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We extend some estimates of the right-hand side of Hermite-Hadamard-type inequalities for

functions whose second derivatives absolute values are P-convex. Applications to some special
means are considered.

1. Introduction

Let f : I — R be a convex function defined on the interval I of real numbers and a,b € I
with a < b. The following double inequality

b 1 (° b
f<a+ )Smfaf(x)dxsw (11)

2

is known in the literature as the Hermite-Hadamard inequality. Both inequalities hold in
the reversed direction if f is concave. We note that Hermite-Hadamard inequality may be
regarded as a refinement of the concept of convexity and it follows easily from Jensen’s
inequality. Note that some of the classical inequalities for means can be derived from (1.1)
for appropriate particular selections of the function f. Both inequalities hold in the reversed
direction if f is concave (see [1]).

It is well known that the Hermite-Hadamard inequality plays an important role in
nonlinear analysis. Over the last decade, this classical inequality has been improved and
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generalized in a number of ways; there have been a large number of research papers written
on this subject, (see, [2-13]) and the references therein. In [13] Dragomir and Agarwal
established the following results connected with the right-hand side of (1.1) as well as applied
them for some elementary inequalities for real numbers and numerical integration.

Theorem 1.1. Assume that a,b € R with a < band f : [a,b] — R is a differentiable function on
(a,b). If | f'| is convex on [a, b], then the following inequality holds:

(- a)(|f @] + |F®])

<
- 8

(1.2)

fa+f) 1
' > —b_aLf(x)dx

Theorem 1.2. Assume that a,b € R with a < band f : [a,b] — R is a differentiable function on
(a,b). Assume p € Rwithp > 1. If |f'|P/ P~V is convex on [a, b], then the following inequality holds:

<

‘f(a) +f(b) b-a |:|f’(a)|p/(p_1) + |f'(b)|P/(p—1)](P‘1)/P
2 )

2(p+1)"7" 2

b
o [ feodx
(1.3)

In [1] Pearce and Pecari¢ proved the following theorem.

Theorem 1.3. Let f : I — R be a differentiable function on I°, a,b € I° with a < b. If | f'|7 is convex
on [a,b], for q > 1, then the following inequality holds:

. (b;a) <|f’(a)|q; |f’(b)|”>w' (1.4)

f@+f®) 1
> —b_afaf(x)dx

Recall that the function f : [a,b] — R is said to be quasiconvex if for every x,y € I
we have

f(tx+ (1-t)y) <max{f(x), f(y)}, Vte[0,1]. (1.5)

The generalizations of the Theorems 1.1 and 1.2 are introduced by Ion in [14] for
quasiconvex functions and are given in [6] to differentiable P-convex functions. Then,
Alomari et al. in [2] improved the results in [14] and Theorem 1.3, for twice differentiable
quasiconvex functions.

On the other hand, Dragomir et al. in [11] defined the following class of functions.

Definition 1.4. Let I C R be an interval. The function f : I — R is said to be P-convex (or
belong to the class P(I)) if it is nonnegative and, for all x,y € I and A € [0,1], satisfies the
inequality

fx+(1=-Dy) < f(x)+ £ (y)- (1.6)

Note that P(I) contain all nonnegative convex and quasiconvex functions. Since then
numerous articles have appeared in the literature reflecting further applications in this
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category, see [3, 6, 12, 15, 16] and references therein. Ozdemir and Yildiz in [15] proved the
following results.

Theorem 1.5. Let f : I — R be a twice differentiable function on I° and a,b € I° with a < b. If | f"|
is P-convex, 0 < A < 1, then the following inequality holds:

b b
a-p (D) A L@EIO L,

2
S A @l . 01 > 07
Corollary 1.6. If in Theorem 1.5 one chooses A = 1, one obtains
by 1 (° b-
L@ IO o) < C @l o) s

Theorem 1.7. Let f : I — R be a twice differentiable function on 1° and a,b € I° with a < b. If
|f"17 is P-convex, 0 < A < 1and q > 1, then the following inequality holds:

b
(1- /\)f<a+b>—)tf(a);f(b) +biaJ' F(x)dx

G Y (800 aL ) (| @f + [N, 021 <
b a)

IN
N| —

" " 1/
5 CL-DIf @+ @)
Corollary 1.8. If in Theorem 1.7 one chooses A = 1, one obtains

fla)+f(b)

SO ywar] < O

<

D (@ + O (110

The main purpose of this paper is to establish the refinements of results in [15].
Applications for special means are considered.

2. Main Results

In order to prove our main theorems, we need the following Lemma in [5] throughout this
paper.
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Lemma 2.1. Suppose that f : I — Ris a twice differentiable function on I°, the interior of 1. Assume
that a,b € I°, with a < b and f", is integrable on [a, b]. Then, the following equality holds:

b b
f(a);f( )_biaf Fx)dx

() (e )

In the following theorem, we will propose some new upper bound for the right-hand
side of (1.1) for P-convex functions, which is better than the inequality had done in [15].

(2.1)

Theorem 2.2. Let f : I — R be a twice differentiable function on I° such that |f"| is a P-convex
function on 1. Suppose that a,b € I° with a < band f" € Li[a,b]. Then, the following inequality
holds:

(b a)

f@)+fb)
2

(0| rwl]. e

bia’[:f(x)dx ||f"( )| +2

Proof. Since |f"| is a P-convex function, by using Lemma 2.1 we get

‘f(a) ;f(b) - bia J‘jf(x)dx
e G COREO NN
A )
(b= ”) [|f”( )| +2|f < ) f”(b)l]
O

An immediate consequence of Theorem 2.2 is as follows.

Corollary 2.3. Let f be as in Theorem 2.2, if in addition

(i) f"((a+b)/2) =0, then one has

b b
f(a);rf( )_biaf Fx)dx| <

b- § i "
S TRCTR;

1, (2.4)
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(ii) f"(a) = f"(b) =0, then one has

f@)+fb)

b 2

12

f"<“;’b>‘. (2.5)

The corresponding version for powers of the absolute value of the second derivative
is incorporated in the following theorem.

Theorem 2.4. Let f : I — R be a differentiable function on 1°. Assume that p € R, p > 1 such that
|f”|p/(p_1) is a P-convex function on 1. Suppose that a,b € I° with a < band f" € Li[a,b]. Then,
the following inequality holds:

f@)+f(b)
2

b
| feodx

OO (N (N (i (5)

(1ol (%57)

q) . 2.6)

)l

where1/p+1/q=1.

Proof. By assumption, Lemma 2.1 and Holder’s inequality, we have

flay+f®) 1 (*
9300 1 o

O ) (e ) o (e L)

< ¢ 16‘1)2 <£ (1- t2)pdt>1/p
stz ) (.

<(b—a)2<¢_~77>””< r(1+p) >“p

- 24 2 I'((3/2) +p)

x [(If"<a>|" A () (o] (45

f”<1;ta+ 1;tb>

q 1/q
dt> dt

)

(2.7)
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where 1/p +1/q = 1. We note that the Beta and Gamma functions are defined, respectively,

as follows

1
I'(x) = f e ldt, x>0,
0

1
B(x,v) =J t"_l(l—t)y_ldt, x>0, y>0
0

and are used to evaluate the integral j; (1 -t?)"dt. Indeed, by setting > = u, we get

1
dt = Eu"l/zdu,

and using property

T (y)

:B(x’y) - r(x+y)

of Beta function, we obtain

1 1
—eVar= L [ w2 - wy :1<1 >
I(l t)dt_zfou (1-wyldu=p(5.p+1

0
711—'(1/2)1“(1 + p) 4 ﬁl‘(l + p)
_p 1l NPT S VTP
I'(3/2+p) I'(3/2+p)

_ < VT ) T(1+p)
2 /T(3/2+p)’
where I'(1/2) = v/or and the proof is completed.
The following corollary is an immediate consequence of Theorem 2.4.

Corollary 2.5. Let f be as in Theorem 2.4, if in addition

(i) f"((a+b)/2) =0, then one has

b b
f(a);rf( )_biaf Fx)dx

r(3/2+p)

b-a)’ v/ T( v ’
<22 () <ﬁ> (1" @)+ ®)

(2.8)

(2.9)

(2.10)

(2.11)

),

(2.12)
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(ii) f"(a) = f"(b) = 0, then one has

flay+f)y 1
2 _b—afaf(x)dx

)

(2.13)

<(b—a)2<ﬁ>l/P T@+p) v
=712 \2 r(3/2+p)

Another similar result may be extended in the following theorem.

Theorem 2.6. Let f : I — R be a differentiable function on I°. Assume that q > 1 such that |f"|? is
a P-convex function on I. Suppose that a,b € I° with a < b and f" € Li[a, b]. Then, the following
inequality holds:

b b
f(a);f( )_biaf fx)dx

<oy [(If” @[ (4)) " (ror|r(i5)

Proof. Suppose that a,b € I°. From Lemma2.1 and using well-known power mean
inequality, we get

)]

(2.14)

f(a) + f(b)
2

. b}ﬁfif(x)dx
S‘(b16a>2f:<1_tz><f~(¥a+ )+ f (s ) Ja
(le-ne) (e (et
(oA e ) ) o
S%(;)/q[( {ir@rr(=D)) ™
(liror-|r ()7
5[ () (o (452)

which completes the proof. O

)l

(2.15)
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Corollary 2.7. Let f be as in Theorem 2.6, if in addition
(i) f"((a+b)/2) =0, then (2.4) holds,

(i) f"(a) = f"(b) = 0, (2.5) holds.

3. Applications to Special Means

Now, we consider the applications of our theorems to the special means. We consider the
means for arbitrary real numbers a,  (a # f3). We take the following

(1) Arithmetic mean:

Ala,p) = # a,peR. (3.1)
(2) Logarithmic mean:
a-p
L(a, p) = ojal In[p]’ la| # 1], @, B#0, a,peR. (3.2)
(3) Generalized log-mean:
ﬁn+1 _ an+1 1/n
L, (a,ﬂ) = [m] , neN, a,ﬂ eER, a #ﬂ (33)

Now, using the results of Section 2, we give some applications for special means of real
numbers.

Proposition 3.1. Let a,b € R, a <b,and n € N, n > 2. Then, one has

n(n-1) a+b

24

Ly (a,b) — A(a",b")] <

n-2
(b-a)? [|a|"2 +2 + |b|"2]. (3.4)

Proof. The assertion follows from Theorem 2.2 applied to the P-convex function f(x) = x",
x eR. O
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Proposition 3.2. Let a,b € R, a <b,and 0 ¢ [0,1]. Then, for all p > 1 one has

LY (a,b) - A(a’l,b’lﬂ
< (b-a)® <ﬁ>1/p _I+p) w
=73 2 T((3/2) +p) (3.5)

-39\ V4 -39\ /4
x <|a|_3‘7+ > +<|b|-3q+— ) ,

Proof. The assertion follows from Theorem 2.4 applied to the P-convex function f(x) =1/x,
x € [a,b]. O

a+b

where1/p+1/q=1.

Proposition 3.3. Let a,b € R, a <b,and n € N, n > 2. Then, for all g > 1 one has

(n-2)q\ /1
> +<|b|("2)‘7+

Proof. The assertion follows from Theorem 2.6 applied to the P-convex function f(x) = x",
x eR. O

L7 (a,b) - A(a",b")|

a+b a+b

n(n-1) 2 (n-2)
<~ (- q
<=5 (b-a) (|a| +

(n—2)q> 1/q

(3.6)
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