g

)∧0.5 h
]
(a).

(3.30)

Therefore, (f∧0.5 g)∧0.5 h ≥ (f◦0.5 g)◦0.5 f . Hence, (f∧0.5 g)∧0.5 h = (f◦0.5 g)◦0.5 h.
(ii)⇒(i) LetQ be a quasi-ideal, L be a left ideal, and B be a bi-ideal of an AG-groupoid

S. Then, by Lemma 3.6, (CQ)0.5, (CL)0.5, and (CB)0.5 are (∈,∈ ∨q)-fuzzy quasi, left, and bi-
ideals of S. Then, using (ii), we have

(
CQ∩L∩B

)
0.5 =

[(
CQ∧0.5CL

)∧0.5CL

]
=
(
CQ◦0.5CL

)◦0.5CB =
(
C(QL)B

)
0.5. (3.31)

This implies that Q ∩ L ∩ B = (QL)B. Hence by Theorem 3.18, S is intraregular.

Theorem 3.20. Let S be an AG-groupoid with left identity, then the following conditions are
equivalent.
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(i) S is intraregular.

(ii) For every bi-ideal B and quasi-ideal Q of S, BQ = QB and B & Q are semiprime.

Proof. (i)⇒(ii) Let B be a bi-ideal and Q be a quasi-ideal of an intraregular AG-groupoid S
with left identity. Then, by Theorem 3.2, Q and B become ideals of S. Let b ∈ B and q ∈ Q.
Since S, is intraregular so for each b in S, there exists x, y, in S such that b = (xb2)y. Thus by
left invertive law, we get the following:

bq =
[(

xb2
)
y
]
q =

(
qy

)(
xb2

)
∈ (QS)(SB) ⊆ QB. (3.32)

Similarly we can prove that QB ⊆ BQ. Now let b2 ∈ B. Then b = (xb2)y ∈ (SB)S ⊆ B. Thus B
is semiprime. Similarly we can prove that Q is semiprime.

(ii)⇒(i) For a in S,Q[a] = a∪(Sa∩aS) and B[a] = a∪a2∪(aS)a are quasi and bi-ideals
of S generated by a. Therefore, using (2.1), (2.4), medial law, and (ii), we get

a2 ∈
[
a ∪ a2 ∪ (aS)a

]
[a ∪ (Sa ∩ aS)]

⊆
[
a ∪ a2 ∪ (aS)a

]
[Sa]

⊆ a(Sa) ∪ a2(Sa) ∪ [(aS)a](Sa)

⊆ a2S ∪ [(aS)S](aa) ⊆ Sa2.

(3.33)

Clearly Sa2 is a bi-ideal of S, so, by (ii), it is semiprime. Thus, a ∈ Sa2. Hence by (2.4), S is
intraregular.

The proofs of following two Lemmas are easy and therefore omitted.

Lemma 3.21. For any fuzzy subset f of an AG-groupoid S, S◦0.5 f ≤ f and for any fuzzy right ideal
g, g◦0.5 S ≤ g.

Lemma 3.22. Let f and g be (∈,∈ ∨q)-fuzzy ideals of an AG-groupoid S with left identity, then
f◦0.5 g is an (∈,∈ ∨q)-fuzzy ideal of S.

Theorem 3.23. LetS be an AG-groupoid with left identity, then the following conditions are
equivalent.

(i) S is intraregular.

(ii) For every (∈,∈ ∨q)-fuzzy quasi-ideal f and (∈,∈ ∨q)-fuzzy bi-ideal g, f◦0.5 g = g◦0.5 f ,
and f and g are semiprime.

Proof. (i)⇒(ii) Let f be an (∈,∈ ∨q)-fuzzy quasi-ideal and g be an (∈,∈ ∨q)-fuzzy bi-ideal
of an intraregular AG-groupoid S with left identity. Now by Theorem 3.3, f and g become
(∈,∈ ∨q)-fuzzy ideals of S. Then by Theorem 3.16, Lemmas 8, and 9, we get the following:

f◦0.5 g = f∧0.5 g = g∧0.5 f = S∧0.5
(
g∧0.5 f

)

= S∧0.5
(
g◦0.5 f

)
= S◦0.5

(
g◦0.5 f

) ≤ g◦0.5 f.
(3.34)
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This implies that f◦0.5 g ≤ g◦0.5 f . Similarly we can prove that g◦0.5f ≤ f◦0.5g.
Hence f◦0.5 g = g◦0.5 f . Moreover,

f(a) = f
((

xa2
)
y
)
≥ f

(
a2
)
. (3.35)

Thus, f(a) ≥ f(a2). Similarly g(a) ≥ g(a2).
(ii)⇒(i) LetA be a bi-ideal and B be a quasi-ideal of S, then by Lemma 3.6, (CA)0.5, and

(CB)0.5 are (∈,∈ ∨q)-fuzzy bi and (∈,∈ ∨q)-fuzzy quasi-ideals; therefore, by using Lemma 3.6
and (ii),

(CAB)0.5 = CA◦0.5CB = CB◦0.5CA = (CBA)0.5. (3.36)

Therefore AB = BA. Now since (CA)0.5 and (CB)0.5 are semiprime so by Lemma 3.6, A and B
are semiprime. Hence by Theorem 3.20, S is semiprime.
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