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This paper describes the development of alternative time domain numerical simulation methods
for predicting large amplitude motions of ships and floating structures in response to incoming
waves in the frame of potential theory. The developed alternative set of time domain methods
simulate the hydrodynamic forces acting on ships advancing in waves with constant speed. For
motions’ simulation, the diffraction forces and radiation forces are calculated up to the mean
wetted surface, while the Froude-Krylov forces and hydrostatic restoring forces are calculated up
to the undisturbed incident wave surface in case of large incident wave amplitude. This enables
the study of the above waterline hull form effect. Characteristic case studies on simulating the
hydrodynamic forces and motions of standard type of ships have been conducted for validation
purpose. Good agreement with other numerical codes and experimental data has been observed.
Furthermore, the added resistance of ships in waves can be calculated by the presented methods.
This capability supports the increased demand of this type of tools for the proper selection of
engine/propulsion systems accounting for ship’s performance in realistic sea conditions, or when
optimizing ship’s sailing route for minimum fuel consumption and toxic gas emissions.

1. Introduction

The accurate prediction of the seakeeping behavior of ships and offshore structures in real
seas is a demanding task for naval architects and of great practical interest to shipbuilders,
owners/operators, as it affects both their design and operation.

Quasi 2D strip theory approaches to the seakeeping of ships were the first which
delivered satisfactory results for practical applications to the prediction of wave-induced
loads andmotions, and they are widely used even today. With the rapid advance of computer
technology in the 70ties, various frequency domain 3D approaches were also developed.
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But due to some inherent limitations, their successful applications are limited to certain
extent. On the other hand, the time domain simulation methods become more and more
popular as they enable the address of large amplitude ship motion problems which is very
important for the design and the assessment of safe operation of modern ships and offshore
structures operating in a variety of adverse environmental conditions.

Following the pioneering work of Finkelstein [1] and Cummins [2], many researchers
investigated seakeeping problems by different time domain approaches and showed
promising results for both linear and nonlinear problems of different complexity level. Lin
and Yue [3] showed the applicability of a time domain Green function method to large
amplitude ship motions. Following this formulation, Singh et al. [4] appeared to have
obtained good results in some applications. However, this could not be confirmed in some
other practical cases by other researchers; namely, when this method is applied to floating
bodies with a flare at the waterline, which is common to modern ship designs, numerical
problems may arise and computations fail. Duan and Dai [5] found that the commonly used
panel method employing the transient Green function for a non-wall-sided floating body
does not satisfy themean-value theorem of definite integrals for the near-water surface panels
and solved this problem by introducing an imaginary vertical surface, which encloses the
hull surface in the fluid domain. This method works fine, unless the body has some bulb-like
hull form, which exceeds the projection of the water plane. Zhang [6] used a similar scheme,
but the matching surface is placed some distance away from the body and moving at the
same speed as the ship, so that there should not be any problem with body’s shape. In this
scheme, a part of the free surface is included in the inner domain, which needs updating
at each time step. Yasukawa [7] and Kataoka and Iwashita [8] also used similar schemes to
solve the problem. The difference between these methods basically lies in the different ways
of treatment of the boundary condition in the far field, in simulating the free surface and the
numerical schemes for solving the core equations.More recently, there is a trend of integrating
CFD techniques into the hybrid method so as to study highly nonlinear phenomena. Iafrati
and Campana [9] presented a hybrid method combining a CFD scheme using conventional
grids and the BEM for potential-flow free-surface problems. Sueyoshi et al. [10] use particle
methods in the inner domain and a boundary element method in the outer domain to study
various wave-free surface problems. Lin et al. [11] presented recently a paper where they
combined a viscous flow solver in the inner domain and potential flow solver in the outer
domain. There is a slight overlap between the two introduced domains, which creates a
matching domain.

The objective of this paper is to give an overview of recent developments of time
domain numerical simulation methods developed at the Ship Design Laboratory of NTUA
for predicting large amplitude motions of ships and floating structures in response to
incomingwaves in the frame of potential theory. Addressed shiplike bodies are assumedwith
zero or nonzero constant forward speed. Developed method(s) and related software tool(s)
prove applicable to ship design and the assessment of the operation of ships and offshore
structures in seaways.

In the course of the research, which formed the major part of the Ph.D. work of the
first author [12], the authors developed a new time-domain transient Green function method
and demonstrated its applicability by solving some fundamental hydrodynamic problems
[13]. However, some inherent limitations of this method surfaced in the study of realistic
shiplike forms with flared sections around the waterline. Thus, a hybrid method concept
was further developed for the simulation of the hydrodynamic forces acting on realistic ship
hull forms in waves [14, 15]. In this method, the fluid domain is decomposed into an inner
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and an outer part. The Rankine source method is applied in the inner domain, while the
transient Green function method is used in the outer domain. This hybrid method works
well with a relatively small number of panels compared to a pure Rankine source method,
noting that the free-surface panelization is restricted between the body boundary and the
control surface.

The calculation of the force components in the motion simulation is based on the
following assumptions: if the incident wave amplitude is small (quasilinear case), then
the Froude-Krylov and hydrostatic restoring forces are calculated by using ship’s geomet-
ric/hydrostatic data referring to ship’s mean floating position, whereas, if the incident wave
amplitude is large, then the above force components are calculated up to the undisturbed
incident wave surface by pressure integration over the instantaneous wetted surface of the
moving body. The diffraction forces and radiation forces, however, are calculated up to the
mean wetted surface by the developed hybrid method for all incident wave amplitude cases.
Calculated force components are introduced into the equations of motions to predict the ship
motions in the time domain.

In order to validate the developed theoretical methods and numerical schemes (com-
puter codes), several characteristic case studies on the hydrodynamic forces and motions of
standard type ships have been conducted. Results are compared with those of other authors
and available experimental data.

During the conducted validation it was observed that the developed hybrid method,
which is formulated in the earth-fixed coordinate system, is quite time consuming. Thus
another scheme has also been developed as an alternative, namely, a hybrid method
formulated in the body-fixed coordinate system. This method works much faster, despite the
fact that an additionally arising line integral term in the formulation of the relevant boundary
value problem complicates the calculations. This new approach has been applied to the study:
the seakeeping performance of a modified Wigley hull with different above-water shapes at
nonzero speed. Obtained results show the effect of variation of the above-waterplane ship
hull form on motions at reasonable computational time; thus it proves that the developed
method can be useful for ship design optimization and the assessment of ships’ performance
in high seas.

Finally, an important part of the developed set of methods and software tools refers
to the calculation of the added resistance and required powering of ships in waves [16].
This type of calculation proved recently very important in ship design and the assessment
of ship’s operation in waves, namely, when selecting ship’s engine/propulsion system
and considering ship’s performance in terms of sustainable service speed in realistic sea
conditions. It also affects ship’s operation when optimizing the sailing route for minimum
fuel consumption and toxic air emissions in view of green-sailing considerations [17].

2. Formulation

Consider a 3D floating bodymoving on the free water surface with speedU0 and undergoing
6 DOF motions in response to a regular, harmonic wave. An earth-fixed Cartesian coordinate
systemO-XYZ is chosen with theX-Y , horizontal plane coincident with the undisturbed free
surface, and the Z-axis pointing upwards through the ship’s initial mass centre, as shown in
Figure 1. The fluid is assumed to be ideal and the water depth infinite.

The motions of the ship may be determined through the motion of the body-
fixed system Gx′y′z′ relative to body-travelling system O′xyz. A total of six components
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Figure 1: Coordinate system definition and decomposition of the fluid domain.

are needed to define the motions, typically three translations, that is, surge, sway, and heave,
and three rotations, that is, roll, pitch, and yaw. Following Newton’s 2nd Law, the six DOF
motions of the travelling, rigid body in space are determined by solution of the following set
of equations:

dP
dt

= m
dv
dt

= F = FHS + FI + FR + FD + FMR

dL
dt

= L · dω
dt

+ω × (I ·ω) = �M = �MHS + �MI + �MR + �MD,

(2.1)

where P = mv and L = I ·ω are the linear momentum and angular momentum, respectively,
F and M are the total force and the total moment about the mass center on the body, m is
the body’s mass, and v is the absolute velocity vector of the mass center G in the OXYZ
system; I and ω are the inertia tensor and angular velocity about ship’s mass center G.
The moments and products of inertia in I are constants in the moving and rotating system
Gx′y′z′. The position of a rigid body in space is fully determined by the position of G and the
angular orientation of the Gx′y′z′ system with respect to the body-travelling system O′xyz.
In solving these equations, the position of the ship’s mass centreG in the earth-fixed system is
defined by the vector xG(t) = [xG, yG, zG]

T and its velocity is expressed by the time derivative:
v(t) = dxG(t)/dt. To express a vector in the system Gx′y′z′ with respect to OXYZ system,
as necessary for the large motion simulations, the use of relevant transformation matrices
expressed by the Euler angles is needed [18].

On the right-hand side of (2.1), there are forces due to incident wave, diffraction,
radiation, restoring, and other possible terms. Basically these forces/moments are calculated
by integrating the pressure expressed by Bernoulli’s equation on the body surface. Other
possible forces acting on the body, like mooring forces (in case of a zero speed, moored
floating structure problem), can be added [19]. Since an exact, fully nonlinear model is
quite time consuming and complicated for numerical computation, we restrict ourselves in
simplified nonlinear simulations and the consideration of some of the most important and
more tractable nonlinear effects. In particular, for simulating large amplitude motions, the
incident wave forces (Froude-Krylov) and restoring forces are computed exactly over the
undisturbed instantaneous wetted body surface and transferred into the motion equations,
whereas the inherent hydrodynamic forces, namely, radiation and diffraction forces, are
calculated up to mean wetted surface by using Bernoulli’s equation once the corresponding
velocity potentials are solved.
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2.1. Radiation and Diffraction

In the frame of potential theory, the unsteady flow field can be described by a velocity
potential:

ΦT

(
x, y, z, t

)
= Φ0

(
x, y, z, t

)
+ Φ
(
x, y, z, t

)
, (2.2)

where Φ0 is the incident wave potential, Φ is the disturbed flow potential, t is time, and
p(x, y, z) is a point in the flow field. In the fluid domain Ω(t), Φ(p, t) satisfies Laplace’s
equation and a set of boundary conditions:

∇2Φ
(
p, t
)
= 0, (2.3)

∂Φ
∂n

= vn − ∂Φ0

∂n
(onSb(t), t > 0), (2.4)

∂2Φ
∂t2

+ g
∂Φ
∂z

= 0
(
onSf(t), t > 0

)
, (2.5)

Φ =
∂Φ
∂t

= 0
(
onSf(t), t = 0

)
, (2.6)

Φ,∇Φ,
∂Φ
∂t

−→ 0 (onS∞, t > 0), (2.7)

where n is the unit normal vector pointing out of the fluid domain Ω(t) and vn is the normal
component of the body motion velocity.

We transfer the solution of the above boundary value problem (BVP) ((2.3)–(2.7)) by
use of Green’s 3rd theorem into a set of integral equations for the sought velocity potential.
For the solution of the deduced integral equations, we employ the time domain transient
Green function method (TDGF) or alternatively a derivative thereof, namely, the HYBRID
method. Furthermore, the HYBRID method can be formulated either in the earth-fixed
coordinate system or in the ship-travelling coordinate system; the different versions will be
herein named as HYBRID I and HYBRID II.

First, the flow field is decomposed into two parts, that is, the inner domain denoted as
I, enclosed by the body boundary, the control surface, and a part of the free surface, and the
outer domain denoted as II, enclosed by the control surface, the remaining free surface, and
the boundary surface at infinity (Figure 1).

The integral equation for solving the velocity potential by TDGF is as follows:

2πΦ
(
p, t
)
+
∫∫

Sb(t)

[
Φ
(
q, t
) ∂

∂nq

(
1
rpq

− 1
rpq′

)
−
(

1
rpq

− 1
rpq′

)
∂Φ
∂nq

]
dsq

=
∫ t

0
dτ

{∫∫
Sb(τ)

(
G̃
∂Φ
∂nq

−Φ
∂G̃

∂nq

)
dsq +

1
g

∫
wl(τ)

(
G̃
∂Φ
∂τ

−Φ
∂G̃

∂τ

)
VNdlq

}
,

(2.8)
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where the time-dependent Green function is defined as

G̃
(
p, t; q, τ

)
= 2
∫∞

0

√
gkek(z+ζ)J0(kR) sin

[√
gk(t − τ)

]
dk, (2.9)

where p(x, y, z) and q(ξ, η, ζ) are the field and source points; respectively, rpq = (x − ξ)i + (y −
η)j + (z − ζ)k, and J0 is the zero-order Bessel function.

When applying the HYBRID method, a matching surface is introduced to split the
whole fluid domain into an inner domain and an outer domain. In the inner domain I,
the Rankine source method is used to solve the flow field. The integral equation takes the
form of

∫∫
Sc+Sb+Sf

[
ΦI
(
q, t
) ∂

∂nq

(
1
rpq

)
− 1
rpq

∂

∂nq
ΦI
(
q, t
)]

dsq = −2πΦI
(
p, t
) (

p ∈ SI
)
, (2.10)

where n is the unit normal vector pointing outward of the inner domain. q(ξ,η,ζ,τ) is the
source point, p(x,y,z,t) is the field point; the denotation Sb, Sc, and Sf represent, respectively,
the body surface, the control surface, and the free surface. In the outer domain II, the transient
time-domain Green function is employed to solve the disturbed potential on Sc. In case of
earth-fixed coordinate system, the integral equation is expressed as

2πΦII
(
p, t
)
+
∫∫

Sc

[
ΦII
(
q, t
) ∂

∂nq

(
1
rpq

− 1
rpq′

)
−
(

1
rpq

− 1
rpq′

)
∂ΦII

∂nq

]
dsq

=
∫ t

0
dτ

∫∫
Sc

(
G̃
∂ΦII

∂nq
−ΦII

∂G̃

∂nq

)
dsq

(
p ∈ Sc

)
.

(2.11)

In order to decrease the computational time, in present work we use the linearized
body boundary condition for surface-piercing bodies. In the forward speed case, themj term
is introduced to account for the forward speed effect on the boundary condition. Themj term
can be either calculated directly or approximated by assuming that the steady flow may be
represented by the undisturbed stream −U0x [20].

2.2. Incident Wave and Restoring Forces

In classical linear seakeeping theory, the incident wave pressure is integrated over the mean
wetted surface of the vessel. However, it has been observed in experiments and numerical
studies that the nonlinear effects of the incident wave and of ship’s hydrostatic restoring
forces are significant compared with those of other hydrodynamic force components, such
as diffraction and radiation forces; thus it is important to include these effects in the motion
simulation accurately. In this paper, when simulating the response to large amplitude incident
waves, the pressure of the incident wave is taken into account up to the instantaneous
undisturbed wave surface.

In the implementation of this concept, a very fine local panelization is implemented
for the calculation of these two force terms. At each time instant, every panel’s geometric
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information is updated according to the motion results and the wetting of the panels under
the instantaneous wave profile is determined by checking z ≤ ζ(x, y).

2.3. Drift Force and Added Resistance

For the calculation of the quasi-second-order drift forces (zero speed case) and added
resistance in waves, we follow [21] far-field approach. In the more general, non-zero forward
speed case, the added resistance is expressed as

RAW =
ρ

8π

{∫−α0

−π/2
+
∫π/2

α0

−
∫3π/2

π/2

}
|H(k1, θ)|2

k1
[
k1 cos θ − k cosχ

]
√
1 − 4Ω cos θ

dθ

+
ρ

8π

∫2π−α0

α0

|H(k2, θ)|2
k2
[
k2 cos θ − k cosχ

]
√
1 − 4Ω cos θ

dθ,

(2.12)

where χ is the incident wave heading, θ is the elementary wave angle, ρ is the density of sea
water, and α0 is the critical angle (α0 = arcos(1/(4Ω)) for Ω > 1/4 and α0 = 0 for Ω ≤ 1/4).

The complex function H(kj , θ), known as the Kochin function, describing the
elementary waves radiated from the ships is given by

H
(
kj , θ

)
=
∫∫

S

(
φ

∂

∂n
− ∂φ

∂n

)
Gj(θ)ds, (2.13)

where

Gj(θ) = exp
[
kj(θ)z + ikj(θ)

(
x cos θ + y sin θ

)]
(2.14)

and kj(θ), j = 1, 2, are the unsteady wave numbers:

kj(θ) =
K0

2
1 − 2Ω cos θ ±

√
1 − 4Ω cos θ

cos2θ

(
+ : j = 1
− : j = 2

)
. (2.15)

When V = 0, then Ω = 0, k1(θ) → ∞ and k2(θ) = k. Thus the wave systems are reduced to
the ring wave only, then the drift force in the horizontal plane may be expressed as follows
[22]:

F
(2)
1 =

ρk2

8π

∫2π

0
|H(θ)|2(cos θ − cosχ

)
dθ;

F
(2)
2 =

ρk2

8π

∫2π

0
|H(θ)|2(sin θ − sinχ

)
dθ,

(2.16)
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where

H(θ) =
∫∫

S

exp
[
kz + ik

(
x cos θ + y sin θ

)]{
φk
(
nz + i cos θ · nx + i sin θ · ny

) − ∂φ

∂n

}
ds.

(2.17)

3. Numerical Implementations

For the numerical implementation of the theoretical formulations, the boundary element
method (BEM) is adopted. The boundary of the inner domain is discretized by a number
of quadrilateral or triangular panels. On each panel the potential value or source strength is
assumed to be constant. In the implementation of the developed TDGF method, the Gauss
elimination method is used to find the inverse of the influence matrix, while for the employed
HYBRID method the generalized minimum residual (GMRES) method is adopted to obtain
the numerical solution of the governing integral equations. After the potentials and their
spatial partial derivatives on the panels are obtained, the pressure is calculated by Bernoulli’s
equation and the hydrodynamic forces are obtained by integrating the pressure over the
wetted hull surface. In the following, the 6 DOF motions of the ship are simulated by using
an iterative prediction-correction scheme until a convergence is arrived, upon which the
simulation will march to the next step. In order to obtain stable and accurate predictions,
the Chimera grid concept is introduced [23], in which two panel systems are set up in the
beginning of the simulation and information exchange takes place between the two panel
systems at every time step.

The flowchart of the numerical procedure and implemented code for HYBRID is
shown in Figure 2. Details are given in papers published before (e.g., [15, 20, 23]). In this
section some specific considerations are highlighted.

3.1. Modeling of Initial Transients

In order to smoothly introduce the incident wave disturbance into the numerical scheme and
mitigate the effect of initial transients on the steady response to an incident regular wave, the
velocity potential of the incident wave is modified as follows:

Φ0 =
gζ

ω
ekz sin

[
k
(
x cosχ + y sinχ

) −ωt
]
, ζ =

⎧⎨⎩
t

nT
ζa

(
1 − cos

tπ

nT

)
/2 t < nT

ζa t ≥ nT.
(3.1)

This is particularly important when simulating horizontal plane motions, especially in short
waves.

For steady problem, similar scheme can be applied to the acceleration of the speed and
the period should be set as T = 8πU0/g.
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Determine the boundary conditions:
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Figure 2: Flowchart of the HYBRID method program, with forward speed.

3.2. Free-Surface Condition

The free surface can be simulated either by using expression (2.5) or updating the dynamic
and kinematic condition of the free surface; respectively,

∂Φ
∂t

= −gζ, ∂ζ

∂t
=

∂Φ
∂z

. (3.2)

Though essentially the same, numerically the former one uses all historical data thus increase
the memory burden for storing while the latter needs a prediction-correction scheme thus
increase computational time. If a higher-order free-surface condition is employed, the partial
spatial derivatives on the free-surface panels are needed; they can either be calculated by
solving another set of integral equations or by using a finite-difference scheme.

In case of forward speed present, the Chimera grid system is used so as to reduce the
computational burden and give accurate description of the near-field free surface. Figure 3
shows an example panelization used in the computation.
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Figure 3: Example of free-surface panelization when using Chimera grid system.

4. Results and Discussion

4.1. Diffraction Problem of a Submerged Spheroid with Forward Speed

In the work of Iwashita and Ohkusu [24], an investigation has been carried out on a
submerged spheroid with length-to-breadth ratio L/B = 5 and depth-to-breadth ratio d/B =
0.75 with d measured from the free surface to the body center. As the added resistance is
herein of interest, a fine mesh, especially near the free surface, with 400 panels, is arranged to
represent the simple body. Both the TDGF method and the NEWDRIFT code (Papanikolaou
[25], a 3D numerical panel method which is based on slender body theory assumptions for
the forward speed effects (see [26])) are applied to this case study. First-order numerical
results, that is, amplitudes of the wave exciting forces in longitudinal and vertical direction
in head seas, are shown in Figure 4. For the x-direction exciting force, NEWDRIFT and
Iwashita’s results appear to agree well, while the present TDGF method result deviates from
them in the long-wave range, though the experimental data locate in between them. For the
z-direction force component, a good agreement is observed despite NEWDRIFT’s peak value
shift a little from others. This might be due to the fact that while the other two numerical
methods take into account forward speed effects exactly, NEWDRIFT takes them into account
approximately. Figures 5 and 6 show the numerical results of the added resistance due to the
diffraction potential only at different speed. The results of present TDGF method agree well
with Iwashita’s results.

4.2. Motion of a Semi-Submersible

This study was conducted for a standard-type semi-submersible body, which has been
investigated extensively in previous ITTC studies [27, 28]. In a time domain simulation
method the excitation does not necessarily need to be steady, but will be in general an
irregular wave excitation; thus, it is important to validate the time histories of the motions.
Figure 7 shows the calculated motion histories of the studied ITTC semi-submersible in
regular wave T = 3 s, χ = 135◦. The definition of the incident wave is shown in (3.1).
Three wave periods prove sufficient to reach a steady-state response after the decay of
initial transient effects. Whereas the roll and yaw motions show a steady, periodic response,
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Figure 4: Amplitudes of the wave exciting forces in longitudinal and vertical direction in head seas: Fn =
0.2.
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Figure 5: Diffraction-added resistance: Fn = 0.2.

it is not so with the simulated surge and sway motion due to some slight “drift away”
behavior, which may become more significant in short waves. This is actually what we
should expect in the simulation of horizontal planemotions in a numerical (or physical)wave
basin. Numerically this “drift-away” effect can be removed by applying some light artificial
mooring/restoring.

In this study, about 700 panels are used to represent 1/4 of the whole body. We
implement the present hybrid method to examine the quality of the obtained velocity
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Figure 6: Diffraction-added resistance: Fn = 0.3.

potential with respect to quasi-second-order effects represented by the drift force calculation.
Calculated drift forces are significant in short waves, and as in short waves, the drift forces
are mainly due to the diffraction effects we present in the following results for the diffraction
drift forces in the horizontal plane. As shown in Figure 8, a good agreement between the
results from NEWDRIFT and present HYBRID time domain method is observed, despite
some deviation in very short waves. This may be due to the differences between the potential
solvers (NEWDRIFT in the frequency domain versus HYBRID in the time domains) or drift
force formulations (near-field method in NEWDRIFT versus far-field method in HYBRID).

4.3. Motions of S175 Ship at Fn = 0.275 and Different
Wave Conditions: HYBRID I

The S-175 container ship has been investigated in various benchmark studies by ITTC
members since the late 70ties [29, 30]; thus it is still a very goodmodel for validation purposes
due to the richness of relevant data. A panelization consisting of nearly 800 panels was
prepared to represent half of the ship in simulating the radiation and diffraction problem.
The diffraction problem of ITTC S175 hull is studied by the HYBRID I method. Figure 9
shows thewave exciting force/moment results compared to the results from the 3D frequency
domain panel code NEWDRIFT. The agreement is overall very good, though the results from
the present method are slightly lower than those from NEWDRIFT. It should be noted that
the NEWDRIFT code is based on the zero-speed Green function method and forward speed
effects are taken into account in an approximate way via slender-body theory assumptions.

The HYBRID I method has been also applied to simulate ship motions, under
both small-amplitude and large-amplitude assumptions, in which the Froude-Krylov and
hydrostatic restoring forces/moments are calculated dependent on the motion model.
Figure 10 shows the comparison of results from the present hybrid method against
available experimental data and results from NEWDRIFT. For small amplitude incident
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Figure 7: Calculated time histories of surge, sway, roll, and yaw motions; T = 3 s, χ = 135◦.
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Figure 8: Diffraction drift force in longitudinal and transverse directions; χ = 135◦.
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Figure 9: Wave exciting force of S175 ship at Fn = 0.275.

wave simulation case, the present method gives some results lower than NEWDRIFT and
is actually closer to experimental data. For large-amplitude simulations, the incident wave
steepness varies systematically; namely, A/λ = 0.01, 0.02, and 0.04 (noted as CS1, CS2, and
CS3, resp., in the graph) where A is the wave amplitude. The motion amplitudes decrease
gradually as the wave steepness increases. This is physically meaningful, considering the
quickly increased damping and restoring due to the above water flared hull form of S175
ship. On the other side, for A/λ = 0.04 the resulting peak values of heave and pitch motions
are much lower than experimental results, and the steepness of the RAO becomes smaller.
For A/λ = 0.01 case, in long-wave range the heave motion is very close to experimental
data while the pitch motion amplitude is higher. Considering that this wave is quite flat, the
deviation of RAOs from results based on small amplitude motion assumption clearly shows
the importance of using different models. It should be noted that the wave steepness of the
experimental data, which was done for validation of the linear numerical methods then, is
not known.

Interestingly, taking reference to another source [31], the experimental data of a similar
container ship under different wave conditions are revealed (shown in the following as
Figures 11(a) and 11(b)). When studying these data, it is observed that as the wave amplitude
increases, especially when the amplitude is very large, there is, in general, a trend of RAO’s
shift (“bending”) to the longer-wave side and the amplitude decreases, which is similar to
the observations in the present study.

In this case study, the mj terms were based on the undisturbed basic flow assumption
to account for the steady potential effect on the oscillatory motions.

The added resistance of the ITTC S175 ship in head seas was also calculated based
on using the potential and motion data obtained from present hybrid method (noted as
HYBRID). Results calculated by the panel code NEWDRIFT (noted as NDfar) and short-
wave range corrections based on Faltinsen et al.’s formula [32] and Kuroda et al. [33] and
Tsujimoto et al.’s formula [34], respectively, are also shown in Figure 10(c) for comparison
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Figure 10: Motion amplitude of S175 ship at Fn = 0.275.

(noted as SW1 and SW2, resp.). The calculated results agree well with the experimental data
[35] and other numerical results.

4.4. Motions of S175 Ship at Fn = 0.275 and Different
Wave Conditions: HYBRID II

The motion of the S175 container ship is also studied by using the HYBRID II method. For
small-amplitude motion case, we assume the gravity (mass) centre is on the calm waterplane
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Figure 11: (a) The effect of wave height on the response amplitude operator of heave (χ = 180 deg., Fn =
0.239), (b) The effect of wave height on the response ampilitude operator of pitch (χ = 180 deg., Fn = 0.239).

at the midship. For large-amplitude motion case, we estimate the radiation and diffraction
forces up to the mean wetted surface but the hydrostatic and Froude-Krylov part exactly up
to the instantaneous wavy surface (independent finer mesh is used for this part) about the
actual gravity center. The mj term is either calculated through solving the relevant integral
equations or is calculated in an approximate way, namely, based on the undisturbed basis
flow assumption for the steady flow.

The numerical results for the heave and pitch motions are shown in Figure 12. During
the numerical simulation, the wave amplitude is set constant A/L = 0.01. When using
a small amplitude model, with either way of mj term computation, the heave motion is
overestimated in long-wave range. However, when using the large amplitude model, which
introduces the exact calculation of the Froude-Krylov and restoring forces, the heave motion
in the long-wave range is improved and gets closer to experimental data. Some identified
problem of the present method appears to be that when compared to experimental data, there
is a shift of the peak value of the heave RAO curve for λ comparable to L and this shift cannot
be improved by applying the large amplitude model. For the pitch motion, when the small
amplitude model is used, we observed also some shift when compared to experimental data.
But by applying the large amplitude motion model, the pitch motion results were obviously
improved, the shift becomes weak, and the results in all the studied range closely match the
experimental results. This shift may be attributed to the mj term calculation, with this effect
being mainly around the peak range, which is also observed in others’ computations [36]. It
is herein confirmed that the mj term estimation based on simplified undisturbed basis flow
assumption is quite reasonable.

It is understood that around the resonance range, the hydrodynamic forces are
comparable to the hydrostatic ones and their balance is quite complicated. When we neglect
the line-integral term (similar to the last term in integral equation (2.8), but defined in a
body-translating system), some error is introduced, which we cannot estimate numerically
for the time being. As shown in the calculation of the wave resistance of the Wigley hull
[12], despite the highly oscillatory performance which is common to TDGF-based calculation
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Figure 12: Heave and pitch motion amplitude calculation of S175 ship; Fn = 0.275.

methods, there is a definite deviation from experimental data, which seems to be responsible
for the present shift. As pointed out by Lin and Kuang [37], the dissipating far-field boundary
condition is no longer suitable for strongly nonlinear cases. Since the ship-generated wave
energy is proportional to the Froude number, computational instabilities will occur if the far-
field boundaries do not accurately estimate the radiated ship wave energy for high Froude
numbers.

An important aspect of HYBRID II method refers to the improvement of the
computational efficiency of the HYBRID I method. For forward speed problem, the hull will
be moving; thus at every time step the free surface near the ship will change, so that the
influence matrices need to be updated at every time step. It takes about 30 seconds on a PC
computer for preparing the matrices, depending on how complicated the problem is. After
the Chimera grid concept is introduced, though the panels that are far away from the ship
are fixed, thus do not need to be updated at every time step, there is still a considerable
amount of data processing at each time step. For one simulation, it takes more than 5 hours
for the forced motion problem or even more than 10 hours for simulating motion problems
on a regular PC hardware with Intel Core 2 QUAD CPU(Q8200 2.33GHz). As the method is
essentially a potential flow solver, this is not satisfactory.

Solving the problem in the body-travelling coordinate system, which results in a
panelization system that is quite similar to the zero speed problems, things greatly improve.
For a typical motion simulation in head seas condition, it is possible to finish a simulation
run within 2 hours. But now the occurring problems are sifted to two other points:

(1) the free surface condition update is complicated,

(2) the introduced complication with the calculation of the waterline integral term
which appears in (2.8).

The second point also affects the first point internally through the solved couple of integral
equations.
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4.4.1. The Effect of the above Waterplane Hull Form

In previous studies, it was shown that the developed hybrid method is capable of accounting
for the effect of above waterplane hull shape changes; thus, it can be practically applied to
the optimization of the above water hull shape of ships. For demonstration purpose, we
apply here the developed numerical method and computer code to a Wigley hull and two
modifications of the basic hull with respect to the above waterplane hull forms, which are
defined by the following expressions:

x = x0(1 + z) (z ≥ 0; modified)

x = x0(1 + z) (x ≤ 0, z ≥ 0; modified V2)

y =
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(4.1)

The modified Wigley hull V2 has a slight flare introduced in the bow/stern regions and an
overhang at the stern. The hybrid method is applied to predict the heave and pitch motion
of this hull, and results are shown in Figures 13 and 14. Figure 13 shows heave and pitch
motions at a small wave steepness; A/L = 0.01. Under this condition, results of applying the
large amplitude model are almost identical to the results of the small-amplitude model, as
the wave amplitude is small and the flare near the waterplane is also very limited so that
the exact calculation of incident wave forces and restoring forces does not affect much the
motion.

Under a steeper wave condition, A/L = 0.02, more deviations show up for both
heave and pitch motions, as shown in Figure 14. For the heave motion, the amplitude of
the modified hull has decreased compared to the other two hulls due to its large projected
area on the vertical direction. On the other hand, the pitch motion of the modified hull V2 is
obviously smaller than for the other two hulls in the long-wave range. These calculations offer
some valuable information regarding the applicability of these methods in the preliminary
design stage. When considering the actual sea conditions encountered in ship’s service route,
we may be able to determine the optimal route or even the optimal hull shape for specific
routes.

We should keep in mind that all the three Wigley hulls are actually very narrow
compared to actual shiplike forms, with L/B = 10, and the introduced flares are also quite
conservative compared to a real ship. Due to this reason, the mj term based on undisturbed
basis flow assumption is employed.

5. Summary and Conclusions

In this paper, the formulation and validation of a newly developed time-domain transient
Green function method and a hybrid method are presented. The developed methods are
applied to different types of bodies (mathematical bodies, offshore platform, ship hull forms)
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Figure 13: Heave and pitch amplitude of three different Wigley hulls; Fn = 0.2, Amp/L = 0.01.
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Figure 14: Heave and pitch amplitude of three different Wigley hulls; Fn = 0.2, Amp/L = 0.02.

under different operational conditions. Numerical results cover the radiation/diffraction
problem, 6 DOF motions, either of small amplitude or large amplitude, either with zero
speed or nonzero speed forward speed, and drift force/added resistance in waves. Through
these (and similar others shown in the listed references) validation studies, the developed
methods/codes proved to be valuable design tools for the ship hull-form assessment
and optimization, as they are capable of studying the seakeeping characteristics of hulls
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with different above-water shapes and for a variety of forward speed and incident wave
conditions.

The way ahead of the development work of our system is to account for nonlinearities
of the radiation/diffraction disturbance on the free surface, to explore alternative numerical
concepts for the matching of the free surface conditions and to further improve the efficiency
of the numerical implementation of the methods by parallel programming in the new
computer—cluster environment of NTUA-SDL.

Acknowledgments

The present work covers the first author’s Ph.D. and part of his postdoc research; the financial
support of NTUA-SDL and continuous guidance by Professors A. Papanikolaou andW. Duan
(Harbin Engineering University) is acknowledged. The authors also thank Dr. Ogawa for the
permission to cite his research results in the current work.

References

[1] A. B. Finkelstein, “The initial value problem for transient water waves,” Communications on Pure and
Applied Mathematics, vol. 10, pp. 511–522, 1957.

[2] W. E. Cummins, “The impulsive response function and ship motions,” Schiffstechnik, vol. 9, pp. 124–
135, 1962.

[3] W. M. Lin and D. Yue, “Numerical solutions for large-amplitude ship motions in the time-domain,”
in Proceedings of the 18th Symposium on Naval Hydrodynamics, pp. 41–66, 1990.

[4] S. P. Singh, D. Sen, and D. G. Sarangdhar, “3D seakeeping computation for different hull forms for
design evaluations,” in Proceedings of the 15th International Conference on Hydrodynamics in Ship Design,
Safety and Operation, pp. 245–256, Gdnask, Poland, 2003.

[5] W. Duan and Y. Dai, “Time-domain calculation of hydrodynamic forces on ships with large flare,”
International Shipbuilding Progress, vol. 46, no. 446, pp. 223–232, 1999.

[6] S. Zhang, “A hybrid boundary-element method for non-wall-sided bodies with or without
forward speed,” in Proceedings of the 13th International Workshop on Water Waves and Floating Bodies
(IWWWFB’98), pp. 179–182, 1998.

[7] H. Yasukawa, “Application of a 3-D time domain panel method to ship seakeeping problems,” in
Proceedings of the 24th Symposium on Naval Hydrodynamics, pp. 376–392, 2003.

[8] S. Kataoka and H. Iwashita, “Estimations of hydrodynamic forces acting on ships advancing in the
calm water and waves by a time-domain hybrid method,” Journal of the Society of Naval Architects of
Japan, vol. 196, pp. 123–138, 2004.

[9] A. Iafrati and E. F. Campana, “A domain decomposition approach to compute wave breaking (wave-
breaking flows),” International Journal for Numerical Methods in Fluids, vol. 41, no. 4, pp. 419–445, 2003.

[10] M. Sueyoshi, H. Kihara, and M. Kashiwagi, “A hybrid technique using particle and boundary-
elementmethods for wave-body interaction problems,” in Proceedings of the 9th International Conference
on Numerical Ship Hydrodynamics, vol. 1, pp. 241–252, 2007.

[11] W. M. Lin, H. Chen, and S. Zhang, “A hybrid numerical method for wet deck slamming on a high
speed catamaran,” in Proceedings of the 10th International Conference on Fast Sea Transportation, 2009.

[12] S. K. Liu, Numerical simulation of large amplitude ship motions and applications to ship design and safe
operation [Ph.D. thesis], Ship Design Lab., National Technical University of Athens, 2011.

[13] S. Liu, A. Papanikolaou, and W. Duan, “A time domain numerical simulation method for nonlinear
ship motions,” Journal of Harbin Engineering University, vol. 27, no. 2, pp. 177–185, 2006.

[14] S. K. Liu and A. Papanikolaou, “A time-domain hybrid method for calculating hydrodynamic forces
on ships in waves,” in Proceedings of the 13th International Maritime Association of the Mediterranean
(IMAM’09), Istanbul, Turkey, 2009.



Journal of Applied Mathematics 21

[15] S. K. Liu and A. Papanikolaou, “Time-domain hybrid method for simulating large amplitude motions
of ships advancing in waves,” Journal of the Korean Society of Naval Architects and Ocean Engineers, vol.
3, no. 1, pp. 72–79, 2011, Proceeding of the ITTC Benchmark Study and Workshop on Seakeeping,
2010.

[16] S. Liu, A. Papanikolaou, and G. Zaraphonitis, “Prediction of added resistance of ships in waves,”
Ocean Engineering, vol. 38, pp. 641–650, 2011.

[17] G. Papatzanakis, A. Papanikolaou, and S. K. Liu, “Optimization of routing with uncertainties,” in
Proceedings of the 14th International Maritime Association of the Mediterranean (IMAM’11), Genoa, Italy,
2011.

[18] J. O. Kat de, “The numerical modeling of ship motions and capsizing in severe seas,” Journal of Ship
Research, vol. 34, no. 4, pp. 289–301, 1990.

[19] S. K. Liu and A. Papanikolaou, “Application of a nonlinear time domain hybrid method to the study
of a semi-submersible in waves,” in Proceedings of the 22nd International Offshore (Ocean) and Polar
Engineering Conference, Greece, 2012.

[20] S. K. Liu and A. Papanikolaou, “A time-domain hybrid method for calculating hydrodynamic forces
on ships in waves,” in Proceedings of the 14th International Maritime Association of the Mediterranean
(IMAM’11), Genoa, Italy, 2011.

[21] H. Maruo, “Resistance in waves,” in 60th Anniversary Series, vol. 8, pp. 67–102, The Society of Naval
Architects of Japan, 1963.

[22] H.Maruo, “The drift of a body floating on waves,” Journal of Ship Research, vol. 4, no. 3, pp. 1–10, 1960.
[23] S. K. Liu and A. Papanikolaou, “Application of Chimera grid concept to simulation of the free-surface

boundary condition,” in Proceedings of the 26th International Workshop on Water Waves and Floating
Bodies (IWWWFB’11), 2011.

[24] H. Iwashita andM. Ohkusu, “The Green function method for ship motions at forward speed,” Journal
of Ship Technology Research, vol. 39, no. 2, 1992.

[25] A. Papanikolaou, “On integral-equation-methods for the evaluation of motions and loads of arbitrary
bodies in waves,” Ingenieur-Archiv, vol. 55, no. 1, pp. 17–29, 1985.

[26] N. Salvesen, E. O. Tuck, and O. Faltinsen, “Ship motions and sea loads,” Transactions of the SNAME,
vol. 78, pp. 250–287, 1970.

[27] ITTC Ocean Engineering Committee, Report of Ocean Engineering Committee, 1984.
[28] ITTC Ocean Engineering Committee, Report of Ocean Engineering Committee, 1987.
[29] ITTC Seakeeping Committee, “Comparison of results obtained with compute programs to predict

ship motions in six-degrees-of-freedom and associated responses,” in Proceedings of the 15th
International Towing Tank Conference (ITTC’78), pp. 79–92, 1978.

[30] Y. Kim, “Comparative study on linear and nonlinear ship motion and loads,” in Proceedings of the
ITTC Workshop on Seakeeping, pp. 283–257, 2010.

[31] Y. Ogawa, “A study on nonlinear wave loads of a large container carrier in rough seas,” in Proceedings
of the 10th International Symposium on Practical Design of Ships and Other Floating Structures, 2007.

[32] O. M. Faltinsen, K. J. Minsaas, N. Liapis, and S. O. Skjørdal, “Prediction of resistance and propulsion
of a ship in a seaway,” in Proceedings of the 13th Symposium on Naval Hydrodynamics, pp. 505–529, 1980.

[33] M. Kuroda, M. Tsujimoto, and T. Fujiwara, “Investigation on components of added resistance in short
waves,” Journal of the Japan Society of Naval Architects and Ocean Engineers, vol. 8, pp. 171–176, 2008.

[34] M. Tsujimoto, K. Shibata, and M. Kuroda, “A practical correction method for added resistance in
waves,” Journal of the Japan Society of Naval Architects and Ocean Engineers, vol. 8, pp. 147–154, 2008.

[35] T. Takahashi, “A practical prediction method for added resistance of a ship in waves and the direction
of its application to hull form design,” Transactions of the West-Japan Society of Naval Architects, vol. 75,
pp. 75–95, 1988.

[36] H. B. Bingham and H. D. Maniar, “Computing the double-body m-terms using a B-spline based
panel method,” in Proceedings of the 11th International Workshop on Water Waves and Floating Bodies
(IWWWFB’96), Institut Für Schiffbau, Hamburg, Germany, 1996.

[37] R.-Q. Lin and W. J. Kuang, “A nonlinear method for predicting motions of fast ships,” in Proceedings
of the 10th International Conference on Fast Sea Transportation, Athens, Greece, October 2009.


