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The inverse problem of reconstructing the right-hand side (RHS) of a mixed problem for one-
dimensional diffusion equation with variable space operator is considered. The well-posedness of
this problem in Hölder spaces is established.

1. Introduction

It is known that many applied problems in fluid mechanics, other areas of physics, and
mathematical biology were formulated as the mathematical model of partial differential
equations of the variable types [1–3]. A model for transport across microvessel endothelium
was developed to determine the forces and bending moments acting on the structure of the
flow over endothelial cells (ECs) [4]. Computational blood flow analysis through glycocalyx
on the EC is performed as a direct problem previously under smooth and nonsmooth initial
conditions (see [5–7]). But it is known that, due to the lack of some data and/or coefficients,
many real-life problems are modeled as inverse problems [8–11].

In this paper, the well-posedness of the inverse problem of reconstructing the right
side of a parabolic equation arisen in computational blood flow analysis is investigated.
The importance of well-posedness has been widely recognized by the researchers in the
field of partial differential equations [12–16]. Moreover, the well-posedness of the RHS
identification problems for a parabolic equation where the unknown function p is in space
variable and in time variable is well investigated [17–27]. As it is known, well-posedness in
the sense of Hadamard means that there is existence and uniqueness of the solution and the
solution is stable. In this study, we deal with the stability analysis of the inverse problem of
reconstructing the right-hand side. The existence of a solution for two-phase flow in porous
media has been studied previously (for instance, see [28]).



2 Abstract and Applied Analysis

1.1. Problem Formulation

Blood flow over the EC inside the arteries is modeled in two regions (see [6]). Core region
(0 < x < l) flow is defined through the center of capillary and porous region (l < x <
L) flow is through the glycocalyx. RHS function includes the pressure difference along
the microchannels under unsteady fluid flow conditions. When the pressure difference is
an unknown function of t, we reach a new model, and, by overdetermined (additional)
conditions derived from an observation point, the solution of this problem can be obtained.
The model can be considered as the mixed problem for one-dimensional diffusion equation
with variable space operator:

∂u(t, x)
∂t

= a(x)
∂2u(t, x)

∂x2
+ p(t)q(x) + f(t, x), x ∈ (0, l), t ∈ (0, T],

∂u(t, x)
∂t

= a(x)
∂2u(t, x)

∂x2
+ b(t, x)u(t, x) + p(t)q(x) + g(t, x), x ∈ (l, L), t ∈ (0, T],

u(0, x) = ϕ(x), x ∈ [0, L],

ux(t, 0) = 0, u(t, L) = 0, t ∈ [0, T],

u(t, l+) = u(t, l−), ux(t, l+) = ux(t, l−), t ∈ [0, T],

u(t, x∗) = ρ(t), 0 ≤ x∗ ≤ l, 0 ≤ t ≤ T.

(1.1)

Here, u(t, x) and p(t) are unknown functions, a(x), b(t, x), f(t, x),g(t, x), ρ(t), and ϕ(x) are
given sufficiently smooth functions, and a(x) � a > 0. Also, q(x) is a sufficiently smooth
function assuming that q′(0) = q(L) = 0 and q(x∗)/= 0.

2. Main Results

2.1. Differential Case

To formulate our results, we introduce the Banach space
◦
C

α

[0, L], α ∈ (0, 1), of all continuous
functions φ(x) defined on [0, L]with φ′(0) = φ(L) = 0 satisfying a Hölder condition for which
the following norm is finite:

∥
∥φ
∥
∥ ◦
C

α

[0,L]
= max

0≤x≤L

∣
∣φ(x)

∣
∣ + sup

0≤x<x+h≤L

∣
∣φ(x + h) − φ(x)

∣
∣

hα
. (2.1)

In a Banach space E, with the help of a positive operatorAwe introduce the fractional
spaces Eα, 0 < α < 1, consisting of all v ∈ E for which the following norm is finite:

‖v‖Eα
= ‖v‖E + sup

λ>0
λ1−α
∥
∥A exp{−λA}v∥∥E. (2.2)

Positive constants will be indicated by M which can be differ in time. On the other hand
Mi (α, β, . . .) is used to focus on the fact that the constant depends only on α, β, . . ., and the
subindex i is used to indicate a different constant.
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Theorem 2.1. Let ϕ ∈
◦
C

2α+2
[0, L], F1 ∈ C([0, T],

◦
C

2α
[0, L]), and ρ′ ∈ C[0, T]. Then for the

solution of problem (1.1), the following coercive stability estimates

‖ut‖
C([0,T],

◦
C

2α
[0,L])

+ ‖u‖
C([0,T],

◦
C

2α+2
[0,L])

≤ M
(

x∗, q
)∥
∥ρ′
∥
∥
C[0,T] +M

(

a, δ, σ, α, x∗, q, T
)

×
(
∥
∥ϕ
∥
∥ ◦
C

2α+2
[0,L]

+ ‖F1‖
C([0,T],

◦
C

2α
[0,L])

+
∥
∥ρ
∥
∥
C[0,T]

)

,

∥
∥p
∥
∥
C[0,T] ≤ M

(

x∗, q
)∥
∥ρ′
∥
∥
C[0,T]

+M
(

a, δ, σ, α, x∗, q, T
)
[
∥
∥ϕ
∥
∥ ◦
C

2α+2
[0,L]

+ ‖F1‖
C([0,T],

◦
C

2α
[0,L])

+
∥
∥ρ
∥
∥
C[0,T]

]

(2.3)

hold.

Proof. Let us search for the solution of inverse problem (1.1) in the following form (see [23]):

u(t, x) = η(t)q(x) +w(t, x), (2.4)

where

η(t) =
∫ t

0
p(s)ds. (2.5)

Taking derivatives from (2.4)with respect to t and x, we get

∂u(t, x)
∂t

= p(t)q(x) +
∂w(t, x)

∂t
,

∂2u(t, x)
∂x2

= η(t)
d2q(x)
dx2

+
∂2w(t, x)

∂x2
.

(2.6)

Moreover, substituting x by x∗ in (2.4), we obtain

u(t, x∗) = η(t)q(x∗) +w(t, x∗) = ρ(t),

η(t) =
ρ(t) −w(t, x∗)

q(x∗)
.

(2.7)

Differentiating both sides of (2.7)with respect to t, we get

p(t) =
ρ′(t) −wt(t, x∗)

q(x∗)
. (2.8)
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From identity (2.8) and the triangle inequality, it follows that

∣
∣p(t)

∣
∣ =
∣
∣
∣
∣

ρ′(t) −wt(t, x∗)
q(x∗)

∣
∣
∣
∣
≤ M

(

x∗, q
)(∣
∣ρ′(t)

∣
∣ + |wt(t, x∗)|)

≤ M
(

x∗, q
)
(

max
0≤t≤T

∣
∣ρ′(t)

∣
∣ +max

0≤t≤T
max
0≤x≤L

|wt(t, x)|
)

≤ M
(

x∗, q
)
(

max
0≤t≤T

∣
∣ρ′(t)

∣
∣ +max

0≤t≤T
‖wt(t)‖ ◦

C
2α
[0,L]

)

,

(2.9)

for any t, t ∈ [0, T]. Using problem (1.1) and (2.4)–(2.7), one can show that w(t, x) is the
solution of the following problem:

∂w(t, x)
∂t

= a(x)
∂2w(t, x)

∂x2
+ a(x)

ρ(t) −w(t, x∗)
q(x∗)

d2q(x)
dx2

+ f(t, x), x ∈ (0, l), t ∈ (0, T],

∂w(t, x)
∂t

= a(x)
∂2w(t, x)

∂x2
+ b(t, x)w(t, x)

+
ρ(t) −w(t, x∗)

q(x∗)

(

a(x)
d2q(x)
dx2

+ b(t, x)q(x)

)

+ g(t, x), x ∈ (l, L), t ∈ (0, T],

w(0, x) = ϕ(x), x ∈ [0, L],

wx(t, 0) = 0, w(t, L) = 0, t ∈ [0, T],

w(t, l+) = w(t, l−), wx(t, l+) = wx(t, l−), t ∈ [0, T],
(2.10)

under the same assumptions on q(x). Estimate (2.9) and the following theorem conclude the
proof of Theorem 2.1.

Theorem 2.2. For the solution of problem (2.10), the following coercive stability estimate

‖wt‖ ◦
C

2α
[0,L]

≤ M
(

a, δ, σ, α, x∗, q, T
)

×
(
∥
∥ϕ
∥
∥ ◦
C

2α+2
[0,L]

+ ‖F1‖
C([0,T],

◦
C

2α
[0,L])

+
∥
∥ρ
∥
∥
C[0,T]

) (2.11)

holds.

Proof. Let us rewrite problem (2.10) in the abstract form as an initial-value problem:

wt +Aw + Bw =
(

aq′′ − σq
)ρ(t) −w(t, x∗)

q∗
+ F1(t) + F2(t), 0 < t ≤ T,

w(0) = ϕ

(2.12)
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in the Banach space E =
◦
C[0, L]. Here, the positive operator A is defined by

Au = −a(x)∂
2u(t, x)
∂x2

+ σu, (2.13)

with

D(A) =
{

u(x) : u, u′, u′′ ∈ C[0, L], ux(0) = u(L) = 0
}

, (2.14)

and for every fixed t ∈ [0, T], the differential operator B is given by the formula

B(t)u =

{

−σun, 0 ≤ x < l,

−(σ − b(t))u, b(t) = b(t, x), l < x ≤ L.
(2.15)

Here, σ is a positive constant. The right-hand side functions are defined by

F1(t) =

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

f(t), 0 ≤ x < l,

0,

g(t) +
ρ(t)
q∗

b(t)q, l < x ≤ L,

F2(t) =

⎧

⎪⎪⎪
⎨

⎪⎪⎪
⎩

0, 0 ≤ x < l,

0,

−w(t, x∗)
q∗

b(t)q, l < x ≤ L,

(2.16)

where f(t) = f(t, x), g(t) = g(t, x), b(t) = b(t, x) are known, and w(t) = w(t, x) is unknown

abstract functions defined on [0, T] with values in E =
◦
C[0, L], w(t, x∗) is unknown scalar

function defined on [0, T], q = q(x), q′′ = q′′(x), ϕ = ϕ(x), and a = a(x) are elements of

E =
◦
C[0, L], and q∗ = q(x∗) is a number.

It is known that operator-A generates an analytic semigroup exp{−tA}(t > 0) and the
following estimate holds:

∥
∥Aα exp{−tA}∥∥E→E ≤ Me−δtt−α, 0 ≤ α ≤ 1, (2.17)

where t, δ,M > 0 [29].
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By the Cauchy formula, the solution can be written as

w(t) = e−tAϕ −
∫ t

0
e−(t−s)A

aq′′ − σq

q∗
w(s, x∗)ds

+
∫ t

0
e−(t−s)A

ρ(s)
(

aq′′ − σq
)

q∗
ds +

∫ t

0
e−(t−s)AF1(s)ds

+
∫ t

0
e−(t−s)AF2(s)ds −

∫ t

0
e−(t−s)AB(s)w(s)ds.

(2.18)

Then, the following presentation of the solution of abstract problem (2.12) exists:

Aw(t) = Ae−tAϕ −
∫ t

0
Ae−(t−s)A

aq′′ − σq

q∗
w(s, x∗)ds

+
∫ t

0
Ae−(t−s)A

ρ(s)
(

aq′′ − σq
)

q∗
ds +

∫ t

0
Ae−(t−s)AF1(s)ds

+
∫ t

0
Ae−(t−s)AF2(s)ds +

∫ t

0
Ae−(t−s)AB(s)w(s)ds =

6∑

k=1

Gk(t).

(2.19)

Here,

G1(t) = Ae−tAϕ,

G2(t) = −
∫ t

0
Ae−(t−s)A

aq′′ − σq

q∗
w(s, x∗)ds,

G3(t) = −
∫ t

0
Ae−(t−s)A

ρ(s)
(

aq′′ − σq
)

q∗
ds,

G4(t) =
∫ t

0
Ae−(t−s)AF1(s)ds,

G5(t) =
∫ t

0
Ae−(t−s)AF2(s)ds,

G6(t) =
∫ t

0
Ae−(t−s)AB(s)w(s)ds.

(2.20)

From the fact that the operators R, exp{−λA} and A commute, it follows that [29]

‖R‖Eα →Eα
≤ ‖R‖E→E. (2.21)
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Now, we estimate Gk(t) for k = 1, 2, . . . , 5 separately. Applying the definition of norm of the
spaces Eα and estimate (2.21), we get

‖G1(t)‖Eα
=
∥
∥
∥Ae−tAϕ

∥
∥
∥
Eα

≤
∥
∥
∥e−tA

∥
∥
∥
Eα →Eα

∥
∥Aϕ

∥
∥
Eα

≤
∥
∥
∥e−tA

∥
∥
∥
E→E

∥
∥Aϕ

∥
∥
Eα
. (2.22)

Then, using estimate (2.17) for α = 0, we reach to

‖G1(t)‖Eα
≤ M1

∥
∥Aϕ

∥
∥
Eα
, (2.23)

for any t, t ∈ [0, T].
Let us estimate G2(t):

‖G2(t)‖Eα
=

∥
∥
∥
∥
∥

∫ t

0
Ae−(t−s)A

aq′′ − σq

q∗
w(s, x∗)ds

∥
∥
∥
∥
∥

≤
∫ t

0

∥
∥
∥
∥
Ae−(t−s)A

aq′′ − σq

q∗

∥
∥
∥
∥
Eα

|w(s, x∗)|ds.
(2.24)

By the definition of norm of the spaces Eα, we have that

∫ t

0

∥
∥
∥
∥
Ae−(t−s)A

aq′′ − σq

q∗

∥
∥
∥
∥
Eα

ds =
∫ t

0

∥
∥
∥
∥
Ae−(t−s)A

aq′′ − σq

q∗

∥
∥
∥
∥
E

ds

+ sup
λ>0

∫ t

0

∥
∥
∥
∥
λ1−αAe−λAAe−(t−s)A

aq′′ − σq

q∗

∥
∥
∥
∥
E

ds.

(2.25)

Let us estimate the first term. From the definition of norm of the spaces Eα it follows that

∫ t

0

∥
∥
∥
∥
Ae−(t−s)A

aq′′ − σq

q∗

∥
∥
∥
∥
E

ds =
∫ t

0
(t − s)α−1

∥
∥
∥
∥
(t − s)1−αAe−(t−s)A

aq′′ − σq

q∗

∥
∥
∥
∥
E

ds

≤
∫ t

0
(t − s)α−1ds

∥
∥
∥
∥

aq′′ − σq

q∗

∥
∥
∥
∥
Eα

≤ Tα

α

∥
∥
∥
∥

aq′′ − σq

q∗

∥
∥
∥
∥
Eα

= M2
(

a, σ, α, x∗, q, T
)

.

(2.26)



8 Abstract and Applied Analysis

Using estimate (2.17), we obtain

∫ t

0

∥
∥
∥
∥
λ1−αAe−λAAe−(t−s)A

aq′′ − σq

q∗

∥
∥
∥
∥
E

ds ≤
∫ t

0

22−αλ1−α

(λ + t − s)2−α
ds

∥
∥
∥
∥

λ + t − s

2
Ae−((λ+t−s)/2)A

∥
∥
∥
∥
E→E

×
∥
∥
∥
∥
∥

(
λ + t − s

2

)1−α
Ae−((λ+t−s)/2)A

aq′′ − σq

q∗

∥
∥
∥
∥
∥
E

≤ M3(α)
∥
∥
∥
∥

aq′′ − σq

q∗

∥
∥
∥
∥
Eα

∫ t

0

λ1−α

(λ + t − s)2−α
ds

≤ M3(α)
∥
∥
∥
∥

aq′′ − σq

q∗

∥
∥
∥
∥
Eα

(

λ1−α

(1 − α)(λ + t)1−α

)

,

(2.27)

for any λ > 0. From that it follows

sup
λ>0

∫ t

0

∥
∥
∥
∥
λ1−αAe−λAAe−(t−s)A

aq′′ − σq

q∗

∥
∥
∥
∥
E

ds

≤ M3(α)
∥
∥
∥
∥

aq′′ − σq

q∗

∥
∥
∥
∥
Eα

1
(1 − α)

= M4
(

a, σ, α, x∗, q
)

.

(2.28)

Then, we get

∫ t

0

∥
∥
∥
∥
Ae−(t−s)A

aq′′ − σq

q∗

∥
∥
∥
∥
Eα

ds ≤ M5
(

a, σ, α, x∗, q, T
)

(2.29)

‖G2(t)‖Eα
≤ M6

(

a, σ, α, x∗, q, T
)
∫ t

0
|w(s, x∗)|ds. (2.30)

Using definitions of norm of spaces E and Eα and estimate (2.21), we obtain that

|w(s, x∗)| ≤ ‖w‖E ≤ ‖w‖Eα
=
∥
∥
∥A−1Aw

∥
∥
∥
Eα

≤
∥
∥
∥A−1

∥
∥
∥
E→E

‖Aw‖Eα
≤ M‖Aw‖Eα

, (2.31)

‖G2(t)‖Eα
≤ M7

(

a, σ, α, x∗, q, T
)‖Aw‖Eα

, (2.32)

for any t ∈ [0, T].



Abstract and Applied Analysis 9

From estimate (2.29), the estimate of G3(t) is as follows:

‖G3(t)‖Eα
=

∥
∥
∥
∥
∥

∫ t

0
Ae−(t−s)Aρ(s)

aq′′ − σq

q∗
ds

∥
∥
∥
∥
∥
Eα

≤
∫ t

0

∥
∥
∥
∥
Ae−(t−s)A

aq′′ − σq

q∗

∥
∥
∥
∥
Eα

ds
∥
∥ρ
∥
∥
C[0,T]

≤ M8
(

a, σ, α, x∗, q, T
)∥
∥ρ
∥
∥
C[0,T].

(2.33)

Now, let us estimate G4(t). By the definition of the norm of the spaces Eα, we get

‖G4(t)‖Eα
=

∥
∥
∥
∥
∥

∫ t

0
Ae−(t−s)AF1(s)ds

∥
∥
∥
∥
∥
Eα

=

∥
∥
∥
∥
∥

∫ t

0
Ae−(t−s)AF1(s)ds

∥
∥
∥
∥
∥
E

+ sup
λ>0

λ1−α
∥
∥
∥
∥
∥
Ae−λA

∫ t

0
Ae−(t−s)AF1(s)ds

∥
∥
∥
∥
∥
E

.

(2.34)

Equation (2.2) yields that

∥
∥
∥
∥
∥

∫ t

0
Ae−(t−s)AF1(s)ds

∥
∥
∥
∥
∥
E

=
∫ t

0
(t − s)α−1

∥
∥
∥(t − s)1−αAe−(t−s)AF1(s)

∥
∥
∥
E
ds

≤
∫ t

0
(t − s)α−1ds‖F1‖C(Eα) =

tα

α
‖F1‖C(Eα) ≤ M9(α, T)‖F1‖C(Eα).

(2.35)

Now, we consider the second term. Using (2.2), we get

λ1−α
∥
∥
∥
∥
∥
Ae−λA

∫ t

0
Ae−(t−s)AF1(s)ds

∥
∥
∥
∥
∥
E

≤ λ1−α
∫ t

0

(
t − s + λ

2

)α−1( t − s + λ

2

)−1

×
∥
∥
∥
∥

t − s + λ

2
Ae−((t−s+λ)/2)A

∥
∥
∥
∥
E→E

×
∥
∥
∥
∥
∥

(
t − s + λ

2

)1−α
Ae−((t−s+λ)/2)AF1(s)

∥
∥
∥
∥
∥
E

ds

≤ M10λ
1−α
∫ t

0

(
t − s + λ

2

)α−2
‖F1‖Eα

ds

≤ M11λ
1−α
∫ t

0

(
t − s + λ

2

)α−2
ds‖F1‖C(Eα),

(2.36)



10 Abstract and Applied Analysis

for any λ > 0. Then,

sup
λ>0

λ1−α
∥
∥
∥
∥
∥
Ae−λA

∫ t

0
Ae−(t−s)AF1(s)ds

∥
∥
∥
∥
∥
E

≤ M921−α

1 − α
‖F1‖C(Eα) = M11(α)‖F1‖C(Eα).

(2.37)

Combining estimates (2.35) and (2.37), we obtain

‖G4(t)‖Eα
≤ M12(α, T)‖F1‖C(Eα). (2.38)

The estimate of G5(t) is as follows. Since operators A and e−tA commute, we can write that

‖G5(t)‖Eα
≤
∥
∥
∥
∥
∥

∫ t

0
Ae−(t−s)AF2(s)ds

∥
∥
∥
∥
∥
Eα

≤ M13(α, T)‖Aw‖Eα
. (2.39)

Let us estimate G6(t) :

‖G6(t)‖Eα
=

∥
∥
∥
∥
∥

∫ t

0
Ae−(t−s)AB(s)w(s)ds

∥
∥
∥
∥
∥
Eα

=

∥
∥
∥
∥
∥

∫ t

0
Ae−(t−s)AB(s)A−1Aw(s)ds

∥
∥
∥
∥
∥
Eα

≤
∫ t

0

∥
∥
∥Ae−(t−s)AB(s)A−1

∥
∥
∥
Eα →Eα

‖Aw(s)‖Eα
ds.

(2.40)

Since

∥
∥
∥e−tA

∥
∥
∥
Eα →Eα

≤
∥
∥
∥e−tA

∥
∥
∥
E→E

≤ Me−δt,

∥
∥
∥AB(s)A−1

∥
∥
∥
Eα →Eα

≤ M,

(2.41)

we get

‖G6(t)‖Eα
≤ M14

∫ t

0
‖Aw(s)‖Eα

ds. (2.42)
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Finally combining estimates (2.23), (2.32), (2.33), (2.38), (2.39), and (2.42), we get

‖Aw‖Eα
≤ M1

∥
∥Aϕ

∥
∥
Eα

+M8
(

a, σ, α, x∗, q, T
)∥
∥ρ
∥
∥
C[0,T]

+M12(α, T)‖F1‖C(Eα) +M15

∫ t

0
‖Aw(s)‖Eα

ds,
(2.43)

where M15 = M7 +M13 +M14.
Using Gronwall’s inequality, we can write

‖Aw‖Eα
≤ eM15T

[

M1
∥
∥Aϕ

∥
∥
Eα

+M8
(

a, σ, α, x∗, q, T
)∥
∥ρ
∥
∥
C[0,T]

+M12(α, T)‖F1‖C(Eα)

]

.

(2.44)

Applying the formulas

w(t, x∗) = w(0, x∗) +
∫ t

0
wz(z, x∗)dz = ϕ(x∗) +

∫ t

0
wz(z, x∗)dz,

∣
∣ϕ(x∗)

∣
∣ ≤ max

0≤x≤L

∣
∣ϕ(x)

∣
∣ =
∥
∥ϕ
∥
∥
E ≤ ∥∥ϕ∥∥Eα

≤
∥
∥
∥A−1

∥
∥
∥
Eα →Eα

∥
∥Aϕ

∥
∥
Eα

≤ M
∥
∥Aϕ

∥
∥
Eα

(2.45)

and the triangle inequality, we can write

∥
∥
∥
∥
∥

(

aq′′ − σq
)

q∗
(

ρ(t) −w(t, x∗)
)

∥
∥
∥
∥
∥
Eα

≤
∥
∥
∥
∥
∥

(

aq′′ − σq
)

q∗

∥
∥
∥
∥
∥
Eα

(

∥
∥ρ
∥
∥
C[0,T] +M13

∥
∥Aϕ

∥
∥
Eα

+
∫ t

0
‖wz‖Eα

dz

)

.

(2.46)

Using boundedness of B, problem (2.12), and estimate (2.46), we have

‖wt‖Eα
≤ ‖Aw‖Eα

+ ‖Bw‖Eα
+ ‖F1‖C(Eα)

+

∥
∥
∥
∥
∥

(

aq′′ − σq
)

q∗

∥
∥
∥
∥
∥
Eα

(

∥
∥ρ
∥
∥
C[0,T] +M13

∥
∥Aϕ

∥
∥
Eα

+
∫ t

0
‖wz‖Eα

dz

)

.
(2.47)

So, Gronwall’s inequality and the following theorem finish the proof of Theorem 2.3.

Theorem 2.3 (see [29]). For 0 < α < 1/2, the spaces Eα (C[0, L], A) and C2α[0, L] coincide and
their norms are equivalent.
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2.2. Difference Case

For the approximate solution of problem (1.1), the Rothe difference scheme

uk
n − uk−1

n

τ
= a(xn)

uk
n+1 − 2uk

n + uk
n−1

h2
+ pkqn + f(tk, xn),

1 ≤ k ≤ N, 1 ≤ n ≤ Ml − 1, Mlh = l, Nτ = T,

uk
n − uk−1

n

τ
= a(xn)

uk
n+1 − 2uk

n + uk
n−1

h2
+ b(tk, xn)uk

n + pkqn + g(tk, xn),

1 ≤ k ≤ N, Ml + 1 ≤ n ≤ M, Mh = L, Nτ = T,

u0
n = ϕ(xn), 0 ≤ n ≤ M,

uk
1 − uk

0 = uk
M = 0, 0 ≤ k ≤ N,

uk
Ml+1 − uk

Ml
= uk

Ml
− uk

Ml−1, 0 ≤ k ≤ N,

uk
	x∗/h
 = uk

s = ρ(tk), 0 ≤ k ≤ N, 0 ≤ s ≤ M,

(2.48)

where pk = p(tk), qn = q(xn), xn = nh, and tk = kτ is constructed. Here, qs /= 0 and q1 − q0 =
qM = 0 are assumed. 	x
 represents the floor function of x.

With the help of a positive operatorA, we introduce the fractional spaces E′
α, 0 < α < 1,

consisting of all v ∈ E for which the following norm is finite:

‖v‖E′
α
= ‖v‖E + sup

λ>0
λα
∥
∥
∥A(λ +A)−1v

∥
∥
∥
E
. (2.49)

To formulate our results, we introduce the Banach space
◦
Ch

α

=
◦
C

α

[0, L]h, α ∈ (0, 1), of all grid
functions φh = {φn}M−1

n=1 defined on

[0, L]h = {xn = nh, 0 ≤ n ≤ M,Mh = L}, (2.50)

with φ1 − φ0 = φM = 0 equipped with the norm

∥
∥φh

∥
∥ ◦
C

α

h

=
∥
∥φh

∥
∥
Ch

+ sup
1≤n<n+r≤M

∣
∣φn+r − φn

∣
∣(rh)−α,

∥
∥φh

∥
∥
Ch

= max
1≤n≤M

∣
∣φn

∣
∣.

(2.51)



Abstract and Applied Analysis 13

Moreover, Cτ(E) = C([0,T]τ , E) is the Banach space of all grid functions φτ = {φ(tk)}N−1
k=1

defined on [0, T]τ = {tk = kτ, 0 ≤ k ≤ N,Nh = T}with values in E equipped with the norm

∥
∥φτ
∥
∥
Cτ (E)

= max
1≤k≤N

∥
∥φ(tk)

∥
∥
E. (2.52)

Then, the following theorem on well-posedness of problem (2.48) is established.

Theorem 2.4. For the solution of problem (2.48), the following coercive stability estimates

∥
∥
∥
∥
∥
∥

{

uh
k − uh

k−1
τ

}N

k=1

∥
∥
∥
∥
∥
∥
Cτ (

◦
C

2α

h )

+
∥
∥
∥
∥

{

D2
hu

h
k

}N

k=1

∥
∥
∥
∥
Cτ (

◦
C

2α

h )

≤ M
(

q, s
)

∥
∥
∥
∥
∥

{
ρ(tk) − ρ(tk−1)

τ

}N

k=1

∥
∥
∥
∥
∥
C[0,T]τ

+M
(

ã, φ, α, T
)

(
∥
∥
∥D2

hϕ
h
∥
∥
∥ ◦
C

2α

h

+
∥
∥
∥
∥

{

Fh
1 (tk)

}N

k=1

∥
∥
∥
∥
Cτ (

◦
C

2α

h )
+
∥
∥ρτ
∥
∥
C[0,T]τ

)

,

∥
∥pτ
∥
∥
C[0,T]τ

≤ M
(

q, s
)

∥
∥
∥
∥
∥

{
ρ(tk) − ρ(tk−1)

τ

}N

k=1

∥
∥
∥
∥
∥
C[0,T]τ

+M
(

ã, φ, α, T
)

[
∥
∥
∥D2

hϕ
h
∥
∥
∥ ◦
C

2α

h

+
∥
∥
∥
∥

{

Fh
1 (tk)

}N

k=1

∥
∥
∥
∥
Cτ (

◦
C

2α

h )
+
∥
∥ρτ
∥
∥
C[0,T]τ

]

(2.53)

hold. Here,

Fh
1 (tk) =

⎧

⎪⎪
⎨

⎪⎪⎩

f(tk, xn)
0

b(tk, xn)
ρ(tk)
qs

qn + g(tk, xn)

⎫

⎪⎪
⎬

⎪⎪⎭

M−1

n=1

, ϕh =
{

ϕ(xn)
}M−1
n=1 ,

ρτ =
{

ρ(tk)
}N

k=0, D2
hu

h =
{
un+1 − 2un + un−1

h2

}M−1

n=1

ã =
1
qs

(

aD2
hq

h − σqh
)

.

(2.54)

Proof. The solution of problem (2.48) is searched in the following form:

uk
n = ηkqn +wk

n, (2.55)
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where

ηk =
k∑

i=1

piτ, 1 ≤ k ≤ N, η0 = 0. (2.56)

Difference derivatives of (2.55) can be written as

uk
n − uk−1

n

τ
=

ηk − ηk−1

τ
qn +

wk
n −wk−1

n

τ
= pkqn +

wk
n −wk−1

n

τ
,

uk
n+1 − 2uk

n + uk
n−1

h2
= ηk qn+1 − 2qn + qn−1

h2
+
wk

n+1 − 2wk
n +wk

n−1
h2

,

(2.57)

for any n, 1 ≤ n ≤ M − 1. At the interior grid point s = 	x∗/h
, we have that

uk
s = ηkqs +wk

s = ρ(tk),

ηk =
ρ(tk) −wk

s

qs
.

(2.58)

Taking the difference derivative of the last equality and using the triangle inequality, we
obtain

pk =
1
qs

(

ρ(tk) − ρ(tk−1)
τ

− wk
s −wk−1

s

τ

)

, (2.59)

∣
∣
∣pk
∣
∣
∣ ≤ M

(

q, s
)

(∣
∣
∣
∣

ρ(tk) − ρ(tk−1)
τ

∣
∣
∣
∣
+

∣
∣
∣
∣
∣

wk
s −wk−1

s

τ

∣
∣
∣
∣
∣

)

≤ M
(

q, s
)

(

max
1≤k≤N

∣
∣
∣
∣

ρ(tk) − ρ(tk−1)
τ

∣
∣
∣
∣
+ max

1≤k≤N
max
0≤s≤M

∣
∣
∣
∣
∣

wk
s −wk−1

s

τ

∣
∣
∣
∣
∣

)

≤ M
(

q, s
)

⎛

⎝max
1≤k≤N

∣
∣
∣
∣

ρ(tk) − ρ(tk−1)
τ

∣
∣
∣
∣
+ max

1≤k≤N

∥
∥
∥
∥
∥

wh
k −wh

k−1
τ

∥
∥
∥
∥
∥ ◦
C

2α

h

⎞

⎠,

(2.60)

for any k, 1 ≤ k ≤ N.



Abstract and Applied Analysis 15

In estimate (2.60), {wh
k}

N

k=0 is the solution of the following difference scheme:

wk
n −wk−1

n

τ
= a(xn)

wk
n+1 − 2wk

n +wk
n−1

h2
+ a(xn)

ρ(tk) −wk
s

qs

qn+1 − 2qn + qn−1
h2

+ f(tk, xn), 1 ≤ k ≤ N, 1 ≤ n ≤ Ml − 1, Mlh = l, Nτ = T,

wk
n −wk−1

n

τ
= a(xn)

wk
n+1 − 2wk

n +wk
n−1

h2
+ a(xn)

ρ(tk) −wk
s

qs

qn+1 − 2qn + qn−1
h2

b(tk, xn)wk
n + b(tk, xn)

ρ(tk) −wk
s

qs
qn + g(tk, xn),

1 ≤ k ≤ N, Ml + 1 ≤ n ≤ M − 1, Mh = L, Nτ = T,

w0
n = ϕ(xn), 0 ≤ n ≤ M,

wk
1 −wk

0 = wk
M = 0, 0 ≤ k ≤ N,

wk
Ml+1 −wk

Ml
= wk

Ml
−wk

Ml−1, 0 ≤ k ≤ N,

(2.61)

where xn = nh, tk = kτ . Therefore, estimate (2.60) and the following theorem finish the proof
of Theorem 2.5.

Theorem 2.5. For the solution of problem (2.61), the following coercive stability estimate

∥
∥
∥
∥
∥
∥

{

wh
k
−wh

k−1
τ

}N

k=1

∥
∥
∥
∥
∥
∥
Cτ (

◦
C

2α

h )

≤ M
(

ã, φ, α, T
)

×
(
∥
∥
∥ϕh
∥
∥
∥ ◦
C

2α

h

+
∥
∥
∥
∥

{

Fh
1 (tk)

}N

k=1

∥
∥
∥
∥
Cτ (

◦
C

2α

h )
+
∥
∥ρτ
∥
∥
C[0,T]τ

)
(2.62)

holds.

Proof. We can rewrite difference scheme (2.61) in the abstract form:

wh
k
−wh

k−1
τ

+Ax
hw

h
k + Bx

hw
h
k =
(

a
qn+1 − 2qn + qn−1

h2
− σq

)
ρ(tk) −wk

s

qs

+ Fh
1 (tk) + Fh

2 (tk), tk = kτ, 1 ≤ k ≤ N, Nτ = T,

wh
0 = ϕh,

(2.63)

in a Banach space E =
◦
C[0, l]h with the positive operator Ax

h
defined by

Ax
hu

h =
{

−a(xn)
un+1 − 2un + un−1

h2
+ σu

}M−1

n=1
, (2.64)
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acting on grid functions uh such that it satisfies the condition

u1 − u0 = uM = 0. (2.65)

For every fixed t ∈ [0, T], the difference operators Bx
h
(t) are given by the formula

Bx
h(t)u

h =

⎧

⎪⎪
⎨

⎪⎪⎩

−σun, 1 ≤ n ≤ Ml,

−(σ − bn(t))un, bn(t) = b(t, xn),

xn = nh, Ml + 1 ≤ n ≤ M − 1,

⎫

⎪⎪
⎬

⎪⎪⎭

M−1

n=1

, (2.66)

where σ is a positive constant and the right-hand side functions are

Fh
1 (tk) =

⎧

⎪⎨

⎪⎩

f(tk), 1 ≤ n ≤ Ml,

b(tk)qn
ρ(tk)
qs

+ g(tk), Ml + 1 ≤ n ≤ M − 1,

⎫

⎪⎬

⎪⎭

M−1

n=1

,

Fh
2 (tk) =

⎧

⎪
⎨

⎪
⎩

0, 1 ≤ n ≤ Ml,

−b(tk)qn
wk

s

qs
, Ml + 1 ≤ n ≤ M − 1,

⎫

⎪
⎬

⎪
⎭

M−1

n=1

.

(2.67)

Let us denote R = (I + τAx
h
)−1. In problem (2.63), we have that

wh
k = Rwh

k−1 + Rτ

(

a
qn+1 − 2qn + qn−1

h2

ρ(tk) −wk
s

qs
− Bx

h(t)w
h
k + Fh

1 (tk) + Fh
2 (tk)

)

, (2.68)

for all k, 1 ≤ k ≤ N. By recurrence relations, we get

wh
k = Rkϕh +

k∑

m=1

Rk−m+1 τ

qs
a
qn+1 − 2qn + qn−1

h2
ρ(tm)

−
k∑

m=1

Rk−m+1 τ

qs
a
qn+1 − 2qn + qn−1

h2
wm

s

−
k∑

m=1

Rk−m+1Bx
h(t)τw

m
s +

k∑

m=1

Rk−m+1τFh
1 (tm) +

k∑

m=1

Rk−m+1τFh
2 (tm).

(2.69)
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Then, the following presentation of the solution of problem (2.63)

Ax
hw

h
k = Ax

hR
kϕh +

k∑

m=1

Ax
hR

k−m+1 τ

qs
a
qn+1 − 2qn + qn−1

h2
ρ(tm)

−
k∑

m=1

Ax
hR

k−m+1 τ

qs
a
qn+1 − 2qn + qn−1

h2
wm

s

−
k∑

m=1

Ax
hR

k−m+1Bx
h(t)τw

m
s +

k∑

m=1

Ax
hR

k−m+1τFh
1 (tm)

+
k∑

m=1

Ax
hR

k−m+1τFh
2 (tm) =

6∑

k=1

Jk

(2.70)

is obtained. Here,

Jk1 = Ax
hR

kϕh,

Jk2 =
k∑

m=1

Ax
hR

k−m+1 τ

qs
a
qn+1 − 2qn + qn−1

h2
ρ(tm),

Jk3 = −
k∑

m=1

Ax
hR

k−m+1 τ

qs
a
qn+1 − 2qn + qn−1

h2
wm

s ,

Jk4 = −
k∑

m=1

Ax
hR

k−m+1Bx
h(t)τw

m
s ,

Jk5 =
k∑

m=1

Ax
hR

k−m+1τFh
1 (tm),

Jk6 =
k∑

m=1

Ax
hR

k−m+1τFh
2 (tm).

(2.71)

Now, let us estimate Jkr for r = 1, 2, . . . , 6 separately. We start with Jk1 . Applying the
definition of norm of the spaces E

′
α, we get

∥
∥
∥Jk1

∥
∥
∥
E
′
α

=
∥
∥
∥RkAx

hϕ
h
∥
∥
∥
E
′
α

≤
∥
∥
∥Rk
∥
∥
∥
E
′
α →E

′
α

∥
∥
∥Ax

hϕ
h
∥
∥
∥
E
′
α

≤
∥
∥
∥Rk
∥
∥
∥
E→E

∥
∥
∥Ax

hϕ
h
∥
∥
∥
E
′
α

.

(2.72)

Using estimate

∥
∥
∥Rk
∥
∥
∥
E→E

≤ M, (2.73)
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we get

∥
∥
∥Jk1

∥
∥
∥
E
′
α

≤ M1

∥
∥
∥Ax

hϕ
h
∥
∥
∥
E
′
α

, (2.74)

for any k, 1 ≤ k ≤ N.
Let us estimate Jk2 :

∥
∥
∥Jk2

∥
∥
∥
E
′
α

=

∥
∥
∥
∥
∥

k∑

m=1

Ax
hR

k−m+1 τ

qs
a
qn+1 − 2qn + qn−1

h2
ρ(tm)

∥
∥
∥
∥
∥
E
′
α

≤ max
1≤m≤N

ρ(tm)
k∑

m=1

∥
∥
∥Ax

hR
k−m+1τã

∥
∥
∥
E
′
α

,

(2.75)

where

ã = a
qn+1 − 2qn + qn−1

qsh2
. (2.76)

From the definition of norm of the spaces E
′
α, it follows that

∥
∥
∥
∥
∥

k∑

m=1

Ax
hR

k−m+1τã

∥
∥
∥
∥
∥
E
′
α

≤
k∑

m=1

∥
∥
∥Ax

hR
k−m+1τã

∥
∥
∥
E

+ sup
λ>0

k∑

m=1

∥
∥
∥λαAx

h

(

λ +Ax
h

)−1
Ax

hR
k−m+1τã

∥
∥
∥
E
.

(2.77)

Let us estimate each term separately. We divide first term into two parts:

k∑

m=1

∥
∥
∥Ax

hR
k−m+1τã

∥
∥
∥
E
=

k−1∑

m=1

∥
∥
∥Ax

hR
k−m+1τã

∥
∥
∥
E
+
∥
∥Ax

hRτã
∥
∥
E
. (2.78)

In the first part, by the definition of norm of the spaces E′
α and the identity (see [29])

(I + τA)−k =
1

(k − 1)!

∫∞

0
tk−1e−t exp{−τtA}dt, k ≥ 2, (2.79)

we deduce that

k−1∑

m=1

∥
∥
∥Ax

hR
k−m+1τã

∥
∥
∥
E
≤

k−1∑

m=1

τ

(k −m)!

∫∞

0

tk−m

(τt)1−α
e−t
∥
∥
∥(τt)1−αAx

he
−τtAã

∥
∥
∥
E
dt

≤ ‖ã‖E′
α

k−1∑

m=1

τ

(k −m)!

∫∞

0

tk−m

(τt)1−α
e−tdt
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= ‖ã‖E′
α

k−1∑

m=1

τα

(k −m)!

∫∞

0
tk−m−1+αe−tdt

= ‖ã‖E′
α

k−1∑

m=1

τα

(k −m)!

∫∞

0
t(k−m−1)α+αe−αtt(k−m−1)(1−α)e−(1−α)tdt.

(2.80)

The Hölder inequality with p = 1/α, q = 1/(1 − α) and the definition of the gamma function
yield that

k−1∑

m=1

∥
∥
∥Ax

hR
k−m+1τã

∥
∥
∥
E
≤ ‖ã‖E′

α

k−1∑

m=1

τα

(k −m)!

(∫∞

0

(

t(k−m−1)α+αe−αt
)1/α

dt

)α

×
(∫∞

0

(

t(k−m−1)(1−α)e−(1−α)t
)1/(1−α)

dt

)1−α

= ‖ã‖E′
α

k−1∑

m=1

τα

(k −m)!

(∫∞

0
tk−me−tdt

)α(∫∞

0
tk−m−1e−tdt

)1−α

= ‖ã‖E′
α

k−1∑

m=1

τα

(k −m)!
(Γ(k −m + 1))α(Γ(k −m))1−α.

(2.81)

By the fact that Γ(n) = (n − 1)! and Γ(n) = (n − 1)Γ(n − 1), we get

k−1∑

m=1

∥
∥
∥Ax

hR
k−m+1τã

∥
∥
∥
E
≤ ‖ã‖E′

α

k−1∑

m=1

τα

(k −m)!
(k −m)αΓ(k −m)

= ‖ã‖E′
α

k−1∑

m=1

τα

(k −m)1−α
= ‖ã‖E′

α

k−1∑

m=1

τ

((k −m)τ)1−α

≤ M2‖ã‖E′
α

∫kτ

0

1

(kτ − s)1−α
ds = M2‖ã‖E′

α

([

− (kτ − s)α

α

]kτ

0

)

.

(2.82)

So, we have that

k−1∑

m=1

∥
∥
∥Ax

hR
k−m+1τã

∥
∥
∥
E
≤ M2‖ã‖E′

α

(kτ)α

α
≤ M3(α, T)‖ã‖E′

α
. (2.83)

In the second part, we have that

∥
∥Ax

hRτã
∥
∥
E
≤ ∥∥Ax

hRτ
∥
∥
E→E

‖ã‖E ≤ M4‖ã‖E′
α
. (2.84)
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Combining estimates (2.83) and (2.84), we obtain

k∑

m=1

∥
∥
∥Ax

hR
k−m+1τã

∥
∥
∥
E
≤ M5(α, T)‖ã‖E′

α
. (2.85)

Let us estimate the second term. From the Cauchy-Riesz formula (see [29])

f(A) =
1

2πi

∫

Γ
f(z)(z −A)−1dz, (2.86)

it follows that

k∑

m=1

λαAx
h

(

λ +Ax
h

)−1
Rk−m+1Ax

hτã

=
1

2πi

∫

S1∪S2

k∑

m=1

z

(1 + z)k−m+1

λα

λ + zτ−1
Ax

h

(

z − τAx
h

)−1
ãdz

=
1

2πi

∫

S1∪S2

k∑

m=1

(z/τ)−α

(1 + z)k−m+1

λα

λτ + z

(z

τ

)α
Ax

h

(z

τ
−Ax

h

)−1
ãdz.

(2.87)

Since z = ρe±iφ, with |φ| ≤ π/2, the estimate (see [29])

∥
∥
∥(λ −A)−1

∥
∥
∥
E→E

≤ M
(

φ
)

1 + |λ| (2.88)

yields

∥
∥
∥
∥

(z

τ

)α
Ax

h

(z

τ
−Ax

h

)−1
ã

∥
∥
∥
∥
E

≤ M6

∥
∥
∥
∥

(ρ

τ

)α

Ax
h

(ρ

τ
+Ax

h

)−1
ã

∥
∥
∥
∥
E

,

1
|λτ + z| ≤

M6

λτ + ρ
.

(2.89)

Hence,

∥
∥
∥
∥
∥

k∑

m=1

λαAx
h

(

λ +Ax
h

)−1
Rk−m+1Ax

hτã

∥
∥
∥
∥
∥
E

≤ M6

∫∞

0

k∑

m=1

ρ1−α
[

1 + 2ρ cosφ + ρ2
](k−m+1)/2

(λτ)αdρ
λτ + ρ

‖ã‖E′
α
.

(2.90)
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Summing the geometric progression, we get

∥
∥
∥
∥
∥

k∑

m=1

λαAx
h

(

λ +Ax
h

)−1
Rk−m+1Ax

hτã

∥
∥
∥
∥
∥
E

≤ M6

∫∞

0

k∑

m=1

ρ1−α
[

1 + 2ρ cosφ + ρ2
]1/2

×
(

1 − 1
[

1 + 2ρ cosφ + ρ2
]1/2

)−1
(λτ)αdρ
λτ + ρ

‖ã‖E′
α

≤ M6

∫∞

0

(λτ)ακ
(

ρ
)

dρ
(

λτ + ρ
)

ρα
‖ã‖E′

α
.

(2.91)

Since the function

κ

(

ρ
)

=
ρ

[

1 + 2ρ cosφ + ρ2
]1/2 − 1

=
1 +
[

1 + 2ρ cosφ + ρ2
]1/2

2 cosφ + ρ
(2.92)

does not increase for ρ ≥ 0, we have κ(0) = 1/ cosφ ≥ κ(ρ) for all ρ > 0. Consequently,

∥
∥
∥
∥
∥

k∑

m=1

λαAx
h

(

λ +Ax
h

)−1
Rk−m+1Ax

hτã

∥
∥
∥
∥
∥
E

≤ M6

cosφ

∫∞

0

(λτ)αdρ
(

λτ + ρ
)

ρα
‖ã‖E′

α
(2.93)

for any λ > 0. Hence,

sup
λ>0

∥
∥
∥
∥
∥

k∑

m=1

λαAx
h

(

λ +Ax
h

)−1
Rk−m+1Ax

hτã

∥
∥
∥
∥
∥
E

≤ M7
(

φ, α
)‖ã‖E′

α
. (2.94)

Then, using estimates (2.85) and (2.94), we get

∥
∥
∥
∥
∥

k∑

m=1

(

Rk−m+1 − Rk−m
)

ã

∥
∥
∥
∥
∥
E
′
α

≤ M8
(

φ, α, T
)‖ã‖E′

α
, (2.95)

∥
∥
∥Jk2

∥
∥
∥
E
′
α

≤ max
1≤m≤N

ρ(tm)M8
(

φ, α, T
)‖ã‖E′

α
. (2.96)

Now, let us estimate Jk3 :

∥
∥
∥Jk3

∥
∥
∥
E
′
α

=

∥
∥
∥
∥
∥
−

k∑

m=1

Ax
hR

k−m+1 τ

qs
a
qn+1 − 2qn + qn−1

h2
wm

s

∥
∥
∥
∥
∥
E
′
α

≤
k∑

m=1

∥
∥
∥
∥
Ax

hR
k−m+1 τ

qs

(

a
qn+1 − 2qn + qn−1

h2
− σq

)∥
∥
∥
∥
E
′
α

|wm
s |.

(2.97)
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Since

|wm
s | ≤ max

0≤s≤M
|wm

s | =
∥
∥
∥wh
∥
∥
∥
E
≤
∥
∥
∥wh
∥
∥
∥
E′
α

≤
∥
∥
∥

(

Ax
h

)−1∥∥
∥
E′
α →E′

α

∥
∥
∥Ax

hw
h
∥
∥
∥
E′
α

≤ M
∥
∥
∥Ax

hw
h
∥
∥
∥
E′
α

,

(2.98)

and using estimate (2.95), we obtain

‖J3‖E′
α
≤ M9

(

φ, α, T, τ
)‖ã‖E′

α

k∑

m=1

∥
∥
∥Ax

hw
h
∥
∥
∥
E′
α

τ. (2.99)

Jk4 can be estimated as follows:

∥
∥
∥Jk4

∥
∥
∥
E′
α

=

∥
∥
∥
∥
∥
−

k∑

m=1

Ax
hR

k−m+1Bx
h(t)τw

m
s

∥
∥
∥
∥
∥
E′
α

=

∥
∥
∥
∥
∥

k∑

m=1

Ax
hR

k−m+1Bx
h(t)
(

Ax
h

)−1
Ax

hτw
m
s

∥
∥
∥
∥
∥
E′
α

≤
k∑

m=1

∥
∥
∥Ax

hR
k−m+1Bx

h(t)
(

Ax
h

)−1∥∥
∥
E′
α →E′

α

∥
∥Ax

hw
m
s

∥
∥
E′
α
τ.

(2.100)

From

∥
∥
∥Rk
∥
∥
∥
E
′
α →E

′
α

≤
∥
∥
∥Rk
∥
∥
∥
E→E

≤ M,

∥
∥
∥Ax

hB
x
h(t)
(

Ax
h

)−1∥∥
∥
E′
α →E′

α

≤ M

(2.101)

it follows that

∥
∥
∥Jk4

∥
∥
∥
E′
α

≤ M10

k∑

m=1

∥
∥Ax

hw
m
s

∥
∥
E′
α
τ. (2.102)

The estimations of Jk5 and Jk6 are as follows. By the definition of the norm of the spaces E′
α and

(2.95), we get

∥
∥
∥Jk5

∥
∥
∥
E′
α

≤
∥
∥
∥
∥
∥

k∑

m=1

Ax
hR

k−m+1τFh
1 (tm)

∥
∥
∥
∥
∥
E′
α

+M11
(

φ, α, T
)
∥
∥
∥
∥

{

Fh
1 (tk)

}N

k=1

∥
∥
∥
∥
Cτ (E′

α)
,

(2.103)
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‖J6‖E′
α
≤ M12

(

φ, α
)

k∑

m=1

∥
∥
∥Ax

hw
h
∥
∥
∥
E′
α

τ. (2.104)

Combining estimates (2.74), (2.96), (2.99), and (2.102)–(2.104), we get

∥
∥
∥Ax

hw
h
k

∥
∥
∥
E′
α

≤ M1

∥
∥
∥Ax

hϕ
h
∥
∥
∥
E
′
α

+ max
1≤m≤N

ρ(tm)M8
(

φ, α, T
)‖ã‖E′

α

+
(

M9
(

φ, α, T, τ
)‖ã‖E′

α
+M10 +M12

(

φ, α
))

k∑

m=1

∥
∥
∥Ax

hw
h
k

∥
∥
∥
Eα

τ

+M11
(

φ, α, T
)
∥
∥
∥
∥

{

Fh
1 (tk)

}N

k=1

∥
∥
∥
∥
Cτ (E′

α)
.

(2.105)

Using the discrete analogue of Gronwall’s inequality, we get

∥
∥
∥Ax

hw
h
k

∥
∥
∥
E′
α

≤ eM13(ã,φ,α,T,τ)

×
[

M1

∥
∥
∥Ax

hϕ
h
∥
∥
∥
E
′
α

+M14
(

ã, φ, α, T
)∥
∥ρτ
∥
∥
C[0,T]τ

+M11
(

φ, α, T
)
∥
∥
∥
∥

{

Fh
1 (tk)

}N

k=1

∥
∥
∥
∥
Cτ (E′

α)

]

.

(2.106)

It follows from (2.63) and the triangle inequality that

∥
∥
∥
∥
∥

wh
k
−wh

k−1
τ

∥
∥
∥
∥
∥
E′
α

≤ eM12(ã,φ,α,T)

×
[

M1

∥
∥
∥Ax

hϕ
h
∥
∥
∥
E′
α

+M13
(

ã, φ, α, T
)∥
∥ρτ
∥
∥
C[0,T]τ

+M11
(

φ, α, T
)
∥
∥
∥
∥

{

Fh
1 (tk)

}N

k=1

∥
∥
∥
∥
Cτ (E′

α)

]

,

(2.107)

for every k, 1 ≤ k ≤ N. Then, we have that

∥
∥
∥
∥
∥
∥

{

wh
k
−wh

k−1
τ

}N

k=1

∥
∥
∥
∥
∥
∥
Cτ (E′

α)

≤ M14
(

ã, φ, α, T
)

×
(
∥
∥
∥Ax

hϕ
h
∥
∥
∥
E′
α

+
∥
∥
∥
∥

{

Fh
1 (tk)

}N

k=1

∥
∥
∥
∥
Cτ (E′

α)
+
∥
∥ρτ
∥
∥
C[0,T]τ

)

.

(2.108)

The following theorem finishes the proof of Theorem 2.6.
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Theorem 2.6 (see [30]). For 0 < α < 1/2, the spaces E′
α(C[0, L]h,A

x
h) and C

2α[0, L]h coincide and
their norms are equivalent.

3. Conclusion

Since artery disease caused by atherosclerosis is one of the most important causes of the death
in the world, investigation of the effect of flow over the glycocalyx takes an important place.
The flow equations can be formulated as an inverse problem. Here, our aim is to give more
detailed understanding of the flow phenomena. Therefore, the well-posedness of the inverse
problem of reconstructing the right side of a parabolic equation was investigated. Further, a
new computer code regarding the flow analysis for the unknown pressure difference will be
written.
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