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The problem of fault detection for stochastic Markovian jump system is considered. The system
under consideration involves discrete and distributed time-varying delays, Itô-type stochastic
disturbance, and different system and delay modes. The aim of this paper is to design a fault
detection filter such that the fault detection system is stochastically stable and satisfies a prescribed
H∞ disturbance attenuation level. By using a novel Lyapunov functional, a mix-mode-dependent
sufficient condition is formulated in terms of linear matrix inequalities. A numerical example is
given to illustrate the effectiveness of the proposed main results.

1. Introduction

Fault detection received considerable attention over the past decades because of the increas-
ing demand for higher performance, safety, and reliability standards. In recently, many
effective methods have been developed for fault detection. To the best of the authors’
knowledge, the published results can be categorized into three approaches. The first category
is the filter- or observer-based approaches, where filters are used to generate residual signals
to detect and estimate the fault, for example, [1–9]. In the fault detection scheme based
on filter or observer, a fault cannot only be detected but also be approximated, and the



2 Journal of Applied Mathematics

fault estimate can be further used in fault-tolerant control. The second category is the
statistic approach, where the Bayesian theory and likelihood method are used to evaluate the
fault signals [10]. The third category is the geometric approach. By utilizing the geometric
framework, a set of residuals is generated such that each residual is affected by one fault
and is partially decoupled from others [11]. In the framework of fault detection, faults are
detected by setting a predefined threshold on residual signals. Once the value of residual
evaluation function excesses the predefined threshold, an alarm of faults is generated. For
example, by using Luenberger type observers, the authors of [6, 12] present an explicit
expression of the filters for the fault such that both asymptotic stability and a prescribed level
of disturbance attenuation are satisfied for all admissible nonlinear perturbations; by using
the measured output probability density functions (PDFs), the authors of [13, 14] construct a
stable filter-based residual generator.

Markovian jump systems (MJSs) are a special class of switched systems. The state
vector of such system has two components x(t) and r(t). The first one is in general referred
to as the state, and the second one is regarded as the mode. In its operation, the jump system
will switch from one mode to another in a random way, based on a Markovian chain with
finite state space. These systems are very common in economic systems, communication
systems, robot manipulator systems and circuit systems, and so forth. Time delay is an
inherent characteristic of many physical systems, which occurs due to signal transmission,
inevitable defects of control equipment, and so on. The systems with or without time delays
are convergent when time delays are close to zero. otherwise, they may be divergent. In
other words, time delays, either constant or time varying, can degrade the performance of
systems designed without considering the delays and can even destabilize the systems. Due
to their extensive practical applications, considerable attention has been devoted toMJSs, see,
for example, [15–18] for stability, [18–25] for control, and [25–32] for state estimation. More
recently, the methods of fault estimation and fault detection have been extended successfully
to MJSs [33–40]. From the published results, the delay mode is assumed to be the same
as the system matrices mode. However, the assumption cannot always be satisfied in real
applications. In some practical systems, variations of delay usually depend on phenomena
which may not cause abrupt changes in other system parameters. For instance, in networked
control systems, the randomness of delay is a result of communication network issues, but
the process itself may contain separate sources of randomness which means that the system
matrices mode may be different with the delay mode [41]. Therefore, it is important and
necessary to pay attention to the study of Markovian jump systems with different system
and delay modes. Furthermore, it appears that general results pertaining to fault detection
for stochastic MJSs with discrete and distributed time delays, Itô-type stochastic disturbance
and different system and delay modes are few and restricted, despite its practical importance,
mainly due to the mathematical difficulties in dealing with such mixed modes. Research in
this area should be interesting yet challenging as it involves the combination of two different
jumping modes, which has motivated this paper.

This paper deals with the problem of fault detection for stochastic MJSs with discrete
and distributed time-varying delays, Itô-type stochastic disturbance, and different system
and delay modes. By using a novel mix-mode-dependent Lyapunov functional, a new
sufficient condition on stochastic stability with an H∞ performance is derived in terms of
linear matrix inequalities (LMIs). Based on this, the existence condition of the fault detection
filter which guarantees stochastic stability and the H∞ performance of the corresponding
augmented system is presented. A numerical example is provided to show the effectiveness
of the proposed results.
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Notation. Throughout this paper, Rn denotes the n dimensional Euclidean space. λmax(Q) and
λmin(Q) denote, respectively, the maximal and minimal eigenvalue of matrixQ. E{·} refers to
the expectation operator with respect to some probability measure P. We use diag{·, ·, ·} as a
block-diagonal matrix. A > 0 (< 0) means that A is a symmetric positive (negative) definite
matrix, A−1 denotes the inverse of matrix A. AT denotes the transpose of matrix A, and I is
the identity matrix with compatible dimension.

2. System Description and Definitions

Consider the following stochastic MJS with mode-dependent time-varying delays:

dx(t) =

[
A(rt)x(t) +A1(rt)x(t − τ(t, st)) +A2(rt)

∫ t

t−τ(t,st)
x(s)ds

+B0(rt)u(t) + B1(rt)ν(t) + B2(rt)f(t)

]
dt +G1(rt)x(t)dω(t),

dy(t) =

[
C(rt)x(t) + C1(rt)x(t − τ(t, st)) + C2(rt)

∫ t

t−τ(t,st)
x(s)ds

+D1(rt)ν(t) +D2(rt)f(t)

]
dt +G2(rt)x(t)dω(t),

x(t) = φ(t), t ∈ [−τ, 0],

(2.1)

where x(t) ∈ R
n is the state vector; u(t) is the exogenous disturbance input which belongs to

L2[0 ∞); ν(t) the unknown input; f(t) is the fault to be detected; y(t) ∈ R
p is the measured

output; ω(t) is a zero-mean one-dimensional Wiener process satisfying E{ω(t)} = 0 and
E{ω2(t)} = t; φ(t) is a compatible vector-valued initial function defined on [−τ, 0]; A(rt),
A1(rt), A2(rt), B0(rt), B1(rt), B2(rt), G1(rt), C(rt), C1(rt), C2(rt), D1(rt), D2(rt), and G2(rt)
are real constant matrices with appropriate dimensions. τ(t, st) is the mode-dependent time-
varying delay. {rt, t � 0} and {st, t � 0} are continuous-time Markovian processes with right
continuous trajectories and taking values in finite sets S1 = {1, 2, . . . ,N}, S2 = {1, 2, . . . ,M}
with the transition probability matrices Π = [πil], (i, l ∈ S1) and Λ = [λjk], (j, k ∈ S2),
respectively, given by

Pr{rt+Δ = l | rt = i} =

{
πil Δ + o(Δ), l /= i,

1 + πii Δ + o(Δ), l = i,

Pr
{
st+Δ = k | st = j

}
=

{
λjk Δ + o(Δ), k /= j,

1 + λjj Δ + o(Δ), k = j,

(2.2)

where Δ > 0 and limΔ→ 0(o(Δ)/Δ) = 0; πil � 0 for i /= l is the transition rate from mode i at
time t to mode l at time t + Δ and πii = −∑N

l=1,l /= i πil; λjk � 0 for j /= k is the transition rate
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from mode j at time t to mode k at time t +Δ and λjj = −∑M
k=1,k /= j λjk. The processes rt and st

are assumed to be independent throughout this paper. For simplicity, a matrix R(rt) will be
denoted by Ri. For example, A(rt) is denoted by Ai, A1(rt) is denoted by A1i, (i ∈ S1), τ(st, t)
is denoted by τj(t), (j ∈ S2), and so on. When the mode is in st = j, the mode-dependent
time-varying delay satisfies

0 < τj(t) � τj � τ, τ̇j(t) � μj, (2.3)

where τ = max{τj}.

Remark 2.1. In this work, we have assumed that the delay mode is different from the system
mode. This is more powerful and desirable in modeling of real systems, because the reason
for jump in delay value may not be the same as that for jump in other system parameters.

Remark 2.2. The generalized stochastic system (2.1) is quite general since it considers noise
perturbations, discrete, and distributed time-varying delays and Markovian jump processes
with different modes. To the best of our knowledge, the generalized stochastic system (2.1)
has never been considered in the previous literature.

Remark 2.3. A fault detection system consists of a residual generator and an evaluation stage,
including an evaluation function and a threshold. Therefore, the fault detection problem to
be addressed in this paper can be stated as the following two steps. The first step is to design
a suitable filter to reduce the effect of disturbances on residual signals and to enhance the
influence of faults. The second step is to determine the residual evaluation function and an
appropriate threshold.

In this study, the following full-order fault detection filter is considered:

dxf(t) = Afij xf(t)dt + Bfijdy(t),

r(t) = Cfij xf(t),

xf(0) = 0, i ∈ S1, j ∈ S2,

(2.4)

where xf(t) is the filter state vector. r(t) is its output which is sensitive to faults. (Afij Bfij Cfij )
are appropriately dimensioned filter matrices to be determined.

To improve the sensitiveness of residual to fault, we add a weighting matrix function
into the fault f(t), that is, Fω(s) = W(s)F(s), where F(s) and Fω(s) denote, respectively, the
Laplace transforms of f(t) and fω(t). One state-space realization of Fω(s) = W(s)F(s) can be

ẋω(t) = Aωxω(t) + Bωf(t),

fω(t) = Cωxω(t),

xω(0) = 0.

(2.5)
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Denoting re(t) = r(t) − fω(t), then the overall dynamic system can be governed by the
following augmented system:

dξ(t) =

[
Aijξ(t) +A1ijKξ

(
t − τj(t)

)
+A2ijK

∫ t

t−τj (t)
ξ(s)ds + Bijw(t)

]
dt

+GijKξ(t)dω(t), re(t) = Cijξ(t), ξ(t) = φ̃(t), ∀t ∈ [−τ, 0],
(2.6)

where ξ(t) = [xT (t) xT
f
(t) xω(t)]

T , w(t) = [uT (t) νT (t) fT (t)]T , φ̃(t) = [φT (t) 0T 0T ]T , and

Aij =

⎡
⎣ Ai 0 0
BfijCi Afij 0
0 0 Aω

⎤
⎦, A1ij =

⎡
⎣ A1i

BfijC1i

0

⎤
⎦, A2ij =

⎡
⎣ A2i

BfijC2i

0

⎤
⎦,

Bij =

⎡
⎣B0i B1i B2i

0 BfijD1i BfijD2i

0 0 Bω

⎤
⎦, Gij =

⎡
⎣ G1i

BfijG2i

0

⎤
⎦, Cij =

[
0 Cfij −Cω

]
,

K =
[
I 0 0

]
.

(2.7)

For simplicity, let

ϕ(t) = Aijξ(t) +A1ijKξ
(
t − τj(t)

)
+A2ijK

∫ t

t−τj (t)
ξ(s)ds + Bijw(t),

g(t) = GijKξ(t).

(2.8)

Now, the problem of fault detection is transformed into an H∞ filtering problem
for system (2.1), which is described as follows: given a prescribed level of disturbance
attenuation γ , determine a series of filter matrices Afij , Bfij , and Cfij (i ∈ S1, j ∈ S2) such
that the augmented system (2.6) is stochastically stable.

After designing a fault detection filter, the remaining important task is to evaluate the
generated residual. One of widely adopted methods is to choose a residual evaluation func-
tion and a threshold. In this paper, residual evaluation function f(r) and a threshold Jth are
selected as

f(r) =
∫ t0+T

t0

rT (t)r(t)dt, Jth = sup
ν(t)∈L2,f(t)=0

E

{∫ t0+T

t0

rT (t)r(t)dt

}
, (2.9)

where [t0, t0 + T] is the finite-time window, T denotes the limited length, and t0 denotes the
initial evaluation time. The occurrence of fault can be detected by comparing f(r) and Jth,
according to the following logic:

f(r) > Jth =⇒ Faults =⇒ Alarm,

f(r) < Jth =⇒ No Faults.
(2.10)
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The following lemma and definitions are introduced, which will be used in the proof
of the main results.

Lemma 2.4 (see [42]). For any matrix M > 0, scalar γ > 0, vector function ω : [0, γ] → Rn such
that the integrations concerned are well defined, the following inequality holds:

[∫ γ

0
ωT (s)ds

]
M

[∫ γ

0
ω(s)ds

]
� γ

∫ γ

0
ωT (s)Mω(s)ds. (2.11)

Definition 2.5. The filtering error system (2.6) with w(t) = 0 is said to be stochastically stable,
if, for every system mode rt, every time-delay mode st and all finite initial state φ̃(t), the
following relation holds: limt→∞E{|ξ(t)|2} = 0.

Definition 2.6. Given a scalar γ > 0, the filtering error system (2.6) is said to be stochastically
stable with an H∞ performance γ , if, for every system mode rt and every time-delay mode
st, the filtering error system (2.6)withw(t) = 0 is stochastically stable, and, under zero initial
condition, it satisfies ‖re‖2 � γ‖w‖2 for any nonzero w(t) ∈ L2[0,∞].

It should be pointed out that the joint process (ξ(t), rt, st) is not Markovian. In order to
cast our model into the frame work for a Markovion system, let us define a new Markovion
process: ξt(s) = ξ(t+ s), −τ � s � 0, and then {(ξt, rt, st), t � 0} is Markovian process with the
initial state (φ̃(·), r0, s0).

LetC(Rn×R
n×R

+×S1×S2) denote the family of all nonnegative functions V (ξ, ξt, t, i, j)
on R

n × R
n × R

+ × S1 × S2, which are continuously twice differentiable in ξ and differentiable
in t. If V ∈ C(Rn × R

n × R
+ × S1 × S2), then, along the trajectory of system (2.6), we define an

operator L(·) from R
n × R

n × R
+ × S1 × S2 to R by

LV
(
ξ, ξt, t, i, j

)
= Vt

(
ξ, ξt, t, i, j

)
+ Vξ

(
ξ, ξt, t, i, j

)
ϕ(t) +

∑
l∈S1

πilV
(
ξ, ξt, t, l, j

)

+
∑
k∈S2

λjkV (ξ, ξt, t, i, k) +
1
2
trace

[
gT (t)Vξξ

(
ξ, ξt, t, i, j

)
g(t)

]
,

(2.12)

where

Vt

(
ξ, ξt, t, i, j

)
=

∂V
(
ξ, ξt, t, i, j

)
∂t

, (2.13)

Vξ

(
ξ, ξt, t, i, j

)
=

(
∂V
(
ξ, ξt, t, i, j

)
∂ξ1

, . . . ,
∂V
(
ξ, ξt, t, i, j

)
∂ξn

)
, (2.14)

Vξξ

(
ξ, ξt, t, i, j

)
=

(
∂2V

(
ξ, ξt, t, i, j

)
∂ξiξj

)
. (2.15)
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3. Main Results

In this section, we first propose a delay-dependent sufficient condition for stochastic stability
with the H∞ performance of filtering error system (2.6). Now, define a stochastic Lyapunov
functional candidate for systems (2.6) as

V
(
ξ, ξt, t, i, j

)
=

6∑
n=1

Vn

(
ξ, ξt, t, i, j

)
, (3.1)

where

V1
(
ξ, ξt, t, i, j

)
= ξT (t)P(rt, st)ξ(t),

V2
(
ξ, ξt, t, i, j

)
=
∫ t

t−τ(t,st)
ξT (s)KTQ1(rt, st)Kξ(s)ds

+
∫ t

t−τ(st)
ξT (s)KTQ2(rt, st)Kξ(s)ds,

V3
(
ξ, ξt, t, i, j

)
=
∫ t

t−τ(t,st)

[∫ t

θ

ξT (s)KTds

]
R1(rt, st)

[∫ t

θ

Kξ(s)ds

]
dθ,

V4
(
ξ, ξt, t, i, j

)
=
∫0

−τ

∫ t

t+θ
ϕT (s)KTZKϕ(s)dsdθ,

V5
(
ξ, ξt, t, i, j

)
=
∫0

−τ

∫ t

t+θ
ξT (s)KTR2Kξ(s)dsdθ,

V6
(
ξ, ξt, t, i, j

)
=
∫ τ

0

∫0

−θ

∫ t

t+s
ξT (α)KTR3Kξ(α)dαdsdθ.

(3.2)

By Itô’s formula, we obtain the stochastic differential as

dV = L
6∑

n=1

Vn

(
ξ, ξt, t, i, j

)
dt + 2ξT (t)Pijg(t)dω(t), (3.3)

whereL is the weak infinitesimal generator of the random process {ξt, rt, st} along the system
(2.6).

Using the operator (2.12), we have

LV1
(
ξ, ξt, t, i, j

)
= 2ξT (t)Pij

[
Aijξ(t) +A1ijKξ

(
t − τj(t)

)
+A2ijK

∫ t

t−τj (t)
ξ(s)ds + Bijw(t)

]

+ ξT (t)

[∑
l∈S1

πilPlj +
∑
k∈S2

λjkPik

]
ξ(t) + gT (t)Pijg(t).

(3.4)
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The derivative of the first term in V2(ξ, ξt, t, i, j) is given as follows:

L
∫ t

t−τ(t,st)
ξT (s)KTQ1(rt, st)Kξ(s)ds

= lim
Δ→ 0+

1
Δ
E

{∫ t+Δ

t+Δ−τ(st+Δ, t+Δ)
ξT (s)KTQ1(rt+Δ, st+Δ)Kξ(s)ds

−
∫ t

t−τj (t)
ξT (s)KTQ1ijKξ(s)ds

}

=
∫ t

t−τj (t)
ξT (s)KT

(∑
l∈S1

πilQ1lj

)
Kξ(s)ds

+
∑
k∈S2

λjk

∫ t

t−τk(t)
ξT (s)KTQ1ikKξ(s)ds

+ ξT (t)KTQ1ijKξ(t) − (1 − τ̇j(t)
)
ξT
(
t − τj(t)

)
KTQ1ijKξ

(
t − τj(t)

)
� ξT (t)KTQ1ijKξ(t) − (1 − μj

)
ξT
(
t − τj(t)

)
KTQ1ijKξ

(
t − τj(t)

)

+
∫ t

t−τj (t)
ξT (s)KT

(∑
l∈S1

πilQ1lj

)
Kξ(s)ds

+ λjj

∫ t

t−τj (t)
ξT (s)KTQ1ijKξ(s)ds

+
∫ t

t−τ
ξT (s)KT

⎛
⎝∑

k /= j

λjkQ1ik

⎞
⎠Kξ(s)ds.

(3.5)

Following a similar method of (3.5), it is easy to obtain

L
∫ t

t−τ(st)
ξT (s)KTQ2(rt, st)Kξ(s)ds

= ξT (t)KTQ2ijKξ(t) − ξT
(
t − τj

)
KTQ2ijKξ

(
t − τj

)

+
∫ t

t−τj
ξT (s)KT

(∑
l∈S1

πilQ2lj

)
Kξ(s)ds

+
∑
k∈S2

λjk

∫ t

t−τk
ξT (s)KTQ2ikKξ(s)ds
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� ξT (t)KTQ2ijKξ(t) − ξT
(
t − τj

)
KTQ2ijKξ

(
t − τj

)

+
∫ t

t−τj
ξT (s)KT

(∑
l∈S1

πilQ2lj

)
Kξ(s)ds

+ λjj

∫ t

t−τj
ξT (s)KTQ2ijKξ(s)ds

+
∫ t

t−τ
ξT (s)KT

⎛
⎝∑

k /= j

λjkQ2ik

⎞
⎠Kξ(s)ds,

LV3
(
ξ, ξt, t, i, j

)

= −(1 − τ̇j(t)
) ∫ t

t−τj (t)
ξT (s)KT dsR1ij

∫ t

t−τj (t)
Kξ(s)ds + 2

∫ t

t−τj (t)
ξT (t)KTR1ij

×
∫ t

θ

Kξ(s)dsdθ +
∑
l∈S1

πil

∫ t

t−τj (t)

(∫ t

θ

ξT (s)KTds

)
R1lj

(∫ t

θ

Kξ(s)ds

)
dθ

+
∑
k∈S2

λjk

∫ t

t−τk(t)

∫ t

θ

ξT (s)KTR1ikKξ(s)dsdθ.

(3.6)

Using Lemma 2.4 and considering (2.3), we have

LV3
(
ξ, ξt, t, i, j

)

� −(1 − μj

)(∫ t

t−τj (t)
ξT (s)KTds

)
R1ij

(∫ t

t−τj (t)
Kξ(s)ds

)
+ ξT (t)KT

(
1
2
τ2j R1ij

)
Kξ(t)

+
∫ t

t−τj (t)

∫ t

θ

ξT (s)KTR1ijKξ(s)dsdθ +
∑
l /= i

πil

∫ t

t−τj (t)
(t − θ)

∫ t

θ

ξT (s)KTR1ljKξ(s)dsdθ

+
∑
k /= j

λjk

∫ t

t−τk(t)
(t − θ)

∫ t

θ

ξT (s)KTR1ikKξ(s)dsdθ

� −(1 − μj

)(∫ t

t−τj (t)
ξT (s)KTds

)
R1ij

(∫ t

t−τj (t)
Kξ(s)ds

)

+ ξT (t)KT

(
1
2
τ2j R1ij

)
Kξ(t)

+
∫ t

t−τj (t)

∫ t

θ

ξT (s)KTR1ijKξ(s)dsdθ +
∑
l /= i

πil

∫ t

t−τj (t)
ξT (s)KTR1ljKξ(s)

×
∫ t

t−τj (t)
(t − θ)dθ ds +

∑
k /= j

λjk

∫ t

t−τk(t)
ξT (s)KTR1ikKξ(s)

∫ t

t−τk(t)
(t − θ)dθ ds
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� −(1 − μj

)(∫ t

t−τj (t)
ξT (s)KTds

)
R1ij

(∫ t

t−τj (t)
Kξ(s)ds

)
+ ξT (t)KT

(
1
2
τ2j R1ij

)
Kξ(t)

+
∫ t

t−τj (t)

∫ t

θ

ξT (s)KTR1ijKξ(s)dsdθ +
1
2
τ2j
∑
l /= i

πil

∫ t

t−τ
ξT (s)KTR1ljKξ(s)ds

+
1
2

∑
k /= j

τ2kλjk

∫ t

t−τ
ξT (s)KTR1ikKξ(s)ds.

(3.7)

Moreover,

LV4
(
ξ, ξt, t, i, j

)
= τϕT (t)KTZKϕ(t) −

∫ t

t−τ
ϕT (s)KTZKϕ(s)ds,

LV5
(
ξ, ξt, t, i, j

)
= τξT (t)KTR2Kξ(t) −

∫ t

t−τ
ξT (s)KTR2Kξ(s)ds,

LV6
(
ξ, ξt, t, i, j

)
=

1
2
τ2ξT (t)KTR3Kξ(t) −

∫ t

t−τ

∫ t

θ

ξT (s)KTR3Kξ(s)dsdθ.

(3.8)

We define

ηj(t) =

[
ξT (t) ξT

(
t − τj(t)

)
KT ξT

(
t − τj

)
KT ϕT (t)KT

∫ t

t−τj (t)
ξT (s)KTds

]T
. (3.9)

The following equations are true for any matrices L, M, N, and Y with appropriate
dimensions:

0 = 2ηT
j (t)L

[
Kξ(t) −Kξ

(
t − τj(t)

) − ∫ t

t−τj (t)
Kϕ̃(s)ds −

∫ t

t−τj (t)
Kg̃(s)dω(s)

]
,

0 = 2ηT
j (t)M

[
Kξ
(
t − τj(t)

) −Kξ
(
t − τj

) − ∫ t−τj (t)

t−τj
Kϕ̃(s)ds −

∫ t−τj (t)

t−τj
Kg̃(s)dω(s)

]
,

0 = 2ηT
j (t)N

[
−Kϕ(t) +KAijξ(t) +KA1ijKξ

(
t − τj(t)

)
+KA2ijK

∫ t

t−τj (t)
ξ(s)ds +KB1ijν(t)

]
,

(3.10)

0 = τjη
T
j (t)Yηj(t) −

∫ t−τj (t)

t−τj
ηT
j (t)Yηj(t)ds −

∫ t

t−τj (t)
ηT
j (t)Yηj(t)ds, (3.11)
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where

L =
[
LT
1K LT

2 LT
3 LT

4 LT
5

]T
, M =

[
MT

1K MT
2 MT

3 MT
4 MT

5

]T
,

N =
[
0 0 0 NT 0

]T
,

Y =

⎡
⎢⎢⎢⎢⎢⎣

KTY11K KTY12 KTY13 KTY14 KTY15

∗ Y22 Y23 Y24 Y25

∗ ∗ Y33 Y34 Y35

∗ ∗ ∗ Y44 Y45

∗ ∗ ∗ ∗ Y55

⎤
⎥⎥⎥⎥⎥⎦.

(3.12)

Considering (3.4)–(3.11), we obtain that

LV
(
ξ, ξt, i, j

)

�
[
ηj(t)
w(t)

]T[Σij Φ1ij

∗ 0

][
ηj(t)
w(t)

]

+
∫ t

t−τj (t)
ξT (s)KT

⎡
⎣ ∑

l∈S1,l /= i

πil

(
Q1lj +

τ2j

2
R1lj

)
+ πiiQ1ij + λjjQ1ij

⎤
⎦Kξ(s)ds

+
∫ t

t−τ
ξT (s)KT

⎡
⎣ ∑

k∈S2,k /= j

λjk

(
Q1ik +Q2ik +

τ2
k

2
R1ik

)
− R2

⎤
⎦Kξ(s)ds

+
∫ t

t−τj
ξT (s)KT

(∑
l∈S1

πilQ2lj + λjjQ2ij

)
Kξ(s)ds

+
∫ t

t−τ

∫ t

θ

ξT (s)KT(R1ij − R3
)
Kξ(s)dsdθ

−
∫ t

t−τj (t)

[
ηj(t)
Kϕ(s)

]T[
Y L
∗ Z

][
ηj(t)
Kϕ(s)

]
ds

−
∫ t−τj (t)

t−τj

[
ηj(t)
Kϕ(s)

]T[
Y M
∗ Z

][
ηj(t)
Kϕ(s)

]
ds + f̃(t),

(3.13)



12 Journal of Applied Mathematics

where

f̃(t) = 2ξT (t)Pijg(t)dω(t) − 2ηT
j (t)L

∫ t

t−τj (t)
Kg(s)dω(s) − 2ηT

j (t)M
∫ t−τj (t)

t−τj
Kg(s)dω(s),

Σij =

⎡
⎢⎢⎢⎢⎢⎣

Σ11 Σ12 Σ13 Σ14 Σ15

∗ Σ22 Σ23 Σ24 Σ25

∗ ∗ Σ33 Σ34 Σ35

∗ ∗ ∗ Σ44 Σ45

∗ ∗ ∗ ∗ Σ55

⎤
⎥⎥⎥⎥⎥⎦,

Σ11 = PijAij +A
T

ijPij +KTG
T

ijPijGijK +
∑
l∈S1

πilPlj +
∑
k∈S2

λjkPik

+KT

(
Q1ij +Q2ij + τR2 +

1
2
τ2R3 +

1
2
τ2j R1ij + L1 + LT

1 + τjY11

)
K,

Σ12 = PijA1ij +KT
(
−L1 + LT

2 +M1 + τjY12

)
,

Σ13 = KT
(
LT
3 −M1 + τjY13

)
,

Σ14 = KT
(
LT
4 + τjY14

)
+A

T

ijK
TNT ,

Σ15 = PijA2ij +KT
(
LT
5 + τjY15

)
,

Σ22 = −(1 − μj

)
Q1ij − L2 − LT

2 +M2 +MT
2 + τjY22,

Σ23 = −LT
3 −M2 +MT

3 + τjY23,

Σ24 = −LT
4 +MT

4 +A
T

1ijK
TNT + τjY24,

Σ25 = −LT
5 +MT

5 + τjY25,

Σ33 = −Q2ij −M3 −MT
3 + τjY33,

Σ34 = −MT
4 + τjY34,

Σ35 = −MT
5 + τjY35,

Σ44 = τZ −N −NT + τjY44,

Σ45 = NKA2ij + τjY45,

Σ55 = −(1 − μj

)
R1ij + τjY55,

Φ1ij =
[
B
T

ijPij 0 0 B
T

ijK
TNT 0

]T
.

(3.14)

Therefore, we have the following result for the H∞ performance analysis.



Journal of Applied Mathematics 13

Theorem 3.1. Given scalars τ , τj , and μj , the fault detection system (2.6) is stochastically stable with
an H∞ performance γ for any time delay τj(t) satisfying (2.3), if there exist matrices Pij > 0, Z > 0,
Q1ij > 0, Q2ij > 0, R1ij > 0, R2 > 0, R3 > 0, and matrices L, M, N, Y denoted in (3.10)–(3.11) such
that for each i ∈ S1, j ∈ S2

⎡
⎢⎢⎢⎣
Σ̃ij Φ1ij Φ2ij Φ3ij

∗ −γ2I 0 0
∗ ∗ −I 0
∗ ∗ ∗ −Pij

⎤
⎥⎥⎥⎦ < 0, (3.15)

∑
l∈S1,l /= i

πil

(
Q1lj +

τ2j

2
R1lj

)
+ πiiQ1ij + λjjQ1ij < 0,

∑
k∈S2,k /= j

λjk

(
Q1ik +Q2ik +

τ2
k

2
R1ik

)
− R2 < 0,

∑
l∈S1

πilQ2lj + λjjQ2ij < 0,

R1ij − R3 < 0,

(3.16)

[
Y L
∗ Z

]
� 0,

[
Y M
∗ Z

]
� 0, (3.17)

where

Σ̃ij =

⎡
⎢⎢⎢⎢⎢⎣

Σ11 −KTG
T

ijPijGijK Σ12 Σ13 Σ14 Σ15

∗ Σ22 Σ23 Σ24 Σ25

∗ ∗ Σ33 Σ34 Σ35

∗ ∗ ∗ Σ44 Σ45

∗ ∗ ∗ ∗ Σ55

⎤
⎥⎥⎥⎥⎥⎦,

Φ2ij =
[
Cij 0 0 0 0

]T
, Φ3ij =

[
PijGijK 0 0 0 0

]T
.

(3.18)

Proof. Using Schur complement formula to (3.15), it can be seen that (3.15) is equivalent to

[
Σij + Φ2ijΦT

2ij Φ1ij

∗ −γ2I

]
< 0. (3.19)

Now, we show that the filtering error system (2.6) with w(t) = 0 is stochastically stable. If
w(t) = 0, from (3.13) and (3.16)–(3.17), we can obtain

E
{LV

(
ξ, ξt, t, i, j

)}
� E

{
ξT (t)Σij ξ(t)

}
. (3.20)



14 Journal of Applied Mathematics

Inequality (3.20) implies that Σij < 0. Thus, we have

LV
(
ξ, ξt, t, i, j

)
� −α1ξ

T (t)ξ(t), (3.21)

where α1 = mini∈S1,j∈S2{λmin(−Σij)} > 0. Therefore, for any T > 0, by Dynkin’s formula, we
have

∫T

0
E
{
ξT (s)ξ(s)

}
ds � α−1

1 V
(
φ̃(0), r0, s0

)
, (3.22)

which means that limt→∞E{|ξ(t)|2} = 0. Thus, the filtering error system (2.6) with w(t) = 0 is
stochastically stable by Definition 2.5.

In the sequel, we will deal with theH∞ performance of the filtering error system (2.6).
Using (3.19) and H∞ performance, we have

E
{
LV

(
ξ, ξt, t, i, j

)
+ rTe (t)re(t) − γ2wT(t)w(t)

}
�
[
ηj(t)
w(t)

]T[Σij + Φ2ijΦT
2ij Φ1ij

∗ −γ2I

][
ηj(t)
w(t)

]
< 0.

(3.23)

Noting that the zero initial condition, then it follows from (3.23) that

JH = E

{∫∞

0

[
rTe (t)re(t) − γ2wT (t)w(t)

]
dt
}

� E

{∫∞

0

[
rTe (t)re(t) − γ2wT (t)w(t) +LV

(
ξ, ξt, t, i, j

)]
dt
}

< 0.

(3.24)

Hence, if (3.15)–(3.17) hold, JH < 0 can be guaranteed. That is, ‖re‖2 � γ‖w‖2 for all
nonzero w(t). Therefore, the filtering error system (2.6) is stochastically stable with the H∞
performance γ by Definition 2.6. This completes the proof.

Remark 3.2. Theorem 3.1 presents a new stochastic stability criterion by employing a novel
mixed mode-dependent Lyapunov functional. The Lyapunov functional in this paper uses
all information about rt, st, and τ(t, st). Also, the Lyapunov matrices P(rt, st), Q1(rt, st),
Q2(rt, st), and R1(rt, st) depend on both the system mode rt and the delay mode st. Hence,
the Lyapunov functional in this paper is more general, and the condition on stability is
more applicable. In the most published papers about Markovian jump systems with mixed
time delays, the authors choose the mode-independent Lyapunov matrices which may lead
to some conservativeness, such as [15, 17, 23, 31, 33, 37–39], to name a few among many
important results in the literature. But, the selected mode-dependent Lyapunov matrices in
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this paper can reduce some conservativeness because they allow more freedom in choosing
feasible solutions of LMIs.

Remark 3.3. In Theorem 3.1, μj < 1 can be extended to a wider range μj < ∞ by dealing
with the integral term λjj

∫ t
t−τj (t) ξ

T (s)KTQ1ijKξ(s)ds in (3.5). Noting that λjj < 0, utilizing
Lemma 2.4, one has

λjj

∫ t

t−τj (t)
ξT (s)KTQ1ijKξ(s)ds �

λjj

τj

∫ t

t−τj
ξT (s)KT dsQ1ij

∫ t

t−τj (t)
Kξ(s)ds. (3.25)

Further, deleting λjjQ1ij in (3.16) and adding (λjj/τj) Q1ij to Σ55 in (3.15), we can obtain a
more general stability condition.

Based on Theorem 3.1, the fault detection filter synthesis problem can be developed in
terms of LMIs for the system (2.1) with different system and delay modes.

Theorem 3.4. Consider the system (2.1). Given scalars τ , τj , and μj , the fault detection system (2.6)
is stochastically stable with an H∞ performance γ for any time delay τj(t) satisfying (2.3) if there
exist matrices Vij > 0, Wij > 0, Uij > 0, Z > 0, Q1ij > 0, Q2ij > 0, R1ij > 0, R2 > 0, R3 > 0, Afij ,
Bfij , Cfij and matrices L,M, N, Y denoted in (3.10)–(3.11) such that for each i ∈ S1, j ∈ S2

⎡
⎢⎢⎢⎢⎣
Σij Φ1ij Φ2ij Φ3ij

∗ −γ2I 0 0
∗ ∗ −I 0

∗ ∗ ∗ −Φ4ij

⎤
⎥⎥⎥⎥⎦ < 0,

∑
l∈S1,l /= i

πil

(
Q1lj +

τ2j

2
R1lj

)
+ πiiQ1ij + λjjQ1ij < 0,

∑
k∈S2,k /= j

λjk

(
Q1ik +Q2ik +

τ2
k

2
R1ik

)
− R2 < 0,

∑
l∈S1

πilQ2lj + λjjQ2ij < 0,

R1ij − R3 < 0,

[
Y L
∗ Z

]
� 0,

[
Y M
∗ Z

]
� 0,

(3.26)
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where

Σij =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Σ11 Σ12 0 Σ14 Σ15 Σ16 Σ17

∗ Σ22 0 Σ24 0 0 Σ27

∗ ∗ Σ33 0 0 0 0
∗ ∗ ∗ Σ44 Σ45 Σ46 Σ47

∗ ∗ ∗ ∗ Σ55 Σ56 Σ57

∗ ∗ ∗ ∗ ∗ Σ66 Σ67

∗ ∗ ∗ ∗ ∗ ∗ Σ77

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Φ1ij =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

VijB0i VijB1i VijB2i

0 BfijD1i BfijD2i

0 0 UijBω

0 0 0
0 0 0

NB0i NB0i NB0i

0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Φ2ij =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

C
T

fij

−CT
ω

0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Φ3ij =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

GT
1iV

T
ij GT

2iB
T

fij 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Φ4ij =

⎡
⎣Vij 0 0

∗ Wij 0
∗ ∗ Uij

⎤
⎦,

Σ11 = VijAi +AT
i Vij +

∑
l∈S1

πilVlj +
∑
k∈S2

λjkVik +Q1ij +Q2ij + τR2

+
1
2
τ2R3 +

1
2
τ2j R1ij + L1 + LT

1 + τjY11,

Σ12 = CT
i B

T

fij , Σ14 = VijA1i − L1 +M1 + LT
2 + τjY12,

Σ15 = LT
3 −M1 + τjY13, Σ16 = LT

4 + τjY14 +AT
i N

T ,

Σ17 = VijA2i + LT
5 + τjY15, Σ22 = Afij +A

T

fij +
∑
l∈S1

πilWlj +
∑
k∈S2

λjkWik,

Σ24 = BfijC1i, Σ27 = BfijC2i, Σ33 = UijAω +AT
ωUij +

∑
l∈S1

πilUlj +
∑
k∈S2

λjkUik,

Σ44 = − (1 − μj

)
Q1ij − L2 − LT

2 +M2 +MT
2 + τjY22,

Σ45 = − LT
3 −M2 +MT

3 + τjY23,

Σ46 = − LT
4 +MT

4 + τjY24 +AT
1iN

T , Σ47 = −LT
5 +MT

5 + τjY25,

Σ55 = −Q2ij −M3 −MT
3 + τjY33, Σ56 = −MT

4 + τjY34, Σ57 = −MT
5 + τjY35,

Σ66 = τZ −NT −N + τjY44, Σ67 = NA2i + τjY45, Σ77 = −(1 − μj

)
R1ij + τjY55.

(3.27)

In this case, the parameters of the desired fault detection filter can be chosen by

Afij = W−1
ij Afij , Bfij = W−1

ij Bfij , Cfij = Cfij . (3.28)
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Proof. For each rt = i ∈ S1, st = j ∈ S2, we define a matrix Pij > 0 by Pij = diag[Vij Wij Uij].
Then, with the parameters in (3.28), it can be verified that, for each i ∈ S1, j ∈ S2, the
LMI (3.26) can be rewritten as (3.15). Then, we can obtain the results in Theorem 3.1. This
completes the proof.

Remark 3.5. Noting that the first diagonal element Σ11 in (3.15) includes Pij , Plj , and Pik.
Owing to the restrictions on the authors’ knowledge and the technique difficulties, Pij

is assumed to be diagonal matrices to obtain the parameters of the fault detection filter.
Although this assumptionmay cause some conservativeness, considering complete Pij results
in bilinear matrix inequalities and not LMIs which are more conservative.

4. A Numerical Example

In this section, a numerical example will be presented to show the validity of the main results
derived above.

Example 4.1. Let us consider the stochastic system (2.1)with the following system of matrices:

A(1) =
[−10 0
0.6 −12

]
, A1(1) =

[−1 0.3
2 −1

]
, A2(1) = 0.5I, B0(1) =

[
0.1
0.2

]
,

B1(1) =
[
0.7
0.1

]
, B2(1) =

[
0.6
0

]
, G1(1) = I, C(1) =

[
2 2.1

]
,

C1(1) =
[
1.5 0

]
, C2(1) =

[
0.1 0.1

]
, D1(1) = 0.1, D2(1) = 0.2,

G2(1) =
[−0.5 −0.5],

A(2) =
[−12 1
−2 −14.3

]
, A1(2) =

[−1 1.3
0.7 −1.1

]
, A2(2) = 0.1I, B0(2) =

[
0.1
0.2

]
,

B1(2) =
[
0.1
0.3

]
, B2(2) =

[
0.3
0

]
, G1(2) =

[
1 0
1 1

]
, C(2) =

[
2 2

]
,

C1(2) =
[
1.2 0.7

]
, C2(2) =

[
0.1 0.1

]
, D1(2) = 0.2, D2(2) = 0.2,

G2(2) =
[−0.5 −0.5].

(4.1)

The transition probability matrix is considered as

Π =
[−5 5
3 −3

]
, Λ =

[−0.6 0.6
0.5 −0.5

]
. (4.2)

In this example, the weighting matrix W(s) in Fω(s) = W(s)F(s) is supposed to be W(s) =
5/(s + 5). Its state-space realization is given as (2.5) with Aω = −5, Bω = 5 and Cω = 1. Also,
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Figure 1: System jumping mode.

we assume that τ1 = 0.6, τ2 = 0.4, μ1 = 0.4, μ2 = 0.3. For γ = 2.0, by the Theorem 3.4 in this
paper, the filter matrices are obtained as

Af11 =
[−3.1724 1.1747
−1.1416 −0.5011

]
, Bf11 =

[
0.6403
−0.0123

]
,

Cf11 =
[
4.3588 −0.1614],

Af12 =
[−2.3595 −0.9045
−4.1454 −3.4820

]
, Bf12 =

[
0.5199
0.8936

]
,

Cf12 =
[
5.5396 3.8431

]
,

Af21 =
[−0.3648 0.0560
−0.1076 −2.8163

]
, Bf21 =

[
0.0161
1.0228

]
,

Cf21 =
[−0.0077 4.4208

]
,

Af22 =
[−3.4133 0.0210
0.0135 −0.5002

]
, Bf22 =

[
0.6410
−0.0114

]
,

Cf22 =
[
4.8422 −0.0192].

(4.3)

For simulation purposes, we assume the initial condition x(0) = [0.6 − 0.6]T . The time
delays are τ1(t) = 0.2 + 0.4 sin(t), τ2(t) = 0.1 + 0.3 cos(t). The control input u(t) is chosen
to be sin(t)e−2t. The unknown input ν(t) (t ∈ [0 30]) is assumed to be the band-limited
white noise. The fault signal f(t) is simulated as a square wave signal with unit amplitude
that occurred from the 10 s to 20 s. Figures 1–5 illustrate the simulation results. The possible
realizations of the Markovian jumping modes of system and delay are plotted in Figures
1 and 2, respectively, where the initial modes are assumed to be r0 = 1 and s0 = 1.
Figure 3 shows the unknown input ν(t). Figure 4 shows the residual signal. Figure 5 is the
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Figure 2: Delay jumping mode.
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Figure 3: The unknown input ν(t).

simulation results of the evaluation function f(r). Under the above conditions, with a selected
threshold Jth = 0.1486, the simulation of evaluation function f(r) with fault shows that∫10.9
0 rT (t)r(t)dt = 0.1492 > Jth. Thus, the appeared fault can be detected after 0.9 s. The
simulation results demonstrate that the designed fault detection filter is feasible and effective.

Remark 4.2. In this study, the fault signal f(t) is assumed to be a square wave signal that
occurred from the 10 s to 20 s. Figure 4 shows that the generated residual signal is sensitive
to the fault and possesses robustness to exogenous disturbance. Furthermore, if no less than
one fault appears in the systems, the designed filter is also effective to estimate fault.
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Figure 4: Generated residual signal r(t).
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Figure 5: Evolution of residual evaluation function f(r).

5. Conclusion

The problem of fault detection for a class of stochastic MJS is investigated in this paper.
Different system mode and delay mode are considered in the model. By using the Lyapunov
functional, a mixed mode-dependent sufficient condition is developed to design the stable
filter. A numerical example demonstrates the effectiveness of the given method.
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