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The paper details the use of a nonperturbation successive linearization method to solve the
coupled nonlinear boundary value problem due to double-diffusive convection from an inverted
cone. Diffusion-thermo and thermal-diffusion effects have been taken into account. The governing
partial differential equations are transformed into ordinary differential equations using a suitable
similarity transformation. The SLM is based on successively linearizing the governing nonlinear
boundary layer equations and solving the resulting higher-order deformation equations using
spectral methods. The results are compared with the limited cases from previous studies and
results obtained using theMatlab inbuilt bvp4c numerical algorithm and a shooting technique that
uses Runge-Kutta-Fehlberg (RKF45) andNewton-Raphson schemes. These comparisons reveal the
robustness and validate the usage of the linearisation method technique. The results show that the
nonperturbation technique in combination with the Chebyshev spectral collocation method is an
efficient numerical algorithm with assured convergence that serves as an alternative to numerical
methods for solving nonlinear boundary value problems.

1. Introduction

The convection driven by two different density gradients with differing rates of diffusion
is widely known to as “double-diffusive convection” and is an important fluid dynamics
phenomenon (see Mojtabi and Charrier-Mojtabi [1]). The study of double-diffusive
convection has attracted attention of many researchers during the recent past due to its
occurrence in nature and industry. Oceanography is the root of double-diffusive convection
in natural settings. The existence of heat and salt concentrations at different gradients and
the fact that they diffuse at different rates lead to spectacular double-diffusive instabilities
known as “salt-fingers” (see Stern [2, 3]). The formation of salt-fingers can also be observed
in laboratory settings. Double-diffusive convection occurs in the sun where temperature
and helium diffusions take place at different rates. Convection in magma chambers and
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sea-wind formations are among other manifestations of double-diffusive convection in
nature. Migration of moisture through air contained in fibrous insulations, grain storage
systems, the dispersion of contaminants through water-saturated soil, crystal growth, the
underground disposal of nuclear wastes, the formation of microstructures during the cooling
of molten metals, and fluid flows around shrouded heat-dissipation fins are among other
industrial applications of double-diffusive convection.

The inherent instabilities due to double-diffusive convection have been investigated
by, among others, Nield [4], Baines and Gill [5], Guo et al. [6], Khanafer and Vafai [7], Sunil
et al. [8], and Gaikwad et al. [9]. Double-diffusive convection due to horizontal, inclined, and
vertical surfaces embedded in a porous medium has been studied by, among others, Cheng
[10, 11], Nield and Bejan [12], and Ingham and Pop [13]. Chamkha [14] investigated the
coupled heat and mass transfer by natural convection of Newtonian fluids about a truncated
cone in the presence of magnetic field and radiation effects. Yih [15] examined the effect of
radiation in convective flow over a cone.

Though heat and mass transfer happens simultaneously in a moving fluid, the
relations between the fluxes and the driving potentials are generally complicated. It should be
noted that the energy flux can be generated by both temperature and composition gradients.
The energy flux caused by a composition gradient gives rise to the Dufour or diffusion-
thermo effect. Mass fluxes created by temperature gradient lead to the Soret or thermal-
diffusion effect. These effects are in collective known as cross-diffusion effects. The cross-
diffusion effect has been extensively studied in gases, while the Soret effect has been studied
both theoretically and experimentally in liquids, see Mortimer and Eyring [16]. They used an
elementary transition state approach to obtain a simple model for Soret and Dufour effects in
thermodynamically ideal mixtures of substances with molecules of nearly equal size. In their
model, the flow of heat in the Dufour effect was identified as the transport of the enthalpy
change of activation as molecules diffuse. The results were found to fit the Onsager reciprocal
relationship, Onsager [17].

In general, the cross-diffusion effects are small compared to the effects described by
Fourier and Fick’s laws (Mojtabi and Charrier-Mojtabi [1]) and can therefore be neglected in
many heat and mass-transfer processes. However, it has been shown in a number of studies
that there are exceptions in areas such as in geosciences where cross-diffusion effects are
significant and cannot be ignored, see for instance Kafoussias and Williams [18], Awad et
al. [19], and the references therein. With this view point, many investigators included cross-
diffusion effects in the study of double-diffusive convection in fluid flows involving bodies
of various geometries. Alam et al. [20] investigated the Dufour and Soret effects on steady
combined free-forced convective and mass transfer flow past a semi-infinite vertical flat
plate of hydrogen-air mixtures. They used the fourth-order Runge-Kutta method to solve the
governing equations of motion. Their study showed that the Dufour and Soret effects should
not be neglected. Shateyi et al. [21] investigated the effects of diffusion-thermo and thermal-
diffusion on MHD fluid flow over a permeable vertical plate in the presence of radiation and
hall current. Awad and Sibanda [22] used the homotopy analysis method to study heat and
mass transfer in a micropolar fluid subject to Dufour and Soret effects.

Most boundary value problems in fluid mechanics are solved numerically using
either the shooting method or the implicit finite difference scheme in combination with
a linearization technique. These methods have their associated difficulties and failures in
handling situations where solutions either vary sharply over a domain or problems that
exhibit multiple solutions. These limitations necessitate the development of computationally
improved semianalytical methods for solving strongly nonlinear problems. There are many
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different semianalytical methods to solve nonlinear boundary value problems, among them,
the variational iteration method, the homotopy perturbation method [23–25], the Adomian
decomposition method [26, 27], homotopy analysis method [28], and the spectral-homotopy
analysis methods [29, 30]. These iterative methods may sometimes fail to converge or give
slow convergence for strongly nonlinear problems or problems involving large parameters.
Yildirim [31] applied He’s homotopy perturbation method to solve the Cauchy reaction-
diffusion problem and compared his results with analytical solutions in certain test cases.
Yildirim and Pinar [32] obtained periodic solutions of nonlinear reaction-diffusion equations
arising in mathematical biology using the exp-function method. Yildirim and Sezer [33]
found analytical solutions of linear and nonlinear space-time fractional reaction-diffusion
equations (STFRDE) on a finite domain using the homotopy perturbation method (HPM).
Yildirim et al. [34] presented approximate analytical solutions of the biochemical reaction
model by the multistep differential transform method (MsDTM) and validated the results by
comparing with the fourth-order Runge-Kutta method.

Ganji et al. [35] solved the nonlinear Jeffery-Hamel flow problem using two semi-
analytical methods, the variational iteration method (VIM) and the homotopy perturbation
method. Ghafoori et al. [36] solved the equation for a nonlinear oscillator using the
differential transform method (DTM). They compared DTM solutions with those obtained
using the variational iteration method and the homotopy perturbation method. Joneidi et al.
[37] used three analytical methods, the homotopy analysis method (HAM), homotopy
perturbation method, and the differential transform method, to solve the Jeffery-Hamel flow
problem. Babaelahi et al. [38] studied the heat transfer characteristics in an incompressible
electrically conducting viscoelastic boundary layer fluid flow over a linear stretching sheet.
They solved the flow equations using the optimal homotopy asymptotic method (OHAM)
and validated their results by comparing the OHAM solutions with Runge-Kutta solutions.

In this study, we use a nonperturbation, semianalytic successive linearization method
(see Makukula et al. [39, 40]) to investigate double-diffusive convection from a cone in a
viscous incompressible fluid subject to cross-diffusion effects. The study is an extension of
the work by Ece [41] to include mass transfer and cross-diffusion effects. The linearization
method iteratively linearizes the nonlinear equations to give a system of higher-order
deformation equations that are then solved using the Chebyshev spectral collocation method.

2. Mathematical Formulation

Consider a vertical down-pointing cone with half-angle Ω immersed in a viscous
incompressible liquid. The x-axis is along the surface of the cone, and the y-axis coincides
with the outward normal to the surface of the cone. The origin is at the vertex of the cone, see
Figure 1. The surface of the cone is subject to a linearly varying temperature Tw (> T∞)where
T∞ is the ambient temperature.

Following the usual boundary layer and Boussinesq approximations, the basic
equations governing the steady state dynamics of a viscous incompressible liquid are given
by

∂

∂x
(ru) +

∂

∂y
(rv) = 0,

u
∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
+ gβ(T − T∞) cosΩ + gβ∗(C − C∞) cosΩ,
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Figure 1: Schematic of the problem.

u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2
+ k1

∂2C

∂y2
,

u
∂C

∂x
+ v

∂C

∂y
= D

∂2C

∂y2
+ k2

∂2T

∂y2
,

(2.1)

where u and v are the velocity components in the x and y directions, respectively, r = x sinΩ
is the local radius of the cone, ν is the kinematic viscosity, ρ is the density, g is the acceleration
due to gravity, β is the coefficient of thermal expansion, β∗ is the coefficient of solutal
expansion, T is the temperature, C is the concentration, α is the thermal diffusivity, D is the
species diffusivity, and k1, k2 are cross-diffusion coefficients.

The boundary conditions for (2.1) have the form

u = v = 0, T = Tw = T∞ + Tr
(x
L

)
, C = Cw = C∞ + Cr

(x
L

)
at y = 0,

u → 0, T −→ T∞, C −→ C∞ as y −→ ∞.

(2.2)

Here, the subscriptsw and∞ refer to the surface and ambient conditions, respectively, Tr and
Cr are positive constants, and L is a characteristic length.

We introduce the dimensionless variables

(X,Y, R) =

(
x, yGr1/4, r

)

L
, (U,V ) =

(
u, vGr1/4

)

U0
, T =

T − T∞
Tw − T∞ , C =

C − C∞
Cw − C∞

,

(2.3)

where the reference velocityU0 and Grashof number Gr are defined, respectively, as

U0 =
[
gβL(Tw − T∞) cosΩ

]1/2, Gr =
(
U0L

ν

)2

. (2.4)
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On using the variables (2.3), the boundary-layer equations (2.1) reduce to

∂

∂X
(RU) +

∂

∂Y
(RV ) = 0, (2.5)

U
∂U

∂X
+ V

∂U

∂Y
=
∂2U

∂Y 2
+ T + λC, (2.6)

U
∂T

∂X
+ V

∂T

∂Y
=

1
Pr

[
∂2T

∂Y 2
+Df

∂2C

∂Y 2

]
, (2.7)

U
∂C

∂X
+ V

∂C

∂Y
=

1
Sc

[
∂2C

∂Y 2
+ Sr

∂2T

∂Y 2

]
. (2.8)

The nondimensional parameters appearing in (2.5)–(2.8) are the buoyancy ratio λ, the Prandtl
number Pr, the Schmidt number Sc, Dufour number Df, and Soret number Sr defined,
respectively, as

λ =
β∗

β

(
Cw − C∞
Tw − T∞

)
, Pr =

ν

α
, Sc =

ν

D
,

Df =
k1
α

(
Cw − C∞
Tw − T∞

)
, Sr =

k2
D

(
Tw − T∞
Cw − C∞

)
.

(2.9)

Assuming Tw − T∞ = Tr and Cw − C∞ = Cr , the boundary conditions (2.2) can be written as

U = V = 0, T = X, C = X at Y = 0,

U → 0, T −→ 0, C −→ 0 as Y −→ ∞.
(2.10)

We now introduce the stream function ψ(X,Y ) such that

U =
1
R

∂ψ

∂Y
, V = − 1

R

∂ψ

∂X
, (2.11)

so that the continuity equation (2.5) is satisfied identically. The boundary layer equations
(2.6)–(2.8) can be written in terms of the stream function as

R
∂3ψ

∂Y 3
+
∂
(
ψ, ∂ψ/∂Y

)

∂(X,Y )
+

1
X

(
∂ψ

∂Y

)2

+ R2
(
T + λC

)
= 0,

R
∂2T

∂Y 2
+ Pr

∂
(
ψ, T
)

∂(X,Y )
+ RDf

∂2C

∂Y 2
= 0,

R
∂2C

∂Y 2
+ Sc

∂
(
ψ,C
)

∂(X,Y )
+ RSr

∂2T

∂Y 2
= 0.

(2.12)
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The boundary conditions (2.10) in terms of the stream function are

∂ψ

∂X
=
∂ψ

∂Y
= 0, T = X, C = X at Y = 0,

∂ψ

∂Y
−→ 0, T −→ 0, C −→ 0 as Y −→ ∞.

(2.13)

We further introduce the following similarity variables

ψ(X,Y ) = XRf(Y ), T(X,Y ) = Xθ(Y ), C(X,Y ) = Xφ(Y ). (2.14)

Using (2.14), (2.12) alongwith boundary conditions (2.13) reduces to the following two-point
boundary value problem

f ′′′ + 2ff ′′ − f ′2 + θ + λφ = 0, (2.15)

θ′′ + Pr
(
2fθ′ − f ′θ

)
+Dfφ

′′ = 0, (2.16)

φ′′ + Sc
(
2fφ′ − f ′φ

)
+ Srθ′′ = 0, (2.17)

f(0) = f ′(0) = 0, θ(0) = φ(0) = 1,

f ′(∞) −→ 0, θ(∞) −→ 0, φ(∞) −→ 0.
(2.18)

The primes in (2.15)–(2.18) denote differentiation with respect to Y .

3. Successive Linearization Method

The successive linearization method (see Makukula et al. [39, 40]) is used to solve the
boundary value problem (2.15)–(2.18). We assume that the functions f(Y ), θ(Y ), and φ(Y )
may be expanded in series form as

f(Y ) = fi(Y ) +
i−1∑
m=0

Fm(Y ),

θ(Y ) = θi(Y ) +
i−1∑
m=0

Θm(Y ), i = 1, 2, 3, . . . ,

φ(Y ) = φi(Y ) +
i−1∑
m=0

Φm(Y ),

(3.1)
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where fi, θi, and φi are unknown functions and Fm, Θm, and Φm, (m ≥ 1) are approximations
that are obtained by recursively solving the linear part of the equation that results from
substituting (3.1) in (2.15)–(2.17). Substituting (3.1) in the governing (2.15)–(2.17), we obtain

f ′′′
i + a1,i−1f ′′

i + a2,i−1f
′
i + a3,i−1fi + θi + λφi +

[
2fif ′′

i − f2
i

]
= r1,i−1,

θ′′i + b1,i−1θ
′
i + b2,i−1θi + b3,i−1f

′
i + b4,i−1fi + Pr

[
2fiθ′i − f ′

iθ
]
+Dfφ

′′
i = r2,i−1,

φ′′
i + c1,i−1φ

′
i + c2,i−1θi + c3,i−1f

′
i + c4,i−1fi + Sc

[
2fiφ′

i − f ′
iφ
]
+ Srθ′′i = r3,i−1,

(3.2)

where the coefficient parameters ak,i−1 (k = 1, 2, 3), bk,i−1, ck,i−1 (k = 1, . . . , 4), and rk,i−1 (k =
1, 2, 3) are defined as

a1,i−1 = 2
i−1∑
m=0

Fm, a2,i−1 = −2
i−1∑
m=0

F ′
m, a3,i−1 = 2

i−1∑
m=0

F ′′
m,

b1,i−1 = 2Pr
i−1∑
m=0

Fm, b2,i−1 = −Pr
i−1∑
m=0

F ′
m, b3,i−1 = −Pr

i−1∑
m=0

Θm, b4,i−1 = 2Pr
i−1∑
m=0

Θ′
m,

c1,i−1 = 2Sc
i−1∑
m=0

Fm, c2,i−1 = −Sc
i−1∑
m=0

F ′
m, c3,i−1 = −Sc

i−1∑
m=0

Φm, c4,i−1 = 2Sc
i−1∑
m=0

Φ′
m,

r1,i−1 = −
⎡
⎣

i−1∑
m=0

F ′′′
m + 2

i−1∑
m=0

Fm
i−1∑
m=0

F ′′
m −
(

i−1∑
m=0

F ′
m

)2

+
i−1∑
m=0

Θm + λ
i−1∑
m=0

Φm

⎤
⎦,

r2,i−1 = −
[
i−1∑
m=0

Θ′′
m + Pr

(
2
i−1∑
m=0

Fm
i−1∑
m=0

Θ′
m −

i−1∑
m=0

F ′
m

i−1∑
m=0

Θm

)
+Df

i−1∑
m=0

Φ′′
m

]
,

r3,i−1 = −
[
i−1∑
m=0

Φ′′
m + Sc

(
2
i−1∑
m=0

Fm
i−1∑
m=0

Φ′
m −

i−1∑
m=0

F ′
m

i−1∑
m=0

Φm

)
+ Sr

i−1∑
m=0

Θ′′
m

]
.

(3.3)

Starting from the initial approximations

F0(Y ) = 1 − e−Y − Ye−Y , Θ0(Y ) = e−Y , Φ0(Y ) = e−Y , (3.4)

which are chosen to satisfy the boundary conditions (2.18), the subsequent solutions Fm, Θm,
Φm,m ≥ 1 are obtained by successively solving the linearized form of (3.2) given below

F ′′′
i + a1,i−1F ′′

i + a2,i−1F
′
i + a3,i−1Fi + Θi + λΦi = r1,i−1,

Θ′′
i + b1,i−1Θ

′
i + b2,i−1Θi + b3,i−1F ′

i + b4,i−1Fi +DfΦ′′
i = r2,i−1,

Φ′′
i + c1,i−1Φ

′
i + c2,i−1Φi + c3,i−1F ′

i + c4,i−1Fi + SrΘ′′
i = r3,i−1,

(3.5)
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subject to the boundary conditions

Fi(0) = F ′
i(0) = F

′
i(∞) = 0, Θi(0) = Θi(∞) = 0, Φi(0) = Φi(∞) = 0. (3.6)

Once each solution Fi,Θi, andΦi (i ≥ 1) has been found from iteratively solving (3.5) for each
i, the functions f(Y ), θ(Y ), and φ(Y ) are obtained as series

f(Y ) ≈
M∑
i=0

Fi(Y ), θ(Y ) ≈
M∑
i=0

Θi(Y ), φ(Y ) ≈
M∑
i=0

Φi(Y ), (3.7)

where M is the order of SLM approximation. Equations (3.5) are integrated using the
Chebyshev spectral collocation method [42–44]. The unknown functions are defined by the
Chebyshev interpolating polynomials with the Gauss-Lobatto points defined as

Yj = cos
πj

N
, j = 0, 1, . . . ,N, (3.8)

whereN is the number of collocation points used. The physical region [0,∞) is transformed
into the domain [−1, 1] using the domain truncation technique in which the problem is solved
on the interval [0, Y∞] instead of [0,∞). This leads to the mapping

Y

Y∞
=
ξ + 1
2

, −1 ≤ ξ ≤ 1, (3.9)

where Y∞ is the known number used to invoke the boundary condition at infinity. The
unknown functions Fi, Θi, and Φi are approximated at the collocation points by

Fi(ξ) ≈
N∑
k=0

Fi(ξk)Tk
(
ξj
)
, Θi(ξ) ≈

N∑
k=0

Θi(ξk)Tk
(
ξj
)
,

Φi(ξ) ≈
N∑
k=0

Φi(ξk)Tk
(
ξj
)
, j = 0, 1, . . . ,N,

(3.10)

where Tk is the kth Chebyshev polynomial defined as

Tk(ξ) = cos
[
kcos−1(ξ)

]
. (3.11)

The derivatives of the variables at the collocation points are represented as

dnFi
dYn

=
N∑
k=0

Dn
kj
Fi(ξk),

dnΘi

dYn
=

N∑
k=0

Dn
kjΘi(ξk),

dnΦi

dYn
=

N∑
k=0

Dn
kjΦi(ξk), j = 0, 1, . . . ,N,

(3.12)
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where n is the order of differentiation and D = (2/Y∞)D where D is the Chebyshev spectral
differentiationmatrix (see, [42–44]). Substituting (3.8)–(3.12) in (3.5)–(3.6) leads to thematrix
equation

Ai−1Xi = Bi−1, (3.13)

in whichAi−1 is a square matrix of order (3N + 3) and Xi, Bi−1 are (3N + 3)× 1 column vectors
defined by

Ai−1 =

⎡
⎣
A11 A12 A13

A21 A22 A23

A31 A32 A33

⎤
⎦, Xi =

⎡
⎣
Fi
Θi

Φi

⎤
⎦, Bi−1 =

⎡
⎣
r1,i−1
r2,i−1
r3,i−1

⎤
⎦, (3.14)

with

Fi = [Fi(ξ0), Fi(ξ1), . . . , Fi(ξN−1), Fi(ξN)]T ,

Θi = [Θi(ξ0),Θi(ξ1), . . . ,Θi(ξN−1),Θi(ξN)]T ,

Φi = [Φi(ξ0),Φi(ξ1), . . . ,Φi(ξN−1),Φi(ξN)]T ,

r1,i−1 = [r1,i−1(ξ0), r1,i−1(ξ1), . . . , r1,i−1(ξN−1), r1,i−1(ξN)]T ,

r2,i−1 = [r2,i−1(ξ0), r2,i−1(ξ1), . . . , r2,i−1(ξN−1), r2,i−1(ξN)]T ,

r3,i−1 = [r3,i−1(ξ0), r3,i−1(ξ1), . . . , r3,i−1(ξN−1), r3,i−1(ξN)]T ,

A11 = D3 + a1,i−1D2 + a2,i−1D + a3,i−1, A12 = I, A13 = λI,

A21 = b3,i−1D + b4,i−1, A22 = D2 + b1,i−1D + b2,i−1, A23 = DfD2,

A31 = c3,i−1D + c4,i−1, A32 = SrD2, A33 = D2 + c1,i−1D + c2,i−1.

(3.15)

In the above definitions, ak,i−1 (k = 1, 2, 3), bk,i−1, ck,i−1 (k = 1, . . . , 4), Df, and Sr are diagonal
matrices of order (N + 1) and I is the identity matrix of order (N + 1). Finally, the solution of
the problem is obtained as

Xi = A−1
i−1Bi−1. (3.16)

Thus, starting with the initial solutions F0, Θ0, and Φ0, a sequence of approximations
∑k

0 Fk,∑k
0 Θk, and

∑k
0 Φk, k = 1, 2, . . . ,M are obtained until (3.7) holds. The convergence of this

iteration process depends on the parameter values, that is, for small parameter values, the
iterates converge faster as compared to large parameter values.

4. Skin Friction, Heat and Mass Transfer Coefficients

The parameters of engineering interest in heat and mass transport problems are the skin
friction coefficient Cf , the Nusselt number Nu, and the Sherwood number Sh. These
parameters characterize the surface drag, the wall heat and mass transfer rates, respectively.
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The shearing stress at the surface of the cone τw is defined as

τw =
μ

X

[
∂u

∂y

]

y=0

μU0

LGr−1/4
f ′′(0), (4.1)

where μ is the coefficient of viscosity. The skin friction coefficient at the surface of the cone is
defined as

Cf =
τw

(1/2)ρU2
0

. (4.2)

Using (4.1) in (4.2), we obtain the following relation

CfGr1/4 = 2f ′′(0). (4.3)

The heat transfer rate at the surface of the cone is defined as

qw =
−k
X

[
∂T

∂y

]

y=0
=

−k(Tw − T∞)
LGr−1/4

θ′(0), (4.4)

where k is the thermal conductivity of the fluid. The Nusselt number is defined as

Nu =
L

k

qw
Tw − T∞ . (4.5)

Using (4.4) in (4.5), the dimensionless wall heat transfer rate is obtained as follows:

NuGr−1/4 = −θ′(0). (4.6)

The mass flux at the surface of the cone is defined as

Jw =
−D
X

[
∂C

∂y

]

y=0
=

−D(Cw − T∞)
LGr−1/4

φ′(0), (4.7)

and the Sherwood is defined as

Sh =
L

D

Jw
Tw − T∞ . (4.8)

Using (4.7) in (4.8), the dimensionless wall mass transfer rate is obtain as

ShGr−1/4 = −φ′(0). (4.9)
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Table 1:Comparison of SLM results for single component convection (λ = 0 and Df = Sr = 0)with Ece [41].

Pr
Ece [41] Present results

f ′′(0) −θ′(0) f ′′(0) −θ′(0)
1 0.681482 0.638859 0.68148333 0.63885472
10 0.433269 1.275548 0.43327825 1.27552888

Table 2: Comparison of f ′′(0), −θ′(0), and −φ′(0) obtained by SLM with bvp4c and shooting methods for
different values of Df and Sr with λ = Pr = Sc = 1.

Quantiy Df Sr SLM bvp4c Shooting
M = 3 M = 4 M = 5

f ′′(0)

0.00 1.00 1.244372648 1.244372629 1.244372629 1.244372633 1.244373
0.25 0.75 1.233210690 1.233210687 1.233210687 1.233210690 1.233211
0.50 0.50 1.229002907 1.229002906 1.229002906 1.229002911 1.229003
0.75 0.25 1.233210690 1.233210687 1.233210687 1.233210690 1.233211
1.00 0.00 1.244372648 1.244372629 1.244372629 1.244372633 1.244373

−θ′(0)

0.00 1.00 0.803753575 0.803753516 0.803753516 0.803753488 0.803754
0.25 0.75 0.750979670 0.750979649 0.750979649 0.750979625 0.750980
0.50 0.50 0.663129905 0.663129902 0.663129902 0.663129885 0.663130
0.75 0.25 0.553122477 0.553122494 0.553122494 0.553122487 0.553122
1.00 0.00 0.444121263 0.444121327 0.444121327 0.444121329 0.444121

−φ′(0)

0.00 1.00 0.444121263 0.444121327 0.444121327 0.444121329 0.444121
0.25 0.75 0.553122477 0.553122494 0.553122494 0.553122487 0.553122
0.50 0.50 0.663129905 0.663129902 0.663129902 0.663129885 0.663130
0.75 0.25 0.750979670 0.750979649 0.750979649 0.750979625 0.750980
1.00 0.00 0.803753575 0.803753516 0.803753516 0.803753488 0.803754

5. Results and Discussion

The successive linearization method (SLM) has been applied to solve the nonlinear coupled
boundary value problem arising due to double-diffusive convection from a vertical cone
immersed in a viscous liquid. Cross-diffusion effects are taken into consideration. The
parameters controlling the flow dynamics are the Prandtl number Pr, Schmidt number Sc,
buoyancy ratio λ, Dufour number Df, and the Soret number Sr. We, however, do not discuss
the effects of parameters such as the Prandtl and Schmidt numbers whose significance has
been widely studied in the literature on double-diffusive convection in viscous liquids. We
have thus fixed Pr = Sc = 1 and instead focus attention on results pertaining to the other three
important parameters. In addition, we restrict ourselves to parameter values in the interval
0 ≤ Df, Sr ≤ 1. To highlight the effect of buoyancy, for aiding buoyancy condition, we take
λ > 0 while, for opposing buoyancy, λ < 0.

We first establish the robustness and accuracy of the successive linearization method
(SLM) by comparing the SLM results with those obtained numerically and previous related
studies in the literature. The Matlab inbuilt bvp4c routine and the shooting technique
with Runge-Kutta-Fehlberg (RKF45) and Newton-Raphson schemes are used to obtain the
numerical solutions.

Tables 1 and 2 show the results of f ′′(0), −θ′(0), and −φ′(0) for different parameter
values. Table 1 gives the comparison of the SLM results in the absence of cross-diffusion
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Figure 2: Cross-diffusion effect on (a) temperature and (b) concentration profiles with λ = −0.5 (dashed
lines) and λ = 0.5 (solid lines).

(i.e., Df = Sr = λ = 0) with those presented by Ece [41]. The SLM solutions are found to
be in excellent agreement with those of Ece [41] indicating the accuracy of the linearisation
method.

Table 2 highlights both the accuracy and the accelerated convergence of the SLM for
different values of Df and Sr. The linearisation method converges to the numerical solutions
at the fourth-order SLM for all values of Df and Sr. However, for larger values, convergence
may require extra terms in the SLM solution series. It is evident that the SLM results are
highly accurate as they match with those obtained by the bvp4c and the shooting technique
up to the sixth significant digit.

It is to be noted from Table 2 that simultaneously increasing Df and decreasing Sr lead
to initial decreases in the skin-friction coefficient f ′′(0) up to Df = Sr = 0.5 and then start
increasing. The heat transfer coefficient −θ′(0) shows monotonic decrease, while the mass
transfer coefficient exhibits the opposite change when subjected to simultaneous increase in
Df and decrease in Sr.

To gain some insight into the dynamics of the problem, the temperature and
concentration distributions are shown graphically in Figures 2–6. The Nusselt number
NuGr−1/4 and Sherwood number ShGr−1/4 which highlight the heat and mass transfer are
shown in Figures 7 and 8, as functions of Sr for different values of Df in the aiding and
opposing buoyancy cases.

The variation of temperature and concentration profiles subject to a simultaneous
increase in the cross-diffusion parameters Df and Sr is shown in Figure 2. We observe
enhanced heat and mass transfer in the presence of the cross-diffusion effect as compared to
the case Df = Sr = 0 (no cross-diffusion). Increasing the cross-diffusion parameters increases
both the thermal and species boundary layer thickness in both the aiding and opposing
buoyancy situations. Hence, the cross-diffusion effect plays an important role in enhancing
heat and mass transfer in double-diffusion convection processes.
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Figure 3: Effect of Dufour parameter Df on θ(Y ) with Sr = 0.2, λ = −0.5 (dashed lines), and λ = 0.5 (solid
lines).

Y

1

0.8

0.6

0.4

0.2

0
0 21 3 4 5 6 7

φ
(Y

)

Df = 0
Df = 0.3
Df = 0.5
Df = 0.7

Df = 0
Df = 0.3
Df = 0.5
Df = 0.7

Figure 4: Effect of Dufour parameter Df on φ(Y ) with Sr = 0.2, λ = −0.5 (dashed lines), and λ = 0.5 (solid
lines).

Figure 3 shows the effect of the Dufour number on the temperature distributions. The
energy flux created by the concentration gradient gives rise to the Dufour effect or diffusion-
thermo effect and due to the increase in the energy flux created by concentration gradients,
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Figure 5: Effect of Sr on θ(Y ) with Df = 0.3, λ = −0.5 (dashed lines), and λ = 0.5 (solid lines).
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Figure 6: Effect of Sr on φ(Y ) with Df = 0.3, λ = −0.5 (dashed lines), and λ = 0.5 (solid lines).

the temperature in the boundary layer increases significantly. The Dufour effect thus serves to
thicken the thermal boundary layer. This trend is true for both aiding and opposing buoyancy
scenarios.

Due to the coupling between the momentum, energy, and species balance equations,
the Dufour parameter has an effect on the concentration boundary layer as well. This is
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shown in Figure 4 where it is evident that Df reduces the concentration in the boundary layer
in both the cases of aiding and opposing buoyancy.

The effect of the Soret number on the temperature distribution is shown in Figure 5.
The Soret parameter has a mixed effect on θ(Y ) profiles. In the case of opposing buoyancy,
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increasing Soret parameter results in the thickening of the thermal boundary layer, while, in
the aiding buoyancy case, the effect of Sr is exactly the opposite.

Figure 6 shows the effect of the Soret number on the species distribution in aiding
and opposing buoyancy cases. The mass flux created by the temperature gradient gives rise
to Soret or thermal-diffusion or thermophoresis effect. The thermophoretic force developed
due to temperature gradients drives solute particles into the boundary layer region thereby
increasing the concentration boundary layer as can be seen from Figure 6. The increase in
concentration boundary with Sr is observed in both aiding and opposing buoyancy cases.

Figure 7 shows the Nusselt number NuGr−1/4 as a function of Sr for different values
of Df in aiding and opposing buoyancy conditions. In the opposing buoyancy situation,
NuGr−1/4 decreases with Sr for the case of pure thermophoresis (Df = 0) and increases
in the cross-diffusion case (Df /= 0). In the aiding buoyancy situation, NuGr−1/4 increases
monotonically with Sr for both Df = 0 and Df /= 0. The Dufour number reduces the heat
transfer coefficient NuGr−1/4 in both aiding and opposing flow situations. Further, we observe
enhanced heat transfer in the case of aiding buoyancy (λ > 0) as compared to the opposing
buoyancy (λ < 0) case.

Figure 8 shows the mass transfer coefficient ShGr−1/4 as a function of Sr for different
values of Df in aiding and opposing buoyancy conditions. In both aiding and opposing
buoyancy situations, ShGr−1/4 is a decreasing function of Sr and an increasing function of Df.
There is also an increased mass transfer in the case of aiding buoyancy (λ > 0) as compared
to the opposing buoyancy (λ < 0) case.

6. Conclusions

The problem of double-diffusive convection from a vertical cone was solved using a
successive linearization algorithm in combination with a Chebyshev spectral collocation
method. A comparison with results in the literature and numerical approximations showed
that the SLM is highly accurate with assured and accelerated convergence rate thus
confirming the SLM as an alternative semianalytic technique for solving nonlinear boundary
value problems with a strong coupling. We found that the Dufour parameter reduces the
heat transfer coefficient while increasing the mass transfer rate. In general, the effect of the
Soret parameter is to increase the heat transfer coefficient and to reduce the mass transfer
coefficient. Aiding buoyancy enhances heat and mass transfer compared to the opposing
buoyancy condition.

Nomenclature

C: Concentration
C: Dimensionless concentration
Cf : Local skin friction coefficient
Cr : Concentration difference, Cw − C∞
f : Boundary layer stream function
D: Solutal diffusivity
Df: Dufour number
g: Acceleration due to gravity
Gr: Grashof number
J : Mass flux
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k: Thermal conductivity
k1, k2: Cross-diffusion coefficients
L: Characteristic length
M: Order of successive linearization method
N: Number of collocation points
Nu: Local Nusselt number
Pr: Prandtl number
q: Heat flux
r: Local radius of the cone, x sinΩ
R: Dimensionless local radius of the cone, X sinΩ
Sc: Schmidt number
Sh: Local Sherwood number
Sr: Soret number
T : Temperature
T : Dimensionless temperature
Tr : Temperature difference, Tw − T∞
U0: Reference velocity
u, v: Velocity component in the x, y directions
U, V : Dimensionless velocity component in the X,Y directions
x, y: Coordinate measured along the surface and normal to it
X, Y : Dimensionless coordinates.

Greek Symbols

α: Thermal diffusivity of the fluid
β: Coefficient of thermal expansion of the fluid
β∗: Coefficient of solutal expansion
Ω: Vertex half angle of the cone
λ: Buoyancy ratio
μ: Coefficient of viscosity
ν: Coefficient of kinematic viscosity, ν = μ/ρ
θ: Boundary layer temperature
ρ: Density of the fluid
ψ: Dimensionless stream function
φ: Boundary layer concentration
ξ: Collocation point
τ : Shearing stress.

Subscripts

w: Quantities at the surface of the cone
∞: Quantities far away from the surface of the cone.
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