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This paper presents a new sectional flexibility factor to simulate the reduction of the stiffness
of a single-edge open cracked beam. The structural model for crack of the beam is considered
as a rotational spring which is related to the ratio of crack depth to the beam height, a/h. The
mathematical model of this single-edge open crack beam is considered as an Euler-Bernoulli beam.
The modified factor, f(a/h), derived in this paper is in good agreement with previous researchers’
results for crack depth ratio a/h less than 0.5. The natural frequencies and corresponding mode
shapes for lateral vibration with different types of single-edge open crack beams can then be
evaluated by applying this modified factor f(a/h). Using the compatibility conditions on the crack
and the analytical transfer matrix method, the numerical solutions for natural frequencies of the
cracked beam are obtained. The natural frequencies and the mode shapes with crack at different
locations are obtained and compared with the latest research literature. The numerical results of
the proposed cracked beam model obtained by this method can be extended to construct frequency
contour. The natural frequencies measured from field can be used in solving the inverse problem
to identify cracks in structures.

1. Introduction

A crack in the structure will reduce the structural strength and result in severe damage
under critical loading conditions. The major issue of the structural health monitoring is to
detect crack depth and location in the present study. The model with linear elastic fracture
mechanics and Euler-Bernoulli beam theory are being widely used in the recent research
literatures. The cracked beam is modeled as two-segment beam with the crack simulated as a
rotational spring. The crack of the beam is considered as a local flexibility which is a function
of the crack depth.

Sih [1] proposed strain energy density factor theory to discuss the all mixed-mode
crack extension problems. The strain energy density factor is a linear elasticity function of the
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mixed-mode stress intensity factors. Tada et al. [2] presented the stress intensity factors of
different modes due to general loading. The presented model introduced the local flexibility
matrix from the stress intensity factors. Nobile [3] proposed a simple method for obtaining
approximate stress intensity of straight cracked beams. The system takes account of the
elastic crack tip stress singularity while using the elementary beam theory. Dimarogonas
and Paipetis [4] introduced a general stiffness matrix for cracked structural members to
model the respective dynamic system. The local flexibility can be derived further from the
general stiffness matrix. Chondros et al. [5] developed a continuous cracked beam vibration
theory for the lateral vibration of cracked Euler-Bernoulli beams with single-edge or double-
edge open cracks. The crack was modeled as a continuous flexibility using the displacement
field. Anifantis and Dimarogonas [6] studied the system stability of the cracked column with
vertical load. The method developed a general flexibility matrix to express the local flexibility
of a beam with a single-edge crack. Ostachowicz and Krawczuk [7] developed a new local
flexibility which was derived from the stress intensity factor by Anifantis and Dimarogonas
[6].

In order to obtain the natural frequencies of the crack beam, finite element method was
used to compute the eigensolutions in the recent literatures. The order of the determinants
increases as the degree of freedom increases in finite element method. In order to reduce
the order of the determinants, Lin et al. [8] proposed using transfer matrix for beams
with arbitrary number of cracks. The method uses only four unknown constants which
can be solved through satisfying four boundary conditions. Lin and Chang [9] used the
analytic transfer matrix method to solve eigensolutions of a cracked cantilever beam. The
eigenfunctions obtained in this method are analytical solutions. The dynamic responses can
be obtained by this method, and the solutions converge quite fast. Alsabbagh et al. [10]
presented a new simplified formula for the stress correction factor by using strain energy
density approach. A modified factor for local flexibility was used in solving the characteristic
equation of the cracked beam. Lin [11] used the Timoshenko beam theory and transfer matrix
method to solve the direct and inverse problems of simply supported beam with a single-
edge open crack. The location and crack size of the beam can be determined by the method
presented. The theoretical results are also validated by a comparison with experimental
measurements.

2. Derivation of Stress Intensity Factor

A prismatic beam is considered with an open and nonpropagating crack of depth a, length
L, height h, and width t. The singular stress distribution at the crack tip takes the form
[3, 4, 10]

σs
x =

KI√
2πr

, (2.1)

with the conditions that σs
x acts at a distance r = b from the tip and KI is the stress intensity

factor. The normal stress acting on the reduced cross-section passing through the crack tip is
given as

σx =
M

I
y, (2.2)
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where M is the bending moment and I = t(h − a)3/12 is the moment of inertia of the
remaining part of the cracked beam. The distance y in (2.2) is found from Figure 1 as

y = y − b =
h

2
− a

2
− b, (2.3)

where y is the distance from the neutral axis of the reduced cross-section to the tip as shown
in Figure 1.

The stress condition is considered as σs
x = σx at the crack tip r = b. Substituting (2.3)

into (2.2), σx and KI can be expressed as

σx =
12M

t(h − a)3

(
h

2
− a

2
− b

)
, (2.4)

KI =
√

2πbσx =
12M

√
2πb

t(h − a)3

(
h

2
− a

2
− b

)
. (2.5)

The distance b can be determined from the equilibrium condition of forces along the x-axis:

∫b

0

KI√
2πr

dr =
∫y

y−b
σx dy. (2.6)

The left-hand side of (2.6) is evaluated, using (2.5), to be

∫b

0

KI√
2πr

dr =
24Mb

t(h − a)3

(
h

2
− a

2
− b

)
. (2.7)

The right-hand side of (2.6) is evaluated, using (2.4), to be

∫y

y−b
σx dy =

6Mb

t(h − a)3 (h − a − b). (2.8)

Substitution of (2.7) and (2.8) into (2.6) leads to

24Mb

t(h − a)3

(
h

2
− a

2
− b

)
=

6Mb

t(h − a)3 (h − a − b). (2.9)

So

b =
1
3
(h − a). (2.10)
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Figure 1: Geometry of a beam with a single-edge crack.

Substituting (2.10) into (2.5), the stress intensity factor can be expressed as

KI =
6M
th3/2

F

(
a

h

)
, (2.11)

where

F

(
a

h

)
=

√
2π
27

· 1√
(1 − a/h)3

=
0.482√

(1 − a/h)3
. (2.12)

3. Calculation of the Equivalent Flexibility in the Crack Beam

Let UT be the strain energy due to the crack. According to Castigliano’s theorem, the
additional displacement is ui = ∂UT/∂Pi under general loading Pi. In this work, the dis-
placement will reduce to

θ =
∂UT

∂M
, (3.1)

where the displacement ui is taken as the rotation θ since the bending moment M is the only
load of the structure.

The strain energy has the form [4–6, 10]

UT =
∫a

0

∂UT

∂a
da = t

∫a

0
Jda, (3.2)

where J is the strain energy density function. Therefore,

ui =
∂UT

∂Pi
=

∂

∂Pi

[
t

∫a

0
J(a)da

] (
Paris’s equation

)
. (3.3)
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The moment M substitutes for the generalized load Pi

θ =
∂

∂M

[
t

∫a

0
J(a)da

]
. (3.4)

The flexibility influence coefficient will be written as

c =
∂θ

∂M
=

∂2

∂M2

[
t

∫a

0
J(a)da

]
. (3.5)

The strain energy density function J has the form

J =
K2

I

E′ , (3.6)

where E′ = E/(1 − υ2) for plane strain and E and υ are Young’s modulus and Poisson’s ratio,
respectively. The flexibility scalar is

c =
∂2

∂M2

[
t

∫a

0

K2
I

E′ da

]
=

2π
(
1 − υ2)h[1 − (1 − a/h)2

]

9EI(1 − a/h)2
, (3.7)

where Poisson’s ratio is taken as υ = 0.3 and the area moment of inertia is taken for the whole
cross-section as I = th3/12. The nondimensional cracked section flexibility can be found from
(3.7) as

c∗ =
EIc

L
=

2π
(
1 − υ2)[1 − (1 − a/h)2

]

9(1 − a/h)2
· h
L
. (3.8)

4. Free Vibration of a Cracked Beam

A simple beam with length L and an open-edge crack at position X1 is considered as shown
in Figure 2. Euler-Bernoulli beam bending theory was used in solving the free vibration
problem. According to [8, 9], the differential equation of motion for each segment is

EI
∂4Yi(X, T)

∂X4
+ ρA

∂2Yi(X, T)
∂T2

= 0 Xi−1 < X < Xi, i = 1, 2, (4.1)

where ρ is the density of the material and A is the cross-section area of the rectangular beam.
The boundary conditions of the simply supported beam are

Y (0, T) = Y (L, T) = 0,

Y ′′(0, T) = Y ′′(L, T) = 0.
(4.2)
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Figure 2: Schematic diagram of a simply supported cracked beam.

The beam at the crack position is simulated as a rational spring with sectional flexibility as
shown in Figure 3. The continuous conditions at the crack position are

Y1
(
X−

1 , T
)
= Y2

(
X+

1 , T
)
, (4.3)

Y ′′
1

(
X−

1 , T
)
= Y ′′

2
(
X+

1 , T
)
, (4.4)

Y ′′′
1

(
X−

1 , T
)
= Y ′′′

2
(
X+

1 , T
)
, (4.5)

and the compatibility condition due to the rational flexibility is

Y ′
2
(
X+

1 , T
) − Y ′

1

(
X−

1 , T
)
= EIcY ′′

2
(
X+

1 , T
)
. (4.6)

From the above equations, the following quantities are introduced for nondimensional anal-
ysis:

y =
Y

L
, x =

X

L
, t = T, xi =

Xi

L
, l1 =

L1

L
, l2 =

L2

L
. (4.7)

Equation (4.1) can then be expressed in a nondimensional form as

EI

L4

∂4yi(x, t)
∂x4

+ ρA
∂2yi(x, t)

∂t2
= 0 xi−1 < x < xi, i = 1, 2. (4.8)

The continuous conditions at the crack position as non-dimensional form are

y1
(
x−

1 , t
)
= y2

(
x+

1 , t
)
,

y′′
1

(
x−

1 , t
)
= y′′

2

(
x+

1 , t
)
,

y′′′
1

(
x−

1 , t
)
= y′′′

2

(
x+

1 , t
)
,

y′
2

(
x+

1 , t
) − y′

1

(
x−

1 , t
)
= c∗y′′

2

(
x+

1 , t
)
,

(4.9)

where c∗ is the non-dimensional cracked section flexibility as (3.8).
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Figure 3: Model for the cracked beam with sectional flexibility.

5. Calculation of Natural Frequencies

The equation of motion for the cracked simple beam system can be expressed as (4.8). Using
the method of separation of variables, yi(x, t) = wi(x)ejωt, in (4.8), the differential equation
for free vibration can be written as

w′′′′
i (x) − λ4wi(x) = 0, xi−1 < x < xi, i = 1, 2, (5.1)

where

λ4 =
ρAω2L4

EI
. (5.2)

From (4.9), the continuous conditions at the crack position are

w1
(
x−

1

)
= w2

(
x+

1

)
,

w′′
1

(
x−

1

)
= w′′

2
(
x+

1

)
,

w′′′
1

(
x−

1

)
= w′′′

2

(
x+

1

)
,

w′
2
(
x+

1

) −w′
1

(
x−

1

)
= c∗w′′

2
(
x+

1

)
.

(5.3)

A closed-form solution to this eigenvalue problem can be obtained by employing transfer
matrix methods [8, 9]. The general solution of (5.1), for each segment, is

wi(x) = Ai sinλ(x − xi−1) + Bi cosλ(x − xi−1)

+ Ci sinhλ(x − xi−1) +Di coshλ(x − xi−1), xi−1 < x < xi, i = 1, 2,
(5.4)

where Ai, Bi, Ci, and Di are constants associated with the ith segment (i = 1, 2). These
constants of the second segment (A2, B2, C2, and D2) are related to those of the first segment
(A1, B1, C1, and D1) through the continuous conditions in (5.3) and can be expressed as

⎧⎪⎪⎨
⎪⎪⎩

A2

B2

C2

D2

⎫⎪⎪⎬
⎪⎪⎭

=

⎡
⎢⎢⎣
t11 t12 t13 t14

t21 t22 t23 t24

t31 t32 t33 t34

t41 t42 t43 t44

⎤
⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

A1

B1

C1

D1

⎫⎪⎪⎬
⎪⎪⎭

= T 4 × 4

⎧⎪⎪⎨
⎪⎪⎩

A1

B1

C1

D1

⎫⎪⎪⎬
⎪⎪⎭
, (5.5)

where T 4 × 4 is a 4 × 4 transfer matrix which depends on eigenvalue λ and the elements are
derived from [8].
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Using (5.5), the four constants of the first segment (A1, B1, C1, and D1) can be mapped
into those of the second segment (A2, B2, C2, and D2); thereby, the number of independent
constants can be reduced to four. For the case of a simply supported beam, the corresponding
boundary conditions of (4.2) and (4.3) can be written as

Y (0, T) = 0 −→ w(0) = 0, (5.6)

Y (L, T) = 0 −→ w(1) = 0, (5.7)

Y ′′(0, T) = 0 −→ w′′(0) = 0, (5.8)

Y ′′(L, T) = 0 −→ w′′(1) = 0. (5.9)

Due to (5.6) and (5.8), (5.4) yields

B1 = 0, D1 = 0. (5.10)

Satisfying the boundary conditions (5.7) and (5.9), (5.4) leads to the following equations:

A2 sinλl2 + B2 cosλl2 + C2 sinhλl2 +D2 coshλl2 = 0,

−A2 sinλl2 − B2 cosλl2 + C2 sinhλl2 +D2 coshλl2 = 0,
(5.11)

which can be expressed in matrix form as

{
0
0

}
=
[

sinλl2 cosλl2 sinhλl2 coshλl2
− sinλl2 − cos λl2 sinhλl2 coshλl2

]
⎧⎪⎪⎨
⎪⎪⎩

A2

B2

C2

D2

⎫⎪⎪⎬
⎪⎪⎭

= B 2 × 4

⎧⎪⎪⎨
⎪⎪⎩

A2

B2

C2

D2

⎫⎪⎪⎬
⎪⎪⎭
, (5.12)

where

B 2 × 4 =
[

sinλl2 cosλl2 sinhλl2 coshλl2
− sinλl2 − cos λl2 sinhλl2 coshλl2

]
. (5.13)

Substituting (5.5) into (5.12) and applying (5.10), one obtains

{
0
0

}
= B 2 × 4

⎧⎪⎪⎨
⎪⎪⎩

A2

B2

C2

D2

⎫⎪⎪⎬
⎪⎪⎭

= B 2 × 4 · T 4 × 4

⎧⎪⎪⎨
⎪⎪⎩

A1

B1

C1

D1

⎫⎪⎪⎬
⎪⎪⎭

= R 2 × 4

⎧⎪⎪⎨
⎪⎪⎩

A1

B1

C1

D1

⎫⎪⎪⎬
⎪⎪⎭
, (5.14)

where

R 2 × 4 = B 2 × 4 · T 4 × 4 =
[
r11 r12 r13 r14

r21 r22 r23 r24

]
. (5.15)
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A nontrivial solution of the simply supported beam requires

det
[
r11(λ) r13(λ)
r21(λ) r23(λ)

]
= 0. (5.16)

The characteristic equation of the cracked simply supported beam can be obtained as

c∗λn sinh(λnl1) sinh(λnl2) sin(λn(l1 + l2)) − c∗λn sin(λnl1) sin(λnl2) sinh(λn(l1 + l2))

+ 2 sinh(λn(l1 + l2)) sin(λn(l1 + l2)) = 0,
(5.17)

where λn is the eigenvalues of the system. This characteristic equation can be solved by using
the Newton-Raphson method to obtain the eigenvalues and corresponding eigenfunctions.

6. Numerical Results

In order to verify the procedure presented in this paper, results obtained by applying this
method are compared with the available data for single-edge open cracked beam. A 300 mm
simple supported beam of cross-section 20 × 20 mm2, with modulus of elasticity E = 2.06 ×
1011 N/m2, the density ρ = 7800 kg/m3, the crack is located at the position 240 mm and crack
depth a = 8 mm.

A simplified stress intensity factor KI in (2.11) is expressed in this paper. The function
F(a/h) in (2.12) can be compared with the expression given by [2]

KI =
6M
th3/2

F2

(
a

h

)
,

F2

(
a

h

)
=
√
π

√
a

h

√
2h
πa

tan
(
πa

2h

)
0.923 + 0.199(1 − sin(πa/2h))4

cos(πa/2h)
.

(6.1)

Another stress intensity factor is [12]

KI =
6M
th3/2

F3

(
a

h

)
,

F3

(
a

h

)
=
√
π

√
a

h

[
1.122 − 1.44

(
a

h

)
+ 7.33

(
a

h

)2

− 13.08
(
a

h

)3

+ 14
(
a

h

)4
]
.

(6.2)

In this research, small crack depth ratio which implies early stage of structure damage
is considered. The comparison of data obtained by the proposed method and previous
research is shown in Figure 4. The stress intensity factor of the present model and those in
[2, 12] are rather close to each other for small crack depth ratio a/h.
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The nondimensional cracked section flexibility c∗ in (3.8) can be compared with the
expression given by [5]

c2 = 6π
(

1 − υ2
)
· h
L
·Φ

(
a

h

)
,

Φ
(
a

h

)
= 0.6272

(
a

h

)2

− 1.04533
(
a

h

)3

+ 4.5948
(
a

h

)4

− 9.9736
(
a

h

)5

+ 20.2948
(
a

h

)6

− 33.0351
(
a

h

)7

+ 47.1063
(
a

h

)8

− 40.7556
(
a

h

)9

+ 19.6
(
a

h

)10

.

(6.3)

Another non-dimensional cracked section flexibility is [7]

c3 = 6π
(
a

h

)2

· h
L
· fJ

(
a

h

)
,

fJ

(
a

h

)
= 0.6384 − 1.035

(
a

h

)
+ 3.7201

(
a

h

)2

− 5.1773
(
a

h

)3

+ 7.553
(
a

h

)4

− 7.332
(
a

h

)5

+ 2.4909
(
a

h

)6

.

(6.4)
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Table 1: Natural frequency ratio with the crack depth at location 0.8.

Crack location Crack depth Natural frequency ratio
L1/L a/h ω1/ω01 ω2/ω02 ω3/ω03 ω4/ω04 ω5/ω05

0.8 0.0 1.0000 1.0000 0.9999 1.0000 0.9999
0.8 0.1 0.9966 0.9912 0.9913 0.9967 0.9999
0.8 0.2 0.9918 0.9792 0.9803 0.9927 0.9999
0.8 0.3 0.9850 0.9628 0.9660 0.9876 0.9999
0.8 0.4 0.9747 0.9394 0.9474 0.9814 0.9999
0.8 0.5 0.9581 0.9052 0.9237 0.9737 0.9999
0.8 0.6 0.9292 0.8544 0.8943 0.9648 0.9999
0.8 0.7 0.8735 0.7800 0.8605 0.9551 0.9999
0.8 0.8 0.7525 0.6809 0.8271 0.9459 0.9999
0.8 0.9 0.4791 0.5825 0.8021 0.9392 0.9999
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Figure 5: Nondimensional cracked section flexibility variations.

Three generalized loading conditions, bending, tension, and torsion, on a cracked
beam were considered to evaluate sectional flexibility in the past literature. Beams are
mainly affected by bending moment in most loading cases; therefore only bending effects are
considered in evaluating the simplified cracked section flexibility. The results of the proposed
method of non-dimensional cracked section flexibility are compared with those of previous
research in Figure 5. The results of this simplified method and those of [5, 7] are in good
agreement for small crack depth ratio a/h. A cracked beam with a/h greater than 0.5 is
already severely damaged and is not suitable for applying this sectional flexibility model.

The first five natural frequencies of the uncracked beam are calculated as ω01 = 517.85,
ω02 = 2071.4, ω03 = 4660.64, ω04 = 8285.58, and ω05 = 12946.22 Hz. The ratios of natural
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Figure 6: Variation of natural frequency ratio with the crack depth of a simply supported beam (L1/L =
0.8): (a) first frequency, (b) second frequency, (c) third frequency, (d) fourth frequency, and (e) fifth
frequency.

frequencies between cracked beam and uncracked beam are listed in Table 1. The variation
of natural frequency ratio with the crack depth of this simply supported beam with a crack
located at the section (L1/L = 0.8) for the first five modes is plotted as in Figure 6.

With a crack located at the center of the beam, the ratios of natural frequencies between
cracked beam and uncracked beam are listed in Table 2. The variation of natural frequency
ratio with the crack depth of a simply supported beam with a crack located at (L1/L = 0.5) is
shown in Figure 7 for the first five modes.

It is quite obvious that the natural frequencies decrease due to the existence of cracks.
That is due to the cracked beam becoming more flexible due to the reduction of moment of
inertia of the section property.

Figures 8(a)–8(e) show the first five mode shapes of a cracked simply supported beam
with single open crack at L1/L = 0.8, crack ratio a/h = 0.4, and normalized amplitude
Y/Ymax. It is obvious that the mode shapes all show turning point at crack location L1/L = 0.8.

7. Conclusion

The simplified stress intensity factor and flexibility were derived utilizing the crack beam
theorem of Nobile [3] and Dimarogonas [4, 5]. The order of polynomial functions for crack
depth ratio a/h is reduced, because, with a crack depth ratio a/h < 0.5, the high-order terms
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Figure 7: Variation of natural frequency ratio with the crack depth of a simply supported beam (L1/L =
0.5): (a) first frequency, (b) second frequency, (c) third frequency, (d) fourth frequency, and (e) fifth
frequency.

will approach to 0. Therefore, these higher-order arithmetic terms can be neglected and, in
order to predict the early stage of structural damage, crack depth ratio a/h should be less
than 0.5. The simplified stress intensity factor and flexibility are compared with the recent
literature, and the numerical results are found to be in good agreement.

If the crack is right on the position of nodal point of certain modes, frequencies ratio
shows no difference with ωi/ω0i = 1. For example, the crack at 0.8 L is also a nodal point of the
fifth mode which gives the numerical result as ω5/ω05 = 1. The numerical results obtained by
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Figure 8: (a) Normalized mode shape of the first mode with a crack location L1/L = 0.8 and crack depth
ratio a/h = 0.4. (b) Normalized mode shape of the second mode with a crack location L1/L = 0.8 and
crack depth ratio a/h = 0.4. (c) Normalized mode shape of the third mode with a crack location L1/L =
0.8 and crack depth ratio a/h = 0.4. (d) Normalized mode shape of the fourth mode with a crack location
L1/L = 0.8 and crack depth ratio a/h = 0.4. (e) Normalized mode shape of the fifth mode with a crack
location L1/L = 0.8 and crack depth ratio a/h = 0.4.
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Table 2: Natural frequency ratio with the crack depth at location 0.5.

Crack location Crack depth Natural frequency ratio
L1/L a/h ω1/ω01 ω2/ω02 ω3/ω03 ω4/ω04 ω5/ω05

0.5 0.0 1.0000 1.0000 0.9999 1.0000 0.9999
0.5 0.1 0.9902 1.0000 0.9904 1.0000 0.9905
0.5 0.2 0.9770 1.0000 0.9778 1.0000 0.9786
0.5 0.3 0.9586 1.0000 0.9613 1.0000 0.9636
0.5 0.4 0.9321 1.0000 0.9391 1.0000 0.9448
0.5 0.5 0.8927 1.0000 0.9094 1.0000 0.9218
0.5 0.6 0.8314 1.0000 0.8699 1.0000 0.8948
0.5 0.7 0.7328 1.0000 0.8199 1.0000 0.8654
0.5 0.8 0.5723 1.0000 0.7634 1.0000 0.8377
0.5 0.9 0.3245 1.0000 0.7144 1.0000 0.8175

this method are in good agreement with the actual vibration response of a simply supported
beam. The turning points of certain mode shape function reveal the information about crack
location. For the case with a crack at 0.8 L, it can be seen obviously from shape function of
mode two, mode three, and mode four with a turning point at 0.8L.

The simplified stress intensity factor and flexibility of this method can be further
extended to construct frequencies ratio contours for beams with cracks. The natural
frequencies obtained by applying this model can be used to verify the experimental
measurements in a similar way to that in [11]. The location and crack depth of a beam can
then be identified as an inverse problem by matching up field measurement of frequencies of
a cracked beam.
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