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We discuss the existence of solutions, under the Pettis integrability assumption, for a class of
boundary value problems for fractional differential inclusions involving nonlinear nonseparated
boundary conditions. Our analysis relies on the Mönch fixed point theorem combined with the
technique of measures of weak noncompactness.

1. Introduction

This paper is mainly concerned with the existence results for the following fractional
differential inclusion with non-separated boundary conditions:

cDαu(t) ∈ F(t, u(t)), t ∈ J := [0, T], T > 0,

u(0) = λ1u(T) + μ1, u′(0) = λ2u′(T) + μ2, λ1 /= 1, λ2 /= 1,
(1.1)

where 1 < α ≤ 2 is a real number, cDα is the Caputo fractional derivative. F : J × E → P(E)
is a multivalued map, E is a Banach space with the norm ‖ · ‖, and P(E) is the family of all
nonempty subsets of E.

Recently, fractional differential equations have found numerous applications in
various fields of physics and engineering [1, 2]. It should be noted that most of the books
and papers on fractional calculus are devoted to the solvability of initial value problems for
differential equations of fractional order. In contrast, the theory of boundary value problems
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for nonlinear fractional differential equations has received attention quite recently and many
aspects of this theory need to be explored. For more details and examples, see [3–18] and the
references therein.

To investigate the existence of solutions of the problem above, we use Mönch’s fixed
point theorem combined with the technique of measures of weak noncompactness, which
is an important method for seeking solutions of differential equations. This technique was
mainly initiated in themonograph of Banaś andGoebel [19] and subsequently developed and
used in many papers; see, for example, Banaś and Sadarangani [20], Guo et al. [21], Krzyśka
and Kubiaczyk [22], Lakshmikantham and Leela [23], Mönch’s [24], O’Regan [25, 26], Szufla
[27, 28], and the references therein.

In 2007, Ouahab [29] investigated the existence of solutions for α-fractional differential
inclusions by means of selection theorem together with a fixed point theorem. Very recently,
Chang and Nieto [30] established some new existence results for fractional differential
inclusions due to fixed point theorem of multivalued maps. Problem (1.1) was discussed
for single valued case in the paper [31]; some existence results for single- and multivalued
cases for an extension of (1.1) to non-separated integral boundary conditions were obtained
in the article [32] and [33]. About other results on fractional differential inclusions, we refer
the reader to [34]. As far as we know, there are very few results devoted to weak solutions
of nonlinear fractional differential inclusions. Motivated by the above mentioned papers, the
purpose of this paper is to establish the existence results for the boundary value problem
(1.1) by virtue of the Mönch fixed point theorem combined with the technique of measures
of weak noncompactness.

The remainder of this paper is organized as follows. In Section 2, we present some
basic definitions and notations about fractional calculus and multivalued maps. In Section 3,
we give main results for fractional differential inclusions. In the last section, an example is
given to illustrate our main result.

2. Preliminaries and Lemmas

In this section, we introduce notation, definitions, and preliminary facts that will be used in
the remainder of this paper. Let E be a real Banach space with norm ‖ · ‖ and dual space E∗,
and let (E,ω) = (E, σ(E, E∗)) denote the space E with its weak topology. Here, let C(J, E) be
the Banach space of all continuous functions from J to E with the norm

∥
∥y
∥
∥
∞ = sup

{∥
∥y(t)

∥
∥ : 0 ≤ t ≤ T}, (2.1)

and let L1(J, E) denote the Banach space of functions y : J → E that are the Lebesgue
integrable with norm

∥
∥y
∥
∥
L1 =

∫T

0

∥
∥y(t)

∥
∥dt. (2.2)

We let L∞(J, E) to be the Banach space of bounded measurable functions y : J → E equipped
with the norm

∥
∥y
∥
∥
L∞ = inf

{

c > 0 :
∥
∥y(t)

∥
∥ ≤ c, a.e. t ∈ J}. (2.3)
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Also, AC1(J, E) will denote the space of functions y : J → E that are absolutely continuous
and whose first derivative, y′, is absolutely continuous.

Let (E, ‖ · ‖) be a Banach space, and let Pcl(E) = {Y ∈ P(E) : Y is closed}, Pb(E) =
{Y ∈ P(E) : Y is bounded}, Pcp(E) = {Y ∈ P(E) : Y is compact}, and Pcp,c(E) = {Y ∈ P(E) :
Y is compact and convex}. A multivalued map G : E → P(E) is convex (closed) valued if
G(x) is convex (closed) for all x ∈ E. We say that G is bounded on bounded sets if G(B) =
∪x∈BG(x) is bounded in E for all B ∈ Pb(E) (i.e., supx∈B{sup{‖y‖ : y ∈ G(x)}} < ∞). The
mapping G is called upper semicontinuous (u.s.c.) on E if for each x0 ∈ E, the set G(x0) is a
nonempty closed subset of E and if for each open set N of E containing G(x0), there exists
an open neighborhoodN0 of x0 such that G(N0) ⊆ N. We say that G is completely continuous
if G(B) is relatively compact for every B ∈ Pb(E). If the multivalued map G is completely
continuous with nonempty compact values, then G is u.s.c. if and only if G has a closed
graph (i.e., xn → x∗, yn → y∗, yn ∈ G(xn) imply y∗ ∈ G(x∗)). The mapping G has a fixed
point if there is x ∈ E such that x ∈ G(x). The set of fixed points of the multivalued operator
G will be denoted by FixG. A multivalued map G : J → Pcl(E) is said to be measurable if for
every y ∈ E, the function

t �−→ d
(

y,G(t)
)

= inf
{∣
∣y − z∣∣ : z ∈ G(t)} (2.4)

is measurable. For more details on multivalued maps, see the books of Aubin and Cellina
[35], Aubin and Frankowska [36], Deimling [37], Hu and Papageorgiou [38], Kisielewicz
[39], and Covitz and Nadler [40].

Moreover, for a given set V of functions v : J �→ R, let us denote by V (t) = {v(t) : v ∈
V }, t ∈ J , and V (J) = {v(t) : v ∈ V, t ∈ J}.

For any y ∈ C(J, E), let SF,y be the set of selections of F defined by

SF,y =
{

f ∈ L1(J, E) : f(t) ∈ F(t, y(t)) a.e. t ∈ J
}

. (2.5)

Definition 2.1. A function h : E → E is said to be weakly sequentially continuous if h takes
each weakly convergent sequence in E to a weakly convergent sequence in E (i.e., for any
(xn)n in E with xn(t) → x(t) in (E,ω) then h(xn(t)) → h(x(t)) in (E,ω) for each t → J).

Definition 2.2. A function F : Q → Pcl,cv(Q) has a weakly sequentially closed graph if for any
sequence (xn, yn)

∞
1 ∈ Q ×Q, yn ∈ F(xn) for n ∈ {1, 2, . . .}with xn(t) → x(t) in (E,ω) for each

t ∈ J and yn(t) → y(t) in (E,ω) for each t ∈ J , then y ∈ F(x).

Definition 2.3 (see [41]). The function x : J → E is said to be the Pettis integrable on J if and
only if there is an element xJ ∈ E corresponding to each I ⊂ J such that ϕ(xI) =

∫

I ϕ(x(s))ds
for all ϕ ∈ E∗, where the integral on the right is supposed to exist in the sense of Lebesgue.
By definition, xI =

∫

I x(s)ds.
Let P(J, E) be the space of all E-valued Pettis integrable functions in the interval J .

Lemma 2.4 (see [41]). If x(·) is Pettis’ integrable and h(·) is a measurable and essentially bounded
real-valued function, then x(·)h(·) is Pettis’ integrable.
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Definition 2.5 (see [42]). Let E be a Banach space, ΩE the set of all bounded subsets of E, and
B1 the unit ball in E. The De Blasi measure of weak noncompactness is the map β : ΩE →
[0,∞) defined by

β(X) = inf
{

ε > 0 : there exists a weakly compact subset Ω of E such that X ⊂ εB1 + Ω
}

.
(2.6)

Lemma 2.6 (see [42]). The De Blasi measure of noncompactness satisfies the following properties:

(a) S ⊂ T ⇒ β(S) ≤ β(T);
(b) β(S) = 0 ⇔ S is relatively weakly compact;

(c) β(S ∪ T) = max{β(S), β(T)};
(d) β(S

ω
) = β(S), where S

ω
denotes the weak closure of S;

(e) β(S + T) ≤ β(S) + β(T);
(f) β(aS) = |a|α(S);
(g) β(conv(S)) = β(S);

(h) β(∪|λ|≤hλS) = hβ(S).

The following result follows directly from the Hahn-Banach theorem.

Lemma 2.7. Let E be a normed space with x0 /= 0. Then there exists ϕ ∈ E∗ with ‖ϕ‖ = 1 and
ϕ(x0) = ‖x0‖.

For completeness, we recall the definitions of the Pettis-integral and the Caputo derivative of
fractional order.

Definition 2.8 (see [25]). Let h : J → E be a function. The fractional Pettis integral of the
function h of order α ∈ R

+ is defined by

Iαh(t) =
∫ t

0

(t − s)α−1
Γ(α)

h(s)ds, (2.7)

where the sign “
∫

” denotes the Pettis integral and Γ is the gamma function.

Definition 2.9 (see [3]). For a function h : J → E, the Caputo fractional-order derivative of h
is defined by

(cDα
a+h)(t) =

1
Γ(n − α)

∫ t

a

(t − s)n−α−1h(n)(s)ds, n − 1 < α < n, (2.8)

where n = [α] + 1 and [α] denotes the integer part of α.

Lemma 2.10 (see [43]). Let E be a Banach space with Q a nonempty, bounded, closed, convex,
equicontinuous subset of C(J, E). Suppose F : Q → Pcl,cv(Q) has a weakly sequentially closed graph.
If the implication

V = conv({0} ∪ F(V )) =⇒ V is relatively weakly compact (2.9)

holds for every subset V of Q, then the operator inclusion x ∈ F(x) has a solution in Q.
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3. Main Results

Let us start by defining what we mean by a solution of problem (1.1).

Definition 3.1. A function y ∈ AC1(J, E) is said to be a solution of (1.1), if there exists a
function v ∈ L1(J, E)with v(t) ∈ F(t, y(t)) for a.e. t ∈ J , such that

cDαy(t) = v(t) a.e. t ∈ J, 1 < α ≤ 2, (3.1)

and y satisfies conditions u(0) = λ1u(T) + μ1, u
′(0) = λ2u′(T) + μ2, λ1 /= 1, λ2 /= 1.

To prove the main results, we need the following assumptions:

(H1) F : J × E → Pcp,cv(E) has weakly sequentially closed graph;

(H2) for each continuous x ∈ C(J, E), there exists a scalarly measurable function v : J →
E with v(t) ∈ F(t, x(t)) a.e. on J and v is Pettis integrable on J ;

(H3) there exist pf ∈ L∞(J,R+) and a continuous nondecreasing function ψ : [0,∞) →
[0,∞) such that

‖F(t, u)‖ = sup{|v| : v ∈ F(t, u)} ≤ pf(t)ψ(‖u‖); (3.2)

(H4) for each bounded set D ⊂ E, and each t ∈ I, the following inequality holds:

β(F(t,D)) ≤ pf(t) · β(D); (3.3)

(H5) there exists a constant R > 0 such that

R

g∗ +
∥
∥pf
∥
∥
L∞ψ(R)G∗ > 1, (3.4)

where g∗ and G∗ are defined by (3.9).

Theorem 3.2. Let E be a Banach space. Assume that hypotheses (H1)–(H5) are satisfied. If

∥
∥pf
∥
∥
L∞G

∗ < 1, (3.5)

then the problem (1.1) has at least one solution on J .

Proof. Let ρ ∈ C[0, T] be a given function; it is obvious that the boundary value problem [18]

cDαu(t) = ρ(t), t ∈ (0, T), 1 < α ≤ 2

u(t) = λ1u(T) + μ1, u′(0) = λ2u′(T) + μ2, λ1 /= 1, λ2 /= 1
(3.6)
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has a unique solution

u(t) =
∫T

0
G(t, s)ρ(s)ds + g(t), (3.7)

where G(t, s) is defined by the formula

G(t, s) =

⎧

⎪⎪⎪
⎨

⎪⎪⎪
⎩

(t − s)α−1
Γ(α)

− λ1(T − s)α−1
(λ1 − 1)Γ(α)

+
λ2[λ1T + (1 − λ1)t](T − s)α−2

(λ2 − 1)(λ1 − 1)Γ(α − 1)
, if 0 ≤ s ≤ t ≤ T,

−λ1(T − s)α−1
(λ1 − 1)Γ(α)

+
λ2[λ1T + (1 − λ1)t](T − s)α−2

(λ2 − 1)(λ1 − 1)Γ(α − 1)
, if 0 ≤ t ≤ s ≤ T,

g(t) =
μ2[λ1T + (1 − λ1)t]
(λ2 − 1)(λ1 − 1)

− μ1

λ1 − 1
.

(3.8)

From the expression of G(t, s) and g(t), it is obvious that G(t, s) is continuous on J × J
and g(t) is continuous on J . Denote by

G∗ = sup

{∫T

0
|G(t, s)|ds, t ∈ J

}

, g∗ = max
0≤t≤T

∥
∥g(t)

∥
∥. (3.9)

We transform the problem (1.1) into fixed point problem by considering the
multivalued operatorN : C(J, E) → Pcl,cv(C(J, E)) defined by

N(x) =

{

h ∈ C(J, E) : h(t) = g(t) +
∫T

0
G(t, s)v(s)ds, v ∈ SF,x

}

, (3.10)

and refer to [31] for defining the operator N. Clearly, the fixed points of N are solutions of
Problem (1.1). We first show that (3.10)makes sense. To see this, let x ∈ C(J, E); by (H2) there
exists a Pettis’ integrable function v : J → E such that v(t) ∈ F(t, x(t)) for a.e. t ∈ J . Since
G(t, ·) ∈ L∞(J), then G(t, ·)v(·) is Pettis integrable and thusN is well defined.

Let R > 0, and consider the set

D =

{

x ∈ C(J, E) : ‖x‖∞ ≤ R, ‖x(t1) − x(t2)‖ ≤ ∥∥g(t1) − g(t2)
∥
∥

+
∥
∥pf
∥
∥
L∞ψ(R)

∫T

0
‖G(t2, s) −G(t1, s)‖ds for t1, t2 ∈ J

}

;

(3.11)

clearly, the subset D is a closed, convex, bounded, and equicontinuous subset of C(J, E). We
shall show that N satisfies the assumptions of Lemma 2.10. The proof will be given in four
steps.
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Step 1. We will show that the operatorN(x) is convex for each x ∈ D.
Indeed, if h1 and h2 belong toN(x), then there exists Pettis’ integrable functions v1(t),

v2(t) ∈ F(t, x(t)) such that, for all t ∈ J , we have

hi(t) = g(t) +
∫T

0
G(t, s)vi(s)ds, i = 1, 2. (3.12)

Let 0 ≤ d ≤ 1. Then, for each t ∈ J , we have

[dh1 + (1 − d)h2](t) = g(t) +
∫T

0
G(t, s)[dv1(s) + (1 − d)v2(s)]ds. (3.13)

Since F has convex values, (dv1 + (1 − d)v2)(t) ∈ F(t, y) and we have dh1 + (1 − d)h2 ∈N(x).
Step 2. We will show that the operatorN maps D into D.
To see this, take u ∈ ND. Then there exists x ∈ D with u ∈ N(x) and there exists

a Pettis integrable function v : J → E with v(t) ∈ F(t, x(t)) for a.e. t ∈ J . Without loss of
generality, we assume u(s)/= 0 for all s ∈ J . Then, there exists ϕs ∈ E∗ with ‖ϕs‖ = 1 and
ϕs(u(s)) = ‖u(s)‖. Hence, for each fixed t ∈ J , we have

‖u(t)‖ = ϕt(u(t)) = ϕt

(

g(t) +
∫T

0
G(t, s)v(s)ds

)

≤ ϕt
(

g(t)
)

+ ϕt

(∫T

0
G(t, s)v(s)ds

)

≤ ∥∥g(t)∥∥ +
∫T

0
‖G(t, s)‖ϕt(v(s))ds

≤ g∗ +G∗ψ(‖x‖∞)
∥
∥pf
∥
∥
L∞ .

(3.14)

Therefore, by (H5), we have

‖u‖∞ ≤ g∗ +
∥
∥pf
∥
∥
L∞G

∗ψ(‖R‖∞) ≤ R. (3.15)

Next suppose u ∈ ND and τ1, τ2 ∈ J , with τ1 < τ2 so that u(τ2) − u(τ1)/= 0. Then, there
exists ϕ ∈ E∗ such that ‖u(τ2) − u(τ1)‖ = ϕ(u(τ2) − u(τ1)). Hence,

‖u(τ2) − u(τ1)‖ = ϕ

(

g(t2) − g(t1) +
∫T

0
[G(τ2, s) −G(τ1, s)] · v(s)ds

)

≤ ϕ(g(t2) − g(t1)
)

+ ϕ

(∫T

0
[G(τ2, s) −G(τ1, s)] · v(s)ds

)

≤ ∥∥g(t2) − g(t1)
∥
∥ +
∫T

0
‖G(τ2, s) −G(τ1, s)‖·‖v(s)‖ds

≤ ∥∥g(t2) − g(t1)
∥
∥ + ψ(R)

∥
∥pf
∥
∥
L∞

∫T

0
‖G(τ2, s) −G(τ1, s)‖ds;

(3.16)

this means that u ∈ D.
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Step 3. We will show that the operatorN has a weakly sequentially closed graph.
Let (xn, yn)

∞
1 be a sequence in D × D with xn(t) → x(t) in (E,ω) for each t ∈ J ,

yn(t) → y(t) in (E,ω) for each t ∈ J , and yn ∈ N(xn) for n ∈ {1, 2, . . .}. We will show that
y ∈Nx. By the relation yn ∈N(xn), we mean that there exists vn ∈ SF,xn such that

yn(t) = g(t) +
∫T

0
G(t, s)vn(s)ds. (3.17)

We must show that there exists v ∈ SF,x such that, for each t ∈ J ,

y(t) = g(t) +
∫T

0
G(t, s)v(s)ds. (3.18)

Since F(·, ·) has compact values, there exists a subsequence vnm such that

vnm(·) −→ v(·) in (E,ω) as m −→ ∞
vnm(t) ∈ F(t, xn(t)) a.e. t ∈ J.

(3.19)

Since F(t, ·) has a weakly sequentially closed graph, v ∈ F(t, x). The Lebesgue dominated
convergence theorem for the Pettis integral then implies that for each ϕ ∈ E∗,

ϕ
(

yn(t)
)

= ϕ

(

g(t) +
∫T

0
G(t, s)vn(s)ds

)

−→ ϕ

(

g(t) +
∫T

0
G(t, s)v(s)ds

)

; (3.20)

that is, yn(t) → Nx(t) in (E,w). Repeating this for each t ∈ J shows y(t) ∈Nx(t).
Step 4. The implication (2.9) holds. Now let V be a subset of D such that V ⊂

conv(N(V )∪{0}). Clearly, V (t) ⊂ conv(N(V )∪{0}) for all t ∈ J . Hence,NV (t) ⊂ND(t), t ∈
J , is bounded in P(E).
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Since function g is continuous on J , the set {g(t), t ∈ J} ⊂ E is compact, so β(g(t)) = 0.
By assumption (H4) and the properties of the measure β, we have for each t ∈ J

β(N(V )(t)) = β

{

g(t) +
∫T

0
G(t, s)v(s)ds : v ∈ SF,x, x ∈ V, t ∈ J

}

≤ β{g(t) : t ∈ J} + β
{∫T

0
G(t, s)v(s)ds : v ∈ SF,x, x ∈ V, t ∈ J

}

≤ β
{∫T

0
G(t, s)v(s)ds : v(t) ∈ F(t, x(t)), x ∈ V, t ∈ J

}

≤
∫T

0
‖G(t, s)‖ · pf(s) · β(V (s))ds

≤ ∥∥pf
∥
∥
L∞ ·
∫T

0
‖G(t, s)‖ · β(V (s))ds

≤ ∥∥pf
∥
∥
L∞ ·G∗ ·

∫T

0
β(V (s))ds,

(3.21)

which gives

‖v‖∞ ≤ ∥∥pf
∥
∥
L∞ · ‖v‖∞ ·G∗. (3.22)

This means that

‖v‖∞ ·
[

1 − ∥∥pf
∥
∥
L∞ ·G∗

]

≤ 0. (3.23)

By (3.5) it follows that ‖v‖∞ = 0; that is, v = 0 for each t ∈ J , and then V is relatively weakly
compact in E. In view of Lemma 2.10, we deduce thatN has a fixed point which is obviously
a solution of Problem (1.1). This completes the proof.

In the sequel we present an example which illustrates Theorem 3.2.

4. An Example

Example 4.1. We consider the following partial hyperbolic fractional differential inclusion of
the form

(cDαun)(t) ∈ 1
7et+13

(1 + |un(t)|), t ∈ J := [0, T], 1 < α ≤ 2,

u(0) = λ1u(T) + μ1, u′(0) = λ2u′(T) + μ2,

(4.1)

Set T = 1, λ1 = λ2 = −1, μ1 = μ2 = 0, then g(t) = 0. So g∗ = 0.
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Let

E = l1 =

{

u = (u1, u2, . . . , un, . . .) :
∞∑

n=1

|un| <∞
}

(4.2)

with the norm

‖u‖E =
∞∑

n=1

|un|. (4.3)

Set

u = (u1, u2, . . . , un, . . .), f =
(

f1, f2, . . . , fn, . . .
)

,

fn(t, un) =
1

7et+13
(1 + |un|), t ∈ J.

(4.4)

For each un ∈ R and t ∈ J , we have

∣
∣fn(t, un)

∣
∣ ≤ 1

7et+13
(1 + |un|). (4.5)

Hence conditions (H1), (H2), and (H3) hold with pf(t) = 1/(7et+13), t ∈ J , and ψ(u) =
1 + u, u ∈ [0,∞). For any bounded set D ⊂ l1, we have

β(F(t,D)) ≤ 1
7et+13

· β(D), ∀t ∈ J. (4.6)

Hence (H4) is satisfied. From (3.8), we have

G(t, s) =

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

(t − s)α−1
Γ(α)

− (1 − s)α−1
2Γ(α)

+
(1 − 2t)(1 − s)α−2

4Γ(α − 1)
, if 0 ≤ s ≤ t ≤ 1,

− (1 − s)
α−1

2Γ(α)
+
(1 − 2t)(1 − s)α−2

4Γ(α − 1)
, if 0 ≤ t ≤ s ≤ 1.

(4.7)
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So, we get

∫1

0
G(t, s)ds =

∫ t

0
G(t, s)ds +

∫1

t

G(t, s)ds

=
∫ t

0

[

(t − s)α−1
Γ(α)

− (1 − s)α−1
2Γ(α)

+
(1 − 2t)(1 − s)α−2

4Γ(α − 1)

]

ds

+
∫1

t

[

− (1 − s)
α−1

2Γ(α)
+
(1 − 2t)(1 − s)α−2

4Γ(α − 1)

]

ds

=
4tα − 2

4Γ(α + 1)
+
1 − 2t
4Γ(α)

.

(4.8)

A simple computation gives

G∗ <
1

4Γ(α)
+

1
2Γ(α + 1)

:= Aα. (4.9)

We shall check that condition (3.5) is satisfied. Indeed

∥
∥p
∥
∥
L∞G

∗ <
1

7e13
Aα < 1, (4.10)

which is satisfied for some α ∈ (1, 2], and (H5) is satisfied for R > Aα/(7e13 − Aα). Then by
Theorem 3.2, the problem (4.1) has at least one solution on J for values of α satisfying (4.10).
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