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We develop a new efficient second-order finite difference scheme for two-dimensional problem
of contaminant in groundwater flow. Theoretical analysis shows that the scheme is second-order
convergence in the L2 norm and is unconditionally stable. Numerical results demonstrate that the
error measures of the second-order scheme are several times smaller than those of the standard
implicit finite difference scheme.

1. Introduction

Prediction of the movement of contaminants in groundwater flows by models has been given
increased emphasis in recent years. Groundwater is often contaminated by, for example, the
sewage out of factories or mines and the chemical fertilizer and pesticide in agriculture.
Groundwater protection is an issue with both economic and social significant. Mathematical
models and numerical methods have been used extensively to simulate the movement of
the contaminated groundwater. Analytical solutions can be derived only for a few classical
models that are not suitable for complex situations normally encountered in the field.
Consequently, the development of numerical solutions is required. During the last two
decades, a variety of numerical approaches were presented; the technique of intimating the
movement of groundwater flow is improved greatly, see [1–4] and the references therein.
Dillon concludes more completely concludes many mathematical models and numerical
methods for solving the groundwater problem [1]. Sun applied a kind of numerical methods
to simulate the movement of contaminants in groundwater [2]. Li and Jiao give the analytical
solutions of tidal groundwater flow in coastal two-aquifer system [3]. Pelovska improved an
explicit scheme for age-dependent population model with spatial diffusion [4].
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In this paper, we give preliminary results for the numerical approximation of the
following equation:
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(1.1)

where C is concentration of contaminants, vL and vT are the longitudinal and transversal
velocity components,DL andDT are the longitudinal and transversal dispersion coefficients,
Cs is the concentration of the solute or sink fluid, Qs is the volume flow of the source or
sink fluid per unite aquifer area, θ is volumetric fraction of the fluid phase, b is thickness
of the aquifer, and C0(x, y) is the initial condition. In addition, let region of interest be Ω =
[0, a] × [0, b] and the boundary of Ω be ∂Ω, where ∂Ω = Γ1

⋃
Γ2, Γ1 = {(x, y)|x = 0, y ∈ [0, b]

or y = 0, x ∈ [0, a]} and Γ2 = {(x, y)|x = 1, y ∈ [0, b] or y = 1, x ∈ [0, a]}. In this paper, we
assume that g1(x, y), g2(x, y) are known smooth functions, and θ and b are constants.

Equation (1.1) is employed widely in the problem of contaminant in groundwater
flow, or the water flow with any chemical solute. In general, the analytical solution for the
above problem is not available. Many numerical methods can be used to solve (1.1). Wang
and Zhang used finite volume element method to discretize the air pollution model [5, 6].
Borggaard and coauthors examine two-level finite element approximation schemes applied
to the Navier-Stokes equations with r-Laplacian subgrid scale viscosity [7]. Minãmbres and
De La Sen apply numerical methods of acceleration of the convergence to the case of one
parameter in adaptive control algorithms [8].

High performance algorithms are generally associated with large stencils, which
increase the band-width of the resulting matrix and lead to a large number of arithmetic oper-
ations, especially for higher-dimensional problems. To obtain satisfactory high-performance
numerical results with reasonable computational cost, many efforts have been made to
develop efficient schemes based on Crank-Nicolson scheme. Deng and Zhang propose a new
high-order algorithm for a class of nonlinear evolution equations, and the algorithm is based
on Crank-Nicolson finite difference scheme [9]. Dai and Nassar design an unconditionally
stable finite difference algorithm which is also based on Crank-Nicolson finite difference
scheme [10].

The aim of the present paper is to improve the accuracy in the temporal direction. We
propose a second-order scheme which based on centered Crank-Nicolson finite difference
scheme [11–16]. For the advection term of (1.1), we employ the average of the time level of
n + 1 and n, which guarantee that the discrete scheme for (1.1) is unconditionaly stable and
second-order accurate in space and time. To the best of the author’s knowledge, themethod to
deal with the advection term in this paper has not been studied. The numerical experiments
demonstrate that the method is efficient and robust with respect to mesh refinement and the
time step size. In order to illustrate that the scheme in this paper is efficient and exercisable,
we carry out the standard implicit center finite difference scheme (ICFDS) for the equation.
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The paper is organized as follows. In Section 2, we introduce some notations and
describe our finite difference schemes. Stability analysis for initial value is obtained in
Section 3. L2 error estimates are derived in Section 4 and numerical experiments are given
in Section 5. Finally, conclusions are drawn in Section 6.

Throughout this paper,K and ε denote generic positive constants andmay be different
at different places.

2. Second-Order Difference Scheme

For the presentation of our finite difference method, we first introduce some notations which
will be used later. We denote temporal increment by Δt. For the spatial approximation, we
take the step sizes hx = a/M and hy = b/N, respectively. In this way, the spatial nodes can
be denoted by (xi, yj), xi = ihx, i = 0, 1, . . . ,M; yj = jhy, j = 0, 1, . . . ,N. Next, we denote the
following:

δxu
n
i,j =

un
i+1,j − un

i,j

hx
, δxu

n
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n
i−1,j =

un
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,

δx(DLδx)ui =
1
hx

[
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]
,

(2.1)

and similarly for the y direction. We set F(x, y, t) = CsQs/θb.
We give the following assumptions:

(H1) for all (x, y, t) ∈ Ω × [0, T], 0 < vL ≤ K1, 0 < vT ≤ K2, 0 < K3 ≤ DL ≤ K4, 0 < K5 ≤
DT ≤ K6.

(H2) ||C||L∞(0,T,L∞(Ω)) ≤ K.

We denote {Cn
ij} as the solutions of (1.1), and in terms of Taylor formula, we can obtain
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where Fn+(1/2) = F(xi, yj , t
n+1/2), Rn+1/2

ij truncation errors, and Rn+1/2
ij = O(Δt2 + h2

x + h2
y).
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We denote {Un
ij} as numerical solutions of (1.1), so the centered second-order finite

difference scheme is:

Un+1
ij −Un

ij

Δt
+
1
2

⎡
⎣(δx + δx)(vLU)n+1ij

2
+
(δx + δx)(vLU)nij

2

⎤
⎦

+
1
2

⎡
⎣

(
δy + δy

)
(vTU)n+1ij

2
+

(
δy + δy

)
(vTU)nij

2

⎤
⎦ − δx(DL)n+1/2δx

Un+1
ij +Un

ij

2

− δy(DT )n+1/2δy
Un+1

ij +Un
ij

2
=

1
2

(
Fn
ij + Fn+1

ij

)
, i = 1, 2, . . . ,M − 1, j = 1, 2, . . . ,N − 1,

U
(
x, y, 0

)
= C0

(
x, y

)
,

(
x, y

) ∈ Ω,

U = g1
(
x, y, t

)
,

(
x, y, t

) ∈ Γ1 × [0, T],

U = g2
(
x, y, t

)
,

(
x, y, t

) ∈ Γ2 × [0, T].

(2.3)

The existence and uniqueness of the solution of scheme (2.3) are easily known by the
positive-definite property.

3. Stability Analysis

In this section, for convenience, we let F = 0. We employ freezing coefficient method to show
the stability of scheme (2.3). We let vL, vT ,DL,DT and constants be without loss of generality,
we denote them by b1, b2, d1, and d2, so scheme (2.3) becomes
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Let Un
ij = wne

√−1(iξxhx+jξyhy), the amplification factor G(ξx, ξy,Δt) = wn+1/wn, for
stability, it has to satisfy the relation |G(ξx, ξy,Δt)| ≤ 1. By substituting the expressions of
Un+1

ij and Un
ij into the equation above, we get the amplification factor as follows:
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where λ1 = Δt/h2
x, λ2 = Δt/h2

y. With a simple calculation we have |G| < 1. Hence, the
following result can be obtained.

Theorem 3.1. Let U0 be the solution of scheme (2.3) at time level 0, Un+1 be the solution of scheme
(2.3) at time level n + 1, e = C − U, then there exists a positive constant K, such that ||en+1||2 ≤
K||e0||2, for (n + 1)Δt ≤ T , and K is independent of Δt and hx, hy. It follows that scheme (2.3) is
unconditionally stable for initial value.

4. Error Estimate

In this section, we give the L2 error estimate for scheme (2.3). First, we define inner product
in Ω: (u, v) =
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Set e = C −U, the difference between (2.2) and (2.3) is
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In the following, wewill carry on the estimation to each item in (4.3); before estimating
(4.3), we give a lemma.
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Proof. From summation by parts formula, we can get the results easily.

Now, we talk about each item of (4.3),
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Employing summation by parts formula, and noting that DL is bounded, we can get
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and similarly for the y direction.
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Denoting L = Dmin = min{K3, K5}, then
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In terms of Taylor formula and ε inequality, we can obtain
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Substituting (4.4)–(4.8) into (4.3) we get
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We let ε < L in (4.9), multiplying both sides by 2Δt, and sum over n; using discrete
Gronwall lemma, we can obtain

max
0≤n≤[T/Δt]

‖Cn −Un‖ = max
0≤n≤[T/Δt]

‖en‖ ≤ K
(
Δt2 + h2

x + h2
y

)
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Hence, L2 error estimate is derived as follows:

Theorem 4.2. Let C and U be the accurate solution of (1.1) and the solution of second-order finite
difference scheme, respectively. If (H1)-(H2) hold, then ||Cn − Un|| = O(Δt2 + h2

x + h2
y), for all n

(0 ≤ n ≤ [T/Δt]).

5. Numerical Experiments

In this part, we will give two experiments to test our second-order finite difference scheme.
The numerical results will be presented to illustrate the efficiency and order of accuracy of
the algorithm. In the following numerical experiments, we use the same number of uniform
subintervals in both x and y directions. ECij = |Cij − Uij |, RCij = |Cij − Uij/Cij |, ||C − U|| =
[
∑N

ij (Cij −Uij)
2h2]1/2 denote absolute error, relative error, and L2 error, respectively.
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Table 1: The comparison of maximum absolute error, maximum relative error, and L2 error when Δt = h.

The step size in space h = 1/4 h = 1/8 h = 1/16 h = 1/32
maxEC 3.9203e − 3 1.0783e − 3 2.7107e − 4 6.8318e − 5

maxRC 2.0388e − 2 5.1581e − 3 9.8663e − 3 2.5216e − 3

||C −U|| 2.1257e − 3 5.4288e − 4 1.3603e − 4 3.4020e − 5

maxEC/h2 0.06273 0.06902 0.06939 0.06996

||C −U||/h2 0.03401 0.03474 0.03483 0.03484

Example 5.1. The equations to be solved are

∂C

∂t
+
∂C

∂x
+
∂C

∂y
− 1
2
∂2C

∂x2
− 1
2
∂2C

∂y2
= 2et cos

(
x + y

) − 2et sin
(
x + y

)
,

(
x, y

) ∈ [0, 1] × [0, 1], t ∈ [0, T],

C
(
x, y, 0

)
= cos

(
x + y

)
,

(
x, y

) ∈ [0, 1] × [0, 1],

C
(
0, y, t

)
= et cosy, C(x, 0, t) = et cosx,

C(x, 1, t) = et cos(x + 1), C
(
1, y, t

)
= et cos

(
1 + y

)
, t ∈ [0, T].

(5.1)

The exact solutions of this test problem are C(x, t) = et cos(x + y) and we take T = 1
in the experiment. We take different spatial steps h = 1/4, 1/8, 1/16, and 1/32, respectively,
in the numerical experiment. Table 1 demonstrates the maximum absolute error, maximum
relative error, and L2 error between approximation solution and exact solution. For all of the
above cases, we take Δt = h in the numerical experiment. Figures 1 and 2 are pictures of
absolute errors by employing second-order finite difference scheme at T = 1, in Figure 1, h =
0.1, Δt = 0.1, and in Figure 2, h = 0.05, Δt = 0.05. Figure 3 presents the approximation order
of C in L2 norm. It is shown that approximation orders of C in different norms are almost 2
orders, respectively. This is the same as the theoretical results. Transverse axis denotes lgh,
and longitudinal axis denotes lg||C −U|| in Figure 3.

From Table 1, we can see that maximum absolute error, maximum relative error, and
L2 error of C for each case in h = 1/4, 1/8, 1/16, and 1/32 are second-order accuracy in
space and time, respectively. With h decreasing, the accuracies of maximum absolute error,
maximum relative error, and L2 error of C are increasing. Roughly speaking, we can adopt
larger time step to solve this class of equation if we need the error accuracy 10−2. This would
save computational loads and satisfy our requirement. We can also see from Table 1 that the
error denoted by maxEC shows a second-order accuracy. This is illustrated by the fact that
the ratios of maxEC/h2 and ||C −U||/h2 keep roughly a constant as the computational grid
is being refined. From Figures 1 and 2, we can intuitively see that the degree of numerical
solutions is approximating the exact solutions in different grid points. The slope of the line in
Figure 3 is nearly 2, which shows second-order accuracy.
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Figure 2: Absolute error at T = 1, h = 0.05, and Δt = 0.05.

Example 5.2. We consider the following problem:

∂C

∂t
+

∂

∂x

(
C sinx siny

)
+

∂

∂y

(
C sinx siny

) − 2
∂2C

∂x2
− 2

∂2C

∂y2

= 2e−2t sinx siny
(
1 + cosx siny + sinx cosy

)
,

(
x, y, t

) ∈ [0, π] × [0, π] × [0, T],

C
(
x, y, 0

)
= sinx siny,

(
x, y

) ∈ [0, π] × [0, π],

C(x, 0, t) = C
(
0, y, t

)
= 0, (x, π, t) = C

(
π, y, t

)
= 0, t ∈ [0, T].

(5.2)

The exact solutions of this test problem are C(x, y, t) = e−2t sinx siny; we take
T = 2. In this example, we use implicit center finite difference scheme (ICFDS) to compare
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Table 2: The comparison of SOFDS and ICFDS in different partitions.

The step size in space maxEC (SOFDS) maxEC (ICFDS) ||C −U|| (SOFDS) ||C −U|| (ICFDS)
h = π/10 1.2324e − 3 5.2935e − 3 1.8081e − 3 8.3026e − 3
h = π/20 2.8791e − 4 1.2583e − 3 4.2181e − 4 1.9726e − 3
h = π/40 7.1142e − 5 3.1205e − 4 1.0366e − 4 4.8671e − 4
Rate r 2.04 2.03 2.04 2.03
Bound M0 0.0119 0.0517 0.0174 0.0810

with second-order finite difference scheme(SOFDS), and the implicit center finite difference
scheme in this example is

Un+1
ij −Un

ij

Δt
+
sinxi+1 sinyjU

n+1
i+1,j − sinxi−1 sinyjU

n+1
i−1,j

2h

+
sinxi sinyj+1U

n+1
i,j+1 − sinxi sinyj−1Un+1

i,j−1
2h

− 2
Un+1

i+1,j − 2Un+1
ij +Un+1

i−1,j
h2

− 2
Un+1

i,j+1 − 2Un+1
ij +Un+1

i,j−1
h2

= 2e−2nΔt sinxi sinyj

(
1 + cosxi sinyj + sinxi cosyj

)
.

(5.3)

In Table 2, we compare second-order finite difference scheme and implicit center finite
difference Scheme (5.3) in maximum absolute error of solutions and L2 error at T = 2. We
let Δt = h in second-order finite difference scheme, and Δt = h2 in the implicit center finite
difference scheme. In Table 3, we give maximum absolute error, maximum relative error of
solutions, and L2 error at T = 2. Figures 4 and 5 are the pictures of absolute error by employing
second-order finite difference scheme, in Figure 4, h = π/20, Δt = 0.1, and in Figure 5, h =
π/40, Δt = 0.1. Figure 6 presents the approximation order of C in L2 norm.
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Table 3: The comparison of the maximum absolute error, the maximum relative error, and L2 error at T = 2.

The step sizes in space and time maxEC maxRC ||C −U|| ||C −U||/h2

h = π/10,Δt = 0.4 1.8944e − 3 1.2227e − 1 2.9256e − 3 0.02964
h = π/20,Δt = 0.2 4.8450e − 4 3.4301e − 2 7.4876e − 4 0.03035
h = π/40,Δt = 0.1 1.2189e − 4 8.5131e − 3 1.8837e − 4 0.03053

00 0.5
1

1.5
2

2.5 3 3.5

1

2
3

4
0

0.5

1

1.5

2

2.5

3
×10−4

x

y

Figure 4: Absolute error when T = 2, h = π/20, and Δt = 0.1.

We use two constants: convergence rate r and bound constant M0, that is,

‖C −U‖ = M0 ∗ hr, (5.4)

which will be obtained by the least square method with error in norm || · || [17]. The bound
constants in error estimates for our SOFDS scheme are 0.0119 and 0.0174 in the maximum
norm and in the L2 norm, respectively. Meanwhile, the bound constants for the ICFDS scheme
are 0.0517 and 0.0810 in the maximum norm and in the L2 norm, respectively. This shows that
the bound constants in error estimates for our SOFDS scheme are much smaller than the ones
for the ICFDS scheme even when they have the same order.

In this example, we obtain numerical results of maximum absolute error, maximum
relative error, and L2 error of C in Table 3. When grid size is decreasing, maximum absolute
error, maximum relative error, and L2 error of C are also decreasing. Those numerical results
confirm the theoretical analysis presented in the previous section. This is the example with
exact solutions against which we can compare the numerical solution to prove the efficiency
and order of accuracy of our algorithm in both the spatial and temporal directions. From
Table 3, it is clear that grid size h reduces a half, and the computational accuracy increases one
magnitude. In order to illustrate that the scheme in this paper is efficient and exercisable, we
carry out the implicit center finite difference Scheme (5.3) for the equation. Numerical results
are shown in Table 2. From Table 2, we can see that errors of our scheme in different norms for
the same spacial step are smaller than the ones of implicit center finite difference Scheme (5.3)
in different norms. It is shown from Table 3 that maximum absolute error, maximum relative
error, and L2 error of C for each case are second-order accurate in spacial and temporal
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−1.4−2.6 −2.4 −2.2 −2 −1.8 −1.6 −1.2 −1
−9

−8.5

−8

−7.5

−7

−6.5

−6

−5.5

Figure 6: Approximation order of C in L2 norm, Example 5.2.

directions, respectively. This is illustrated by the fact that the ratios of ||C − U||/h2 keep
roughly a constant as the computational grid is being refined. From Figures 4 and 5, we can
intuitively see that the degree of numerical solutions is approximating the exact solutions in
different grid points. The slope of the line in Figure 6 is nearly 2, which shows second-order
accuracy. This is consistent with the theoretical results.

6. Conclusions

In this paper, we design an efficient second-order finite difference scheme for solving a
class of groundwater problem. Theoretically analysis shows that the proposed scheme is
unconditionally stable and second-order accurat in time and space. Numerical results given
in Section 5 confirm the theoretical results. Compared with standard implicit center finite
difference scheme, the second-order finite difference scheme is more accurate.
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