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This paper builds upon our recent paper on generalized fractional variational calculus (FVC).
Here, we briefly review some of the fractional derivatives (FDs) that we considered in the past
to develop FVC. We first introduce new one parameter generalized fractional derivatives (GFDs)
which depend on two functions, and show that many of the one-parameter FDs considered in the
past are special cases of the proposed GFDs. We develop several parts of FVC in terms of one para-
meter GFDs. We point out how many other parts could be developed using the properties of the
one-parameter GFDs. Subsequently, we introduce two new two- and three-parameter GFDs. We
introduce some of their properties, and discuss how they can be used to develop FVC. In addition,
we indicate how these formulations could be used in various fields, and how the generalizations
presented here can be further extended.

1. Introduction

For over a century, many researchers have been in search for a fundamental law that can be
used to describe the behavior of the nature. One law that comes very close to it is the universal
law of extremum which states that the nature always behaves in a way such that some quan-
tity is an extremum. A catenary takes a shape so that the total potential energy is minimum,
light travels from a point to another so that the travel time is minimum, a particle in a flow
takes a path of least resistance, and even in social settings, we behave so that our conflict with
others within our conviction is minimum. Related laws, principles, and theories have been
developed in almost every field of science, engineering, mathematics, biology, economics
and social science. For example, applications of such laws, principles, and theories in
continuum mechanics, classical and quantum mechanics, relativistic quantum mechanics,
and electromagnetics could be found in [1–5] and many other textbooks, monographs, and
papers. Opponent of the universal principle may argue that nature behaves in its own
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way, and the extremum principles are our creations where we design a functional that is
extremum for the nature’s trajectory. Whatever may be the reality, the underlying theories
have advanced our understanding of the nature tremendously.

The field that deals with the mathematical theories of the extremum principles is
known as the variational calculus. Excellent books have been written in this field, see for
example [6, 7]. These books provide not only the foundations for theoretical work in the
field, but they have also been a basis for many numerical techniques (see, [8, 9]). However,
the traditional variational calculus subject has one major drawback; it deals with functionals
containing integer-order derivative terms only. Recent progress in last two decades have
demonstrated that many phenomena in various fields of science, mathematics, engineering,
bioengineering, and economics are more accurately described using fractional derivatives.
As a result, many books, monographs, and papers have been written recently on this subject
(see, e.g. [10–21]). We assume that many fractional models would follow the universal law
of extremum. If this is true, then it is very likely that a variational calculus that deals with
fractional derivatives would be necessary. In other words, we need fractional variational
calculus.

The subject of fractional variational calculus was initiated by Riewe [22, 23] in 1996.
Riewe was interested in developing a variational formulation for a linear damper. He
observed that a quadratic term of type (Dy(x))2 in a functional leads to a second-order
derivative term of type D2y in the resulting differential equation. Here D is the derivative
operator. Therefore, he argued that a first-order derivative term of type Dy in a differential
equation will come from a quadratic term of type (D1/2y)2 in the functional. Here D1/2 is a
half-order derivative operator (Precise definitions of fractional derivative would be discussed
later in the paper.) Using this hypothesis, he proceeded to develop a variational formulation
in terms of fractional derivatives. Subsequently, he developed fractional Lagrangian, frac-
tional Hamiltonion, and fractional mechanics.

Klimek [24, 25] and Agrawal [26] brought this subject to the main stream and initiated
the field of fractional variational calculus. These authors identified the key integration-by-
parts formulas for fractional derivatives, and showed that using these formulas a fractional
variational formulation can be obtained in the same way as it is done for integer variational
formulation. Note that variational calculus has been applied to an extensively large number
of problems, theories, and formulations most of which could be reexamined in the light of
fractional variational calculus. Thus, the above work has opened significant opportunities for
many new research.

Recently, the field of fractional variational calculus has indeed grown very rapidly. A
citation search of [26] and some related papers suggests that in the last 10 years over 300
papers have been published which are directly related to fractional variational calculus; here
we cite a few of them [27–36]. These papers further (1) develop fractional variational calculus
and Fractional Euler-Lagrange Equations in terms of fractional derivatives not considered
earlier, (2) derive trasnversality conditions for fractional problems, (3) propose new frac-
tional Lagrangians and fractional Hamiltonians and fractional mechanics, and (4) develop
applications of fractional derivatives in optimal control and fractional inverse problems.
Recently, Klimek has written a book dedicated to fractional variational calculus and analytical
techniques to solve problems resulting from fractional variational formulations [37]. Ref-
erence [38] presents a two- and a three-parameter generalizations of fractional variational
calculus. It is demonstrated that by setting these parameters to different values we obtain
several different fractional variational formulations presented previously. These citations are
clear indications that significant progress has been made in the area of fractional variational
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calculus. However, compared to the progress that has already been made in ordinary varia-
tional calculus, this progress in fractional variational calculus is very small.

In this paper, we provide further generalization of fractional variational calculus.
Specifically we introduce Hadamard type, Erdélyi-Kober type fractional integral and frac-
tional derivatives, and fractional integrals and derivatives of a function (say f(x)) with
respect to another function (say φ(x)). We also introduce some new fractional integrals and
derivatives Caputo, Hilfer, and Riesz types. This leads to two-, three-, and four-parameter
generalized fractional derivatives of a function with respect to another function. We develop
integration-by-parts formulas and Euler-Lagrange equations in terms of these new two-,
three- and four-parameters fractional derivatives. It is demonstrated that by taking different
values for different parameters and different function φ(x), we obtain many old and many
new fractional derivatives and fractional variational formulations. We also introduce frac-
tional Lagrangians and Hamiltonians in terms of these derivatives, and develop a more
general fractional mechanics. Since, function could be selected from a large set, it provides a
large number of fractional variational formulations for modeling purpose. Finally, we discuss
how this work can be extended further.

At this point, we would like to emphasize that a comprehensive treatment and
an excellent review of many generalized fractional operators proposed in the field could
be found in [13, 39] (In this regards, please also see [19] and many references cited in
[13, 39]). Generalizations of integral operators with specific weights could be found in [12]. In
contrast to these references, some of the fractional operators proposed here are more general.
In addition, our focus here is to develop some of the theories for generalized fractional
variational calculus in terms of these operators, and provide an outline for other formulations
in the field. We consider here functions dependent on one parameter. However, the theories
developed here could easily be extended to field variable and distributed order systems
([21]).

2. Preliminaries

In this paper, we will introduce several general multiparameter fractional integrals and
derivatives, and show that many specific integrals and derivatives can be obtained from
these general derivatives. For ease in the discussion to follow and to make this paper self-
contained, we first introduce several symbols and notations, and provide some preliminaries.
A large part of these symbols and definitions could be found in [12, 19, 38]. We shall denote
the order of the fractional integrals and derivatives as α. In [12, 19], in general, α is taken as a
complex number, and restrictions are imposed on it as necessary. Same approach can be taken
here. However, in our discussion to follow, we shall implicitly consider that α is a positive real
number. We shall assume that a and b are real such that a < b, and consider the domain of
the functions and operators as [a, b], although in some cases, the domain of the functions and
operators may not contain some isolated points of [a, b]. Further, we shall consider [a, b] to be
a finite domain. But, in many cases, a could be −∞ and b could be∞, and some special cases
could be derived by setting a = 0. However, these would be left as an exercise. Exception
to these would be noted as necessary. We shall further assume that our functions are “suffi-
ciently good” so that the operations considered on them are valid.

In this paper, we consider several fractional integrals and derivatives. We begin with
the Riemann-Liouville and the Caputo fractional integrals and derivatives.
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2.1. Riemann-Liouville and Caputo Fractional Integrals and Derivatives

Many fractional derivatives are defined using the left/forward and the right/backward
Riemann-Liouville fractional integrals (RLFIs). These integrals are defined as follows.

Left/Forward Riemann-Liouville fractional integral of order α

(
Iαa+y

)
(t) =

1
Γ(α)

∫ t

a

(t − τ)α−1y(τ)dτ, (t > a). (2.1)

Right/Backward Riemann-Liouville fractional integral of order α

(
Iαb−y

)
(t) =

1
Γ(α)

∫b

t

(τ − t)α−1y(τ)dτ, (t < b), (2.2)

where Γ(∗) is the Gamma function, and α is the order of integration. Here α > 0, however, we
shall restrict our attention to (0 < α < 1). The fractional integral operators Iαa+ and Iα

b− satisfy
the semigroup property, namely,

Iαa+I
β
a+y = I

α+β
a+ y = I

β
a+I

α
a+y, Iαb−I

β

b−y = I
α+β
b− y = I

β

b−I
α
b−y, α > 0, β > 0. (2.3)

We now consider the reflection operator Q which is defined as

(Qx)(t) = x(a + b − t). (2.4)

Operator Q satisfies the following identities,

Q(Iαa+) =
(
Iαb−

)
Q, Q

(
Iαb−

)
= (Iαa+)Q. (2.5)

An advantage of operatorQ is that one needs to examine the properties of Iαa+ only, and obtain
the properties of Iα

b− by using the properties of Iαa+ and Q.
Using (2.1) and (2.2), the left/forward and the right/backward Riemann-Liouville

fractional derivatives (RLFDs) of order α, (n− 1 < α < n), n an integer, are defined as follows.
Left/Forward Riemann-Liouville fractional derivative of order α

(
Dα

a+y
)
(t) =

1
Γ(n − α)

(
d

dt

)n ∫ t

a

(t − τ)n−α−1y(τ)dτ = Dn(In−αa+ y
)
(t) (2.6)

Right/Backward Riemann-Liouville fractional derivative of order α

(
Dα

b−y
)
(t) =

1
Γ(n − α)

(
− d

dt

)n ∫b

t

(τ − t)n−α−1y(τ)dτ = (−D)n
(
In−αb− y

)
(t). (2.7)
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where D = d/dt represents the ordinary differential operator. Operators Dα
a+ and Dα

b− are the
left inverse of operators Iαa+ and Iα

b−, that is, they satisfy the following identities

Dα
a+I

α
a+ = E = Dα

b−I
α
b−, (2.8)

where E is the identity operator. However, in general

Iαa+D
α
a+ /=E/= Iαb−D

α
b−. (2.9)

The left/forward and the right/backward Caputo fractional derivatives (CFDs) of
order α(n − 1 < α < n) are defined as

Left/Forward Caputo fractional derivative of order α

(
CDα

a+y
)
(t) =

1
Γ(n − α)

∫ t

a

(t − τ)n−α−1
(

d

dt

)n

y(τ)dτ =
(
In−αa+ Dny

)
(t). (2.10)

Right/Backward Caputo fractional derivative of order α

(
CDα

b−y
)
(t) =

1
Γ(n − α)

∫b

t

(τ − t)n−α−1
(
− d

dt

)n

y(τ)dτ =
(
In−αb− (−D)ny

)
(t). (2.11)

Note that the ordinary derivative operators are applied in the RLFDs after the fractional
integrals whereas in the CFDs before the fractional integrals. Therefore, the differentiability
required of y(t) by the CFDs is higher than those by the RLFDs.

Operators Dα
a+, D

α
b−,

CDα
a+,

CDα
b−, and Q satisfy the following identities:

QDα
a+ = Dα

b−Q, QDα
b− = Dα

a+Q,

QCDα
a+ = CDα

b−Q, QCDα
b− = CDα

a+Q.
(2.12)

The RLFDs and the CFDs are related by the following formulas [12, 19]:

(
Dα

a+y
)
(t) =

(
CDα

a+y
)
(t) +

n−1∑

k=0

y(k)(a)
Γ(k − α + 1)

(t − a)k−α, (2.13)

(
Dα

b−y
)
(t) =

(
CDα

b−y
)
(t) +

n−1∑

k=0

y(k)(b)
Γ(k − α + 1)

(b − t)k−α, (2.14)

where y(k) represents the kth derivative of y(t) with respect to t. Equation (2.13) can be
obtained using the identity

y(t) = Ina+D
ny(t) −

n−1∑

k=0

y(k)(a)
k!

(t − a)k (2.15)
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and the semigroup property of the integral operators, and (2.14) can be obtained using the
property of the Q operator.

The integral operators (Iαa+) and (Iα
b−) and the derivative operators (Dα

a+), and (Dα
b−)

satisfy the following fractional integration by parts formulas [12]

∫b

a

f(t)(Iαa+)g(t)dt =
∫b

a

g(t)
(
Iαb−

)
f(t)dt. (2.16)

Similarly, operators (Dα
a+) and (Dα

b−) satisfy and

∫b

a

f(t)
(
Dα

a+g
)
(t)dt =

∫b

a

g(t)
(
Dα

b−f
)
(t)dt. (2.17)

The conditions under which (2.16) and (2.17) are valid can be found in [12]. It will be
implicitly assumed that these conditions are satisfied. In a more general setting, operators
(Dα

a+), (D
α
b−), (

CDα
a+), and (CDα

b−) satisfy the following fractional integration by parts formula,

∫b

a

f(t)
(
Dα

a+g
)
(t)dt =

∫b

a

g(t)
(
CDα

b−f
)
(t)dt

+
n−1∑

j=0
(−D)jf(t)

(
D

α−1−j
a+

)
g(t)

∣∣∣∣∣∣

b

a

,

(2.18)

∫b

a

f(t)
(
Dα

b−g
)
(t)dt =

∫b

a

g(t)
(
CDα

a+

)
f(t)dt

−
n−1∑

j=0

Djf(t)
(
D

α−1−j
b− g

)
(t)

∣∣∣∣∣∣

b

a

.

(2.19)

Here,D−α
a+ andD−α

b− must be interpreted as Iαa+ and Iα
b−, respectively. Equations (2.18) and (2.19)

can be obtained by considering the Riemann-Liouville and the Caputo fractional derivatives
in terms of fractional integrals and ordinary derivatives and (2.16). Conditions under which
(2.18) and (2.19) are true can be found in [37]. Using the properties of functions f(t) and g(t),
these equalities can be further specialized. Equations (2.17) to (2.19) have played key roles in
developing fractional variational calculus.

2.2. Hadamard Fractional Integrals and Derivatives

The left/forward and the right/backward Hadamard fractional integrals (HFIs) of order α
are defined as follows [12, 19].

Left/Forward Hadamard fractional integral of order α

(
HIαa+y

)
(t) =

1
Γ(α)

∫ t

a

(
log

t

τ

)α−1y(τ)dτ
τ

, (a < t < b). (2.20)
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Right/Backward Hadamard fractional integral of order α

(
HIαb−y

)
(t) =

1
Γ(α)

∫b

t

(
log

τ

t

)α−1
y(τ)dτ, (a < t < b). (2.21)

Like the RLFIs, the HFIs also satisfy the semigroup properties, that is,

HIαa+
HI

β
a+ = HI

α+β
a+ = HI

β
a+

HIαa+,
HIαb− = HI

α+β
b− = HI

β

b−
HIαb−. (2.22)

The left/forward and the right/backward Hadamard fractional derivatives (HFDs) of
order α are defined as follows [12, 19].

Left/Forward Hadamard fractional derivative of order α

(
HDα

a+y
)
(t) =

1
Γ(n − α)

(
t
d

dt

)n ∫ t

a

(
log

t

τ

)n−α+1y(τ)dτ
τ

=
(
t
d

dt

)n(
HIαa+y

)
(t), (a < t < b),

(2.23)

Right/Backward Hadamard fractional derivative of order α

(
HDα

b−y
)
(t) =

1
Γ(n − α)

(
−t d

dt

)n ∫b

t

(
log

τ

t

)n−α+1
y(τ)dτ

=
(
−t d

dt

)n(
HIαb−y

)
(t) (a < t < b),

(2.24)

where, as before, n−1 < α < n. The left and the right Hadamard fractional derivative operators
(HFDOs) HDα

a+ and HDα
b− are the left inverse of the left and the right Hadamard Fractional

Integral Operator (HFIOs) HIαa+ and HIα
b−, respectively, that is, they satisfy the following

identities

HDα
a+

HIαa+ = E = HDα
b−

HIαb−. (2.25)

Note that the left and the right HFDOs are obtained by applying (t(d/dt))n and (−t(d/dt))n to
the left- and the right HFIOs, respectively. We shall define another set of fractional derivatives
by changing the order of the derivative and the integral operators in (2.23) and (2.24). Due to
their similarity with Caputo derivatives, we call them Hadamard-Caputo derivatives. Thus,
the left/forward and the right/backward Hadamard-Caputo fractional derivatives (HCFDs)
of order α are defined as follows.

Left/Forward Hadamard-Caputo fractional derivative of order α

(
HCDα

a+y
)
(t) =

1
Γ(n − α)

∫ t

a

(
log

t

τ

)n−α+1(
τ
d

dτ

)n

y(τ)
dτ

τ

= HIαa+

((
t
d

dt

)n

y

)
(t) (a < t < b),

(2.26)
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Right/Backward Hadamard-Caputo fractional derivative of order α

(
HCDα

b−y
)
(t) =

1
Γ(n − α)

∫b

t

(
log

τ

t

)n−α+1(
−τ d

dτ

)n

y(τ)dτ

= HIαb−

((
−t d

dt

)n

y

)
(t), (a < t < b).

(2.27)

The HFDOs HDα
a+ and HDα

b− are related to the HCFDOs HCDα
a+ and HCDα

b− by the
following relations

(
HDα

a+y
)
(t) =

(
HCDα

a+y
)
(t) +

n−1∑

k=0

(tD)(k)y(a)
Γ(k − α + 1)

(
log

t

a

)k−α
,

(
HDα

b−y
)
(t) =

(
HCDα

b−y
)
(t) +

n−1∑

k=0

(−tD)(k)y(b)
Γ(k − α + 1)

(
log

b

t

)k−α
,

(2.28)

whereD = d/dt is the time derivative operator. The proofs of (2.28) are the same as those for
(2.13) and (2.14).

We can develop integration by parts formula for Hadamard operators also. It can
be demonstrated that the HFIOs HIαa+ and HIαb− satisfy the following integration by parts
formula:

∫b

a

1
t
f(t)

(
HIαa+g

)
(t)dt =

∫b

a

1
t
g(t)

(
HIαb−f

)
(t)dt. (2.29)

One can prove (2.29) using the definitions of the HFIOs and the Dirichlet formula.
Similar to (2.17) to (2.19), the HFDOs and the HCFDOs satisfy the following identity

∫b

a

1
t
f(t)

(
HDα

a+g
)
(t)dt =

∫b

a

1
t
g(t)

(
HDα

b−f
)
(t)dt, (2.30)

and in a more general setting, the HFDOs and the HCFDOs satisfy the following fractional
integration by parts formula

∫b

a

1
t
f(t)

(
HDα

a+g
)
(t)dt =

∫b

a

1
t
g(t)

(
HCDα

b−f
)
(t)dt

+
n−1∑

j=0
(−tD)jf(t)

(
HD

α−1−j
a+

)
g(t)

∣∣∣∣∣∣

b

a

,

(2.31)
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∫b

a

1
t
f(t)

(
HDα

b−g
)
(t)dt =

∫b

a

1
t
g(t)

(
HCDα

a+

)
f(t)dt

−
n−1∑

j=0
(tD)jf(t)

(
HD

α−1−j
b− g

)
(t)

∣
∣
∣
∣
∣
∣

b

a

.

(2.32)

As stated earlier, one can take a = 0 or −∞ and b = ∞, and include some weight func-
tions in the integral to obtain some other types of HFIs and HFDs. However, these will be
considered later.

Equations (2.20) to (2.32) provide sufficient number of formulas to develop Euler-
Lagrange formulations in terms of Hadamard fractional derivatives. For the time being, we
proceed to define the Erdélyi-Kober type fractional integrals and derivatives, and develop
some of their properties pertinent to fractional variational calculus.

2.3. Erdélyi-Kober Fractional Integrals and Derivatives

The left/forward and right/backward Erdélyi-Kober fractional integrals (EKFIs) are defined
as [12, 19] as follows.

Left/Forward Erdélyi-Kober fractional integral of order α

(
EKIα

a+;[σ,η]y
)
(t) =

σt−σ(α+η)

Γ(α)

∫ t

a

τση+σ−1y(τ)dτ

(tσ − τσ)1−α
, (a < t < b) (2.33)

and Right/Backward Erdélyi-Kober fractional integral of order α

(
EKIα

b−;[σ,η]y
)
(t) =

σtση

Γ(α)

∫b

t

τσ(1−α−η)−1y(τ)dτ

(τσ − tσ)1−α
, (a < t < b). (2.34)

As pointed out earlier, by setting a to −∞ or 0 and b to∞, one can obtain several other
types of EKFIs. Indeed, many of such integrals are defined and discussed in [12, 19]. Many
of the formulations discussed here can directly be applied to these other EKFIs.

These integrals satisfy the following semigroup properties:

EKIαa+;[σ,η]
EKI

β

a+;[σ,η+α] =
EKI

α+β
a+;[σ,η],

EKIαb−;[σ,η]
EKI

β

b−;[σ,η+α] =
EKI

α+β
b−;[σ,η]. (2.35)

The Erdélyi-Kober fractional derivatives (EKFDs) of order α corresponding to the
EKFIs are defined as.

Left/Forward Erdélyi-Kober fractional derivative of order α

(
EKDα

a+;[σ,η]y
)
(t) = t−ση

(
1

σtσ−1
Dt

)m

tσ(m+η)
(

EKIm−α
a+;[σ,η+α]y

)
(t) (2.36)
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and Right/Backward Erdélyi-Kober fractional derivative of order α

(
EKDα

b−;[σ,η]y
)
(t) = tσ(α+η)

( −1
σtσ−1

Dt

)m

tσ(m−η−α)
(

EKIm−α
b−;[σ,η+α−m]y

)
(t). (2.37)

For sufficiently good function y(t), the Erdélyi-Kober fractional differential operators
(EKFDOs) EKDα

a+;[σ,η] and
EKDα

b−;[σ,η] are left inverse of the Erdélyi-Kober fractional integral

operators (EKFIOs) EKIα
a+;[σ,η] and

EKIα
b−;[σ,η], respectively, that is, they satisfy the following

identities,

EKDα
a+;[σ,η]

EKIαa+;[σ,η] = E = EKDα
b−;[σ,η]

EKIαb−;[σ,η]. (2.38)

The EKFIs and the EKFDs satisfy the following integration by parts formulas:

∫b

a

t(σ−1)f(t)
(

EKIα
a+;[σ,η]g

)
(t)dt =

∫b

a

σt(σ−1)g(t)
(

EKIα
b−;[σ,η]f

)
(t)dt, (2.39)

∫b

a

t(σ−1)f(t)
(

EKDα
a+;[σ,η]g

)
(t)dt =

∫b

a

σt(σ−1)g(t)
(

EKDα
b−;[σ,η]f

)
(t)dt. (2.40)

Equation (2.39) could be found in [12, 19], and (2.40) could be derived using the definitions
of EKFIs and EKFDs and the Dirichlet formula.

Equations (2.33) to (2.40) are sufficient to develop some fractional variational
formulations in terms of EKFIs and EKFDs. Note that in the EKFDs, the EKFIOs are applied
first and some derivative operators are applied next. One can also take some derivative
operators first and the EKFIOs next to define some Caputo type EKFIs and EKFDs. Indeed,
one can show that the following relation is valid

(
EKDα

a+;[σ,η]f
)
(t) =

(
EKCDα

a+;[σ,η]f
)
(t) +

m−1∑

k=0

(tσ − aσ)k−α

Γ(m − α)

∗
[(

1
σxσ−1Dx

)k(
xσ(η+α)f(x)

)]
∣∣∣∣∣
x=a

,

(2.41)

where

(
EKCDα

a+;[σ,η]f
)
(t) = t−ση

[
1

Γ(m − α)

∫b

t

στσ−1dτ

(τσ − tσ)1−m+α

(
1

στσ−1
Dτ

)m(
τσ(η+α)f(τ)

)]

(2.42)

is the left/forward Erdélyi-Kober-Caputo type fractional derivative of order α. Following above
discussion, a right/backward Erdélyi-Kober-Caputo type Fractional Derivative (EKC-FD) of
order α and related integration by parts formula could be developed. However, note that
Erdélyi-Kober operators may lead to some nonstandard cases. For example, in (2.35), one
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cannot simply interchange the first two operator, as it can be done in (2.3). Therefore, the
EKC-FDs and related identities and their generalizations will be considered in the future.
Note that references [12, 19] also introduce operators Mσ and Nσ defined as (Mσφ)(x) =
xσφ(x) and (Nσφ)(x) = φ(xσ). These operators link the Erdélyi-Kober operators to the
Riemann-Liouville operators, which could simplify some of the formulations. Properties of
these formulations in the context of fractional variational calculus will be examined in the
future.

2.4. Modified Erdélyi-Kober Fractional Integrals and Derivatives

It was pointed out above that the Erdélyi-Kober operators defined by (2.33), (2.34), (2.36),
and (2.37) lead to some nonstandard cases. For example, in (2.35) the first two operators
cannot be interchanged. Furthermore, in order for the relations in (2.35) to be valid, some of
the parameters of the operators must be related (e.g., notice the presence of α in the first two
operators in (2.35)). To overcome this difficulty, we define modified Erdélyi-Kober fractional
integrals and derivatives in the following way.

Left/Forward modified Erdélyi-Kober fractional integral (MEKFI) of order α

(
MEKIα

a+;[σ,η]y
)
(t) =

σt−σ(η)

Γ(α)

∫ t

a

τση+σ−1y(τ)dτ

(tσ − τσ)1−α
, (a < t < b) (2.43)

and right/backward modified Erdélyi-Kober fractional integral (MEKFI) of order α

(
MEKIα

b−;[σ,η]y
)
(t) =

σtση

Γ(α)

∫b

t

τσ(1−η)−1y(τ)dτ

(τσ − tσ)1−α
, (a < t < b). (2.44)

It should be pointed out that like in the case of EKFIs, one can obtain several other types of
MEKFIs by setting a to −∞ or 0 and b to∞. Such substitutions may lead to specialized cases,
and may result in simplified formulations. These cases will be considered in the future. In
any case, the formulation here will also be applicable to these specialized MEKFIs.

These integrals satisfy the following semigroup properties

MEKIαa+;[σ,η]
MEKI

β

a+;[σ,η] =
MEKI

α+β
a+;[σ,η] =

MEKI
β

a+;[σ,η]
MEKIαa+;[σ,η],

MEKIαb−;[σ,η]
MEKI

β

b−;[σ,η] =
MEKI

α+β
b−;[σ,η] =

MEKI
β

b−;[σ,η]
MEKIαb−;[σ,η].

(2.45)

The proof of these identities follows the same steps as those for the proof of (2.35). Note that
in the modified definition, the operators MEKIα

a+;[σ,η](
MEKIα

b−;[σ,η]) and
MEKI

β

a+;[σ,η](
MEKI

β

b−;[σ,η])
commute.

We define the modified EKFDs of order α corresponding to the modified EKFIs as
follows.

Left/Forward modified Erdélyi-Kober fractional derivative of order α

(
MEKDα

a+;[σ,η]y
)
(t) = t−ση

(
1

σtσ−1
Dt

)m

tση
(

MEKIm−α
a+;[σ,η]y

)
(t), (2.46)
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and right/backward modified Erdélyi-Kober fractional derivative of order α

(
MEKDα

b−;[σ,η]y
)
(t) = tσ(η)

( −1
σtσ−1

Dt

)m

tσ(−η)
(

MEKIm−α
b−;[σ,η]y

)
(t). (2.47)

Note that in the case of the modified EKFIOs and the modified EKFDOs, the value of the
parameters σ and η are not modified.

For sufficiently good function y(t), the modified EKFDOs EKDα
a+;[σ,η] and

MEKDα
b−;[σ,η]

are left inverse of the modified EKFIOs EKIα
a+;[σ,η] and

MEKIα
b−;[σ,η], respectively, that is, they

satisfy the following identities:

MEKDα
a+;[σ,η]

MEKIαa+;[σ,η] = E = MEKDα
b−;[σ,η]

MEKIαb−;[σ,η]. (2.48)

The modified EKFIs and the modified EKFDs satisfy the following integration by parts
formulas

∫b

a

t(σ−1)f(t)
(

MEKIα
a+;[σ,η]g

)
(t)dt =

∫b

a

σt(σ−1)g(t)
(

MEKIα
b−;[σ,η]f

)
(t)dt, (2.49)

∫b

a

t(σ−1)f(t)
(

MEKDα
a+;[σ,η]g

)
(t)dt =

∫b

a

σt(σ−1)g(t)
(

MEKDα
b−;[σ,η]f

)
(t)dt. (2.50)

The method of proof for (2.49) and (2.50) are the same as that for (2.39) and (2.40).
Equation (2.50) can be used to obtain a fractional variational formulation in terms

of modified EKFDs. However, such formulations limit the terminal conditions and obscure
the posibility of other terminal and transversality conditions. Further, note that in (2.46) and
(2.47), the integral operators are applied first and the derivative operators are applied next.
We can interchange the operation, and these leads to Caputo type derivatives. Accordingly,
we define the modified Caputo type Erdélyi-Kober fractional derivatives as follows.

Left/Forward modified Caputo type Erdélyi-Kober fractional derivative (MCEKFD) of order α

(
MCEKDα

a+;[σ,η]y
)
(t) =

σt−ση

Γ(m − α)

∫x

a

τσ−1dτ

[xσ − τσ]1+α−m

(
1

στσ−1
Dτ

)m(
τσηy(τ)

)
(2.51)

and right/backward modified Caputo type Erdélyi-Kober fractional derivative (MCEKFD) of order α

(
MCEKDα

b−;[σ,η]y
)
(t) =

σtση

Γ(m − α)

∫b

x

τσ−1dτ

[τσ − xσ]1+α−m

( −1
στσ−1

Dτ

)m(
τ−σηy(τ)

)
. (2.52)

The left MEKFD and the left MCEKFD are related in the following way:

(
MEKDα

a+;[σ,η]y
)
(t) =

(
MCEKDα

a+;[σ,η]y
)
(t)

+ x−ση
m−1∑

k=0

(xσ − aσ)
Γ(k − α + 1)

(
1

στσ−1
Dτ

)(k)(
τσηy(τ)

)|τ=a .
(2.53)
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A similar relation exits between the right MEKFD and the right MCEKFD. The MEKFDs and
MCEKFDs satisfy the following integration by parts formula:

∫b

a

σxσ−1f(x)
(

MEKDα
a+;[σ,η]g

)
(x)dx

=
∫b

a

σxσ−1g(x)
(

MCEKDα
b−;[σ,η]f

)
(x)dx

+
m−1∑

k=0

[

xση

( −1
σxσ−1Dx

)k(
x−σηf(x)

)
](

MEKDα−1−k
a+;[σ,η]g

)
(x)

∣
∣
∣
∣
∣

b

a

.

(2.54)

A similar relationship can be obtained relating the right MEKFD and the left MCEKFD.

2.5. Weighted/Scaled Fractional Integrals and Fractional Derivatives of
a Function with Respect to Another Function

In this section we define the left/forward and the right/backward fractional integrals and
fractional derivatives of a function f(t)with respect to another function z(t) andweight/scale
w(t), and investigate some of their properties. We assume that z(t) is an increasing positive
monotone function on (a, b] having a continuous derivative z′(t) on (a, b). We further assume
that function w(t) is “sufficiently good.”

We now define the left/forward and the right/backward weighted/scaled fractional
integrals of a function with respect to another function as follows.

Left/Forward weighted/scaled fractional integral of order α > 0 of a function f(t) with respect
to another function z(t) and weight w(t)

(
Iαa+;[z;w]f

)
(x) =

[w(x)]−1

Γ(α)

∫x

a

w(t)z′(t)f(t)dt

[z(x) − z(t)]1−α
. (2.55)

Right/Backward weighted fractional integral of order α > 0 of a function f(t) with respect to
another function z(t) and weight w(t)

(
Iαb−;[z;w]f

)
(x) =

[w(x)]
Γ(α)

∫b

x

[w(t)]−1z′(t)f(t)dt

[z(t) − z(x)]1−α
. (2.56)

We shall denote them as the left/forward and the right/backward generalized fractional
integrals (GFIs). It should be pointed out that these integrals also contain the scaling/weight
function w(t) and the function z(t) with respect to which the function f(t) is integrated. In
our case, functionsw(t) and z(t)will often remain the same, and therefore, it is not necessary
to explicitly mention of the presence of these functions in the definitions of the integrals.
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Like the GFIs, we define the left/forward and the right/backward weighted/scaled
fractional derivatives of a function f(t)with respect to another function z(t) andweight/scale
w(t) as follows.

Left/Forward weighted fractional derivative of order α > 0 of a function f(t) with respect to
another function z(t) and weight w(t)

(
Dα

a+;[z;w,1]f
)
(x) = [w(x)]−1

(
1

z′(x)
Dx

)m

w(x)
(
Im−α
a+;[z;w]f

)
(x). (2.57)

Right/Backward weighted fractional derivative of order α > 0 of a function f(t) with respect to
another function z(t) and weight w(t)

(
Dα

b−;[z;w,1]f
)
(x) = [w(x)]

( −1
z′(x)

Dx

)m

[w(x)]−1
(
Im−α
b−;[z;w]f

)
(x), (2.58)

wherem − 1 < α < m, and Dx = d/dx. These derivatives contain one parameter only, namely
the order of the derivative. (In reality, functionsw(t) and z(t)would also introduce additional
parameters. For the time being, we shall keep these functions the same, and therefore, calling
these derivatives as one parameter derivatives is justified.) In later sections, we shall define
derivatives containing many more parameters. Furthermore, note that in these derivatives,
the GFI Operators (GFIOs) are applied first and some derivative operators are applied next,
and accordingly, they are like Riemann-Liouville fractional derivatives. Later, we shall con-
sider Caputo type derivatives in which the derivative operators would be applied first, and
the GFIOs next. A name that describes all these would be very long. For brevity, we denote
these derivatives as One-Parameter Type-1 generalized fractional derivatives (1PT1GFDs).
We choose not to call these derivatives as the Riemann-Liouville fractional derivatives for the
reason given below. We further define

(
D[z,w,L]f

)
(x) = [w(x)]−1

[(
1

z′(x)
Dx

)
(
w(x)f(x)

)
]
(x),

(
D[z,w,R]f

)
(x) = [w(x)]

[( −1
z′(x)

Dx

)(
[w(x)]−1f(x)

)]
(x).

(2.59)

Here, D[z,w,L] and D[z,w,R] are like the left/forward and the right/backward operators D
and −D, respectively, except that they also contain functions w(t) and z(t). These are new
integer order operators. variational calculus in terms of these operators will be considered
somewhere else. In this paper, we shall focus on the role of these operators in formulating
generalized fractional variational calculus. Using (2.59), (2.57), and (2.58) can be written as

(
Dα

a+;[z;w,1]f
)
(x) = Dm

[z,w,L]

(
Im−α
a+;[z;w]f

)
(x),

(
Dα

b−;[z;w,1]f
)
(x) = Dm

[z,w,R]

(
Im−α
b−;[z;w]f

)
(x).

(2.60)
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Here subscript “1” is added to indicate that these are Type-1 fractional derivatives. In
the same faashion, we introduce One-parameter Type-2 generalized fractional derivatives
(1PT2GFDs) as

(
Dα

a+;[z;w,2]f
)
(x) =

(
Im−α
a+;[z;w]D

m
[z,w,L]f

)
(x), (2.61)

(
Dα

b−;[z;w,2]f
)
(x) =

(
Im−α
b−;[z;w]D

m
[z,w,R]f

)
(x). (2.62)

Note that in these fractional derivatives, the differential operators are applied first, and the
GFIOs are applied next, accordingly they are Caputo type fractional derivatives.

Before we proceed further, we would like to note that the fractional integrals and
derivatives of a function with respect to another function defined in [12, 19] does not consider
the weight/scale function. Further, by taking w(t) = 1 in (2.55) to (2.58), we obtain the frac-
tional integrals and derivatives (Iαa+;zf)(x), (I

α
b−;zf)(x), (D

α
a+;zf)(x), and (Dα

b−;zf)(x) defined
in [12, 19]. However, in our case, w(t) need not be 1. Thus, the fractional integrals and
derivatives defined here are more general than those given in [12, 19]. Also note that in [19],
the authors define a substitution operator Qg and its inverse Q−1

g such that (Qgf)(x) =
f[g(x)]. One of the major advantages of these operators is that they link the fractional
integrals and derivatives (Iαa+;zf)(x), (I

α
b−;zf)(x), (D

α
a+;zf)(x), and (Dα

b−;zf)(x) to the Riemann-
Liouville fractional integrals and derivatives defined by (2.1), (2.2), (2.6), and (2.7).
Accordingly, the properties of (Iαa+;zf)(x), (I

α
b−;zf)(x), (D

α
a+;zf)(x), and (Dα

b−;zf)(x) could be
obtained from the operators defined in (2.1), (2.2), (2.6), and (2.7). Operators similar to Qg

and Q−1
g could be defined for the present case. However, in this paper, we shall use the

definitions directly to obtain the properties of the operators defined in (2.55) to (2.62).
We now list several properties of operators Iα

a+;[z;w], I
α
b−;[z;w], D

α
a+;[z;w,1], D

α
b−;[z;w,1],

Dα
a+;[z;w,2], and Dα

b−;[z;w,2]. Operators Iα
a+;[z;w] and Iα

b−;[z;w] satisfy the following semigroup
properties:

Iαa+;[z;w]I
β

a+;[z;w] = I
α+β
a+;[z;w] = I

β

a+;[z;w]I
α
a+;[z;w], (2.63)

Iαb−;[z;w]I
β

b−;[z;w] = I
α+β
b−;[z;w] = I

β

b−;[z;w]I
α
b−;[z;w]. (2.64)

Operators Dα
a+;[z;w,1] and Dα

b−;[z;w,1] are left inverse of the operators Iα
a+;[z;w] and Iα

b−;[z;w], that
is, they satisfy the following relations:

(
Dα

a+;[z;w,1]I
α
a+;[z;w]f

)
(x) = f(x),

(
Dα

b−;[z;w,1]I
α
b−;[z;w]f

)
(x) = f(x). (2.65)

Operators Dα
a+;[z;w,1] and Dα

a+;[z;w,2] are related by the following formula

(
Dα

a+;[z;w,1]f
)
(x) =

(
Dα

a+;[z;w,2]f
)
(x) +

w(a)
w(x)

m−1∑

k=0

(
D

(k)
[z;w]f

)
(a)

Γ(k − α + 1)
(z(x) − z(a))k−α. (2.66)
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One can develop a similar relation relating Dα
b−;[z;w,1] to Dα

b−;[z;w,2]. The above relation shows
that like in the case of Riemann-Liouville and Caputo derivatives, if f(x) and all its deriva-
tives of order upto m − 1 are 0 at x = a, then Type-1 and Type-2 derivatives (Dα

a+;[z;w,1]f)(x)
and (CDα

a+;[z;w,2]f)(x) are the same, that is

(
Dα

a+;[z;w,1]f
)
(x) =

(
Dα

a+;[z;w,2]f
)
(x), if f (k)(a) = 0, k = 0, . . . , m − 1. (2.67)

Similarly, the following relationship holds:

(
Dα

b−;[z;w,1]f
)
(x) =

(
Dα

b−;[z;w,2]f
)
(x), if f (k)(b) = 0, k = 0, . . . , m − 1. (2.68)

Operators Iα
a+;[z;w], I

α
b−;[z;w],D

α
a+;[z;w,1],D

α
b−;[z;w,1],D

α
a+;[z;w,2], andDα

b−;[z;w,2] satisfy the following
integration by parts formulas:

∫b

a

z′(x)f(x)
(
Iαa+;[z;w]g

)
(x)dx =

∫b

a

z′(x)g(x)dx
(
Iαb−;[z;w]f

)
(x), (2.69)

∫b

a

z′(x)f(x)
(
Dα

a+;[z;w,1]g
)
(x)dx =

∫b

a

z′(x)g(x)
(
Dα

b−;[z,w,1]f
)
(x)dx, (2.70)

∫b

a

z′(x)f(x)
(
Dα

a+;[z;w,1]g
)
(x)dx =

∫b

a

z′(x)g(x)
(
Dα

b−;[z;w,2]f
)
(x)dx

+
m−1∑

k=0

[(
D

(k)
[z;w,R]f

)
(x)

(
Dα−1−k

a+;[z;w,1]g
)
(x)

]
∣∣∣∣∣

b

a

,

(2.71)

∫b

a

z′(x)f(x)
(
Dα

b−;[z;w,1]g
)
(x)dx =

∫b

a

z′(x)g(x)
(
Dα

a+;[z;w,2]f
)
(x)dx

−
m−1∑

k=0

[(
D

(k)
[z;w,L]f

)
(x)

(
Dα−1−k

b−;[z;w,1]g
)
(x)

]
∣∣∣∣∣

b

a

.

(2.72)

Equations (2.69) to (2.72) would play a key role in deriving a generalized fractional vari-
ational formulation. Equation (2.70) will implicitly account for some boundary conditions.
In contrast, (2.71) and (2.72) would provide either natural or the boundary conditions.
Equations (2.69) to (2.72) would play a key role in developing adjoint equations. However,
this issue will be considered elsewhere.

References [12, 19] obtain some special cases of fractional integrals and derivatives of
a function with respect to another function by setting a = −∞ or 0 and b = ∞. Similarly, one
can obtain special cases of (2.55) to (2.58) by setting a = −∞ or 0 and b = ∞. In particular, by
setting (a = 0, b = ∞) and (a = −∞, b = ∞) we obtain generalized Liouville type fractional
integrals and derivatives on the half-axis R

+ and on the whole axis R.
The generalized fractional integrals and derivatives defined in (2.55) to (2.62)

encompass many of the fractional integrals and derivatives defined earlier. For example,
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for w(t) = 1 and z(t) = t, the generalized fractional integrals and derivatives reduce to
Riemann-Liouville and Caputo fractional integrals and derivatives, that is, we get

(
Iαa+;[t; 1]f

)
(x) =

(
Iαa+f

)
(x),

(
Iαb−;[t; 1]f

)
(x) =

(
Iαb−f

)
(x),

(
Dα

a+;[t; 1,1]f
)
(x) =

(
Dα

a+f
)
(x),

(
Dα

b−;[t; 1,1]f
)
(x) =

(
Dα

b−f
)
(x),

(
Dα

a+;[t; 1,2]f
)
(x) =

(
CDα

a+f
)
(x),

(
Dα

b−;[t; 1,2]f
)
(x) =

(
CDα

b−f
)
(x).

(2.73)

For w(t) = 1 and z(t) = log(t), the generalized fractional integrals and derivatives reduce to
Hadamard type fractional integrals and derivatives, that is, we get

(
Iα
a+;[log(t); 1]f

)
(x) =

(
HIαa+f

)
(x),

(
Iα
b−;[log(t); 1]f

)
(x) =

(
HIαb−f

)
(x),

(
Dα

a+;[log(t); 1,1]f
)
(x) =

(
HDα

a+f
)
(x),

(
Dα

b−;[log(t); 1,1]f
)
(x) =

(
HDα

b−f
)
(x),

(
Dα

a+;[log(t); 1,2]f
)
(x) =

(
HCDα

a+f
)
(x),

(
Dα

b−;[log(t); 1,2]f
)
(x) =

(
HCDα

b−f
)
(x).

(2.74)

For w(t) = tση and z(t) = tσ , the generalized fractional integrals and derivatives reduce to
Modified Erdélyi-Kober type fractional integrals and derivatives, that is, we get

(
Iαa+;[tσ ;tση]f

)
(x) =

(
MEKIα

a+;[σ,η]f
)
(x),

(
Iαb−;[tσ ;tση]f

)
(x) =

(
MEKIα

b−;[σ,η]f
)
(x),

(
Dα

a+;[tσ ;tση,1]f
)
(x) =

(
MEKDα

a+;[σ,η]f
)
(x),

(
Dα

b−;[tσ ;tση,1]f
)
(x) =

(
MEKDα

b−;[σ,η]f
)
(x),

(
Dα

a+;[tσ ;tση,2]f
)
(x) =

(
MCEKDα

a+;[σ,η]f
)
(x),

(
Dα

b−;[tσ ;tση,2]f
)
(x) =

(
MCEKDα

b−;[σ,η]f
)
(x).

(2.75)

It could also be verified that for (z(t), w(t)) equal to (t, 1), (log(t), 1) and (tσ , tση) the semi-
group, the left inverse, and the integration by parts type identities for the generalized
fractional integrals and derivatives, namely (2.63) to (2.72), reduce to those for Riemann-
Liouville, Hadamard, and Modified Erdélyi-Kober fractional integrals and derivatives. It
should be pointed out that functions (z(t), w(t)) are not limited to (t, 1), (log(t), 1) and
(tσ , tση). In fact this choice is significantly large, and for each choice, one would obtain a dif-
ferent set of fractional integrals and derivatives. The rational for not calling (Dα

a+;[z;w,1]f)(x)
and (Dα

b−;[z;w,1]f)(x) as the Riemann-Liouville fractional derivatives should now be clear; for
different z(t) andw(t), they lead to different fractional integrals and derivatives. In literature,
these fractional integrals and derivatives have been called by different names. Thus, to
avoid confusion, we prefer to call (Dα

a+;[z;w,1]f)(x) and (Dα
b−;[z;w,1]f)(x) as the 1PT1GFDs, and

(Dα
a+;[z;w,2f)(x) and (Dα

b−;[z;w,2]f)(x) as the 1PT2GFDs.
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3. Fractional Variational Formulation in Terms of
One-Parameter Generalized Fractional Derivatives

In this section, we present several fractional variational formulations in terms of one para-
meter generalized fractional derivatives. We shall consider formulations in terms of one vari-
able and one fractional derivative term, specified and unspecified terminal conditions, one
variable and multiple fractional derivative terms with different order of derivatives, multiple
variables and multiple derivative terms but the same order of derivatives, geometric con-
straints, and parametric constrains to name a few. The approach presented here will also be
applicable to multivariables and multiple fractional derivative terms with different order of
derivatives, free end points, free end-point constraints, multidimensions, and many other
formulations can also be considered. As a matter of fact almost all variational formulations
can be recast in terms of generalized fractional derivatives, and these will be considered in the
future. The derivations of almost all formulations follow the same pattern, and for this reason,
a fractional variational formulationwould be given in detail for a simple fractional variational
problem only. For other fractional variational problems, the final Euler-Lagrange equation
will be given but the details would be omitted.

3.1. A Simple Fractional Variational Formulation

In this subsection, we develop an Euler-Lagrange formulation for a simple fractional var-
iational formulation. The functional considered in this case may contain the left and the right
integrals and derivatives, and the derivatives could be of Type-1, Type-2, or both. In the
simplest fractional variational problem considered here, we take only one fractional deriva-
tive term, namely the term Dα

a+;[z,w,2]y. The approach for functional containing other frac-
tional integrals and derivatives would be the same. Accordingly, the fractional variational
problem is defined as follows: among all functions y(t)which are continuously differentiable
on (a, b) find the function y�(t) for which the functional

J
[
y
]
=
∫b

a

F
(
t, y,Dα

a+;[z;w,2]y
)
(t)z′(t)dt (3.1)

is an extremum. For simplicity, we assume for the time being that 0 < α < 1. In case the func-
tional is given in terms of Dα

a+;[z;w,1]y, one can use (2.66) to write the functional in terms of
Dα

a+;[z;w,2]y.
At this stage, two points can be made which are the same as those made in [38] for

another set of fractional derivatives. We repeat them here for completeness and to indicate
that those points equally apply here. First, note that fractional integration introduces some
degree of continuity, and therefore the differentiability requirements of y(t) could be relaxed.
For certain class of problems and in several numerical schemes, the differentiability of y(t)
would be required on only a finite subset of [a, b], and the derivative of y(t) could be
discontinuous at a finite set of points. Further, we have implicitly assumed that function
F(t, y,Dα

a+;[z;w,2]y)(t) has continuous first and second partial derivatives with respect to all its
arguments. In all formulation to follow, these conditions will be implicitly assumed. In many
cases, mathematical operations performed will determine the class of functions being consid-
ered. Second, we have not specified the terminal conditions yet, because in fractional varia-
tional formulations, the forms of the necessary conditions are tied to the specified terminal
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conditions. This will be demonstrated shortly, and subsequently the boundary conditions will
be specified.

To derive the necessary conditions, we define

y(t) = y�(t) + εη(t), ε ∈ R (3.2)

and substitute it in (3.1) to obtain J in terms of ε and η(t). Here y�(t) is the desired solution,
η(t) is an arbitrary function consistent with the boundary conditions, and ε is a small real
number. Thus, for the specified η(t), J = J[ε] would be a function of ε only. We differentiate
J = J[ε]with respect to ε, and set ε and the resulting equation to 0 to obtain

dJ

dε
|ε=0 =

∫b

a

[
∂F

∂y
η(t) +

∂F

∂Dα
a+;[z;w,2]y

(
Dα

a+;[z;w,2]η
)
(t)

]

z′(t)dt = 0. (3.3)

Using integration by parts formula given by (2.72), we obtain

∫b

a

[
∂F

∂y
+Dα

b−;[z;w,1]
∂F

∂Dα
a+;[z;w,2]y

]

η(t)z′(t)dt −Dα−1
b−;[z;w,1]

∂F

∂Dα
a+;[z;w,2]y

η

∣∣∣∣
b
a

= 0. (3.4)

Here, (Dα−1
b−;[z;w,1]η) = (I1−α

b−;[z;w,1]η). Typically, in variational formulations the boundary terms
suggest the geometric and the natural boundary conditions. Thus, (3.4) suggests that for this
case, y(a) = ya and y(b) = yb would be the appropriate geometric boundary conditions.
These boundary conditions are the same as those considered in ordinary variational calculus.
However, this leads to fractional natural boundary conditions. It can be verified that if (2.71)
is used for integration by parts formula, then one obtains fractional geometric boundary
conditions and regular natural boundary conditions.

Let us assume that y(a) = ya and y(b) = yb are specified. In this case, η(a) = η(b) = 0,
and using the fundamental lemma of variational calculus, (3.4) leads to the following Euler-
Lagrange equation:

∂F

∂y
+Dα

b−;[z;w,1]
∂F

∂Dα
a+;[z;w,2]y

= 0. (3.5)

It is the necessary condition for the extremum. Let us now assume that y(b) is not specified.
In this case, (3.4) leads to

Dα−1
b−;[z;w,1]

∂F

∂Dα
a+;[z;w,1]y

∣∣∣∣∣
t=b

= 0. (3.6)

A similar condition is obtained if y(a) is not specified. Equation (3.6) and its variations are
known as the natural boundary conditions.

As a quickmodification of the above problem, assume that the functional J[y] contains
an additional term φ(y(b), b). Clearly, y(b) would be unknown, otherwise φ(y(b), b) would
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be a constant which could be removed from the functional without altering the problem. Term
φ(y(b), b)would lead to an additional term in (3.4) of type

∂φ

∂y(b)
η(b) (3.7)

and the natural boundary conditions as

[

Dα−1
b−;[z;w,1]

∂F

∂Dα
a+;[z;w,1]y

+
∂φ

∂y(b)

]∣∣
∣
∣
∣
t=b

= 0. (3.8)

In the case of α greater than 1, (3.4) is replaced with

∫b

a

[
∂F

∂y
+Dα

b−;[z;w,1]
∂F

∂Dα
a+;[z;w,2]y

]

η(t)z′(t)dt−
n−1∑

k=0

Dα−1−k
b−;[z;w,1]

∂F

∂Dα
a+;[z;w,2]y

D
(k)
[z;w,L]η

∣∣∣∣∣

b

a

= 0,

(3.9)

where n − 1 < α < n. Equation (3.9) leads to the same Euler-Lagrange equation as that given
by (3.5). It further suggests that the geometric boundary conditions D

(k)
[z;w,L]y(c) should be

specified or the natural boundary conditions

Dα−1−k
b−;[z;w,1]

∂F

∂Dα
a+;[z;w,2]y

(c) = 0, (3.10)

should be considered. Here c = a, b and k = 0, . . . , n − 1. The above discussion assumes that
allD(k)

[z;w,L]y(c), c = a, b and k = 0, . . . , n−1 are independent. In case they are not independent,
then the natural boundary conditions are modified accordingly.

It should be pointed out that D(k)
[z;w,L] and D

(k)
[z;w,R] are not ordinary differential opera-

tors. Therefore, derivatives D(k)
[z;w,L]y(c), c = a, b are not the same as the ordinary derivatives

D(k)y(c). To demonstrate this, take z(t) = log(t), and w(t) = t. In this case, we have
D

(1)
[z;w,L]y(t) = (1/t) ∗ ((tD)(t ∗y)) = D(ty) = y + tDy, that is,D(1)

[z;w,L]y(t) is a weighted/scaled

combination of y(t) andDy(t), andD
(1)
[z;w,L]y(c) = y(c)+cDy(c). Therefore, when writing the

geometric and/or natural boundary conditions, one must exercise caution.
In the above functional, we considered only the left fractional derivative. If the

functional contains the right fractional derivative also, then the functional is written as

J
[
y
]
=
∫b

a

F
(
t, y,Dα

a+;[z;w,2]y,D
β

b−;[z;w,2]y
)
(t)z′(t)dt, (3.11)
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where n − 1 < α < n and m − 1 < β < m. For simplicity, we shall assume that n − 1 < α, β < n.
It can be shown that for this functional the above approach leads to the following Euler-
Lagrange equation

∂F

∂y
+Dα

b−;[z;w,1]
∂F

∂Dα
a+;[z;w,2]y

+D
β

a+;[z;w,1]
∂F

∂D
β

b−;[z;w,2]y
= 0, (3.12)

and the following condition at the boundary points

n−1∑

k=0

⎡

⎣Dα−1−k
b−;[z;w,1]

∂F

∂Dα
a+;[z;w,2]y

D
(k)
[z;w,L]η −D

β−1−k
a+;[z;w,1]

∂F

∂D
β

b−;[z;w,2]y
D

(k)
[z;w,R]η

⎤

⎦

∣
∣
∣
∣
∣
∣

b

a

= 0. (3.13)

Note that in this case, we have left the natural boundary conditions, D(k)
[z;w,L] and D

(k)
[z;w,R]

together because we cannot treat both D
(k)
[z;w,L] and D

(k)
[z;w,R] as independent and they are not

equal either. As a result, we cannot even write

[

Dα−1−k
b−;[z;w,1]

∂F

∂Dα
a+;[z;w,2]y

D
(k)
[z;w,L]η −Dα−1−k

a+;[z;w,1]
∂F

∂Dα
b−;[z;w,2]y

D
(k)
[z;w,R]η

]

(c) = 0, (3.14)

where c = a, b, k = 0, . . . , n − 1. However, for k = 0, . . . , n − 1, (D(k)
[z;w,L]y)(a), (D

(k)
[z;w,L]y)(b),

(D(k)
[z;w,R]y)(a), and (D(k)

[z;w,R]y)(b) are linearly related to (D(k)y)(a) and (D(k)y)(b). These
linear relations would be necessary to separate the natural boundary conditions. Terms
D(k)(a) and D(k)(b) could still be taken as the geometric boundary conditions.

In the formulation above, we have considered Type-2 fractional derivatives in the
functional. Using (2.66), the functional can be written in terms of Type-1 fractional deriva-
tives. However, Type-2 fractional derivatives were considered for two reasons. First, Type-2
fractional derivatives lead to geometric boundary conditions in terms of the desired function
and its ordinary derivatives at the boundary points. In contrast, Type-1 fractional derivatives
lead to fractional geometric boundary conditions. Many engineers and scientists avoid frac-
tional geometric boundary conditions with remarks that these conditions are nonphysical.
For this reason, Type-2 fractional derivatives would be more appealing. Second, treatment
of the geometric and the natural boundary conditions is quite involved due to the presence
of z(t) and w(t). Fractional geometric boundary conditions and the associated variational
formulations will be considered elsewhere.

3.2. Multiorder and Multiterm Fractional Variational Formulation

We now consider several variations of the above formulation. As a first variation, assume
that the functional contains m left Type-2 fractional derivatives where the order of the
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derivatives αk, k = 1, . . . , m satisfy the following condition, 0 < α1, . . . , αm < 1. For this case,
the functional is given as

J
[
y
]
=
∫b

a

F
(
t, y,Dα1

a+;[z;w,2]y, . . . , D
αm

a+;[z;w,2]y
)
(t)z′(t)dt. (3.15)

For this functional, following the above approach, we obtain the Euler-Lagrange equation as

∂F

∂y
+

m∑

k=1

Dαk

b−;[z;w,1]
∂F

∂Dαk

a+;[z;w,2]y
= 0. (3.16)

This is a straight forward generalization of (3.6). Further, assume that both y(a) and y(b)
are independent. In this case, at point b either y(b) must be specified (geometric boundary
condition), or the identity

m∑

k=1

Dαk−1
b−;[z;w,1]

∂F

∂Dαk

a+;[z;w,1]y

∣∣∣∣∣
t=b

= 0 (3.17)

(natural boundary condition) must be satisfied. A similar condition applies at point a.
Assume now that the functional is of the following type:

J
[
y
]
=
∫b

a

F
(
t, y,Dα1

a+;[z;w,2]y, . . . , D
αn

a+;[z;w,2]y, D
β1
a+;[z;w,2]y, . . . , D

βm
a+;[z;w,2]y

)
(t)z′(t)dt,

(3.18)

such that nj − 1 < αj < nj , j = 1, . . . , n andmj − 1 < βj < mj , j = 1, . . . , m. In this case, the Euler-
Lagrange equation is given as

∂F

∂y
+

n∑

k=1

Dαk

b−;[z;w,1]
∂F

∂Dαk

a+;[z;w,2]y
+

m∑

k=1

D
βk
a+;[z;w,1]

∂F

∂D
βk
b−;[z;w,2]y

= 0, (3.19)

and the boundary terms must satisfy the identity,

N−1∑

k=0

n∑

j=1

⎡

⎣D
αj−1−k
b−;[z;w,1]

∂F

∂D
αj

a+;[z;w,2]y
H
(
αj − k

)
D

(k)
[z;w,L]η

⎤

⎦

∣∣∣∣∣∣

b

a

−
M−1∑

k=0

m∑

j=1

⎡

⎣D
βj−1−k
a+;[z;w,1]

∂F

∂D
βj
b−;[z;w,2]y

H
(
βj − k

)
D

(k)
[z;w,R]η

⎤

⎦

∣∣∣∣∣∣

b

a

= 0,

(3.20)

where N = max{n1, . . . , nn}, M = max{m1, . . . , mm}, and H(x) is the Heavyside unit step
function such that for x > 0, H(x) = 1, otherwise H(x) = 0. Note that like in (3.14),
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the geometric and the natural boundary conditions are coupled, and they can be separated
only by applying some transformations. Here the two cases, namely (3.15) (for 0 < α1, . . . ,
αm < 1) and (3.18) (for nj − 1 < αj < nj , j = 1, . . . , n andmj − 1 < βj < mj , j = 1, . . . , m) are con-
sidered separately to emphasize the fact that only for the prior case the natural boundary
conditions can be written directly, and in the later case, one must use some transformation.
Equation (3.20) can also be written as

n∑

j=1

nj−1∑

k=0

⎡

⎣D
αj−1−k
b−;[z;w,1]

∂F

∂D
αj

a+;[z;w,2]y
D

(k)
[z;w,L]η

⎤

⎦

∣
∣
∣
∣
∣
∣

b

a

−
m∑

j=1

mj−1∑

k=0

⎡

⎣D
βj−1−k
a+;[z;w,1]

∂F

∂D
βj
b−;[z;w,2]y

D
(k)
[z;w,R]η

⎤

⎦

∣
∣
∣
∣
∣
∣

b

a

= 0.

(3.21)

Equation (3.20) is preferred here because in some cases, it allows writing the natural bound-
ary conditions directly. For example, assume that (3.18) does not contain the right fractional
derivative terms and (D(k)

[z;w,L]y)(t), k = 0, . . . ,N−1 are all independent. In this case, for a spe-

cific k, if (D(k)
[z;w,L]y)(b) is not specified, then the following natural boundary conditions must

be satisfied:

n∑

j=1

⎡

⎣D
αj−1−k
b−;[z;w,1]

∂F

∂D
αj

a+;[z;w,2]y
H(αj − k)

⎤

⎦

∣∣∣∣∣∣
t=b

= 0. (3.22)

Thus, the reason for considering (3.20) over (3.21) should be clear.
We now consider the following functional containing multiple functions,

J[y] =
∫b

a

F
(
t,y, Dα

a+;[z;w,2]y, D
β

b−;[z;w,2]y
)
(t)z′(t)dt, (3.23)

where α, β, 0 < α, β < 1, are the order of the forward and the backward derivatives, and y =
[y1, . . . , yn]

T is an n-dimensional vector function. Here, the order of the forward (backward)
derivative applied to all functions yk(t), k = 1, . . . , n is the same. In general, both α and β could
be any positive number, and each yk(t), k = 1, . . . , n could have different order of derivatives.
The functional in (3.23) is considered for simplicity.

Following the above approach, it can be shown that for this functional the Euler-
Lagrange equation is

∂F

∂y
+Dα

b−;[z;w,1]
∂F

∂Dα
a+;[z;w,2]y

+D
β

a+;[z;w,1]
∂F

∂D
β

b−;[z;w,2]y
= 0. (3.24)
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Assume that yk(a) and yk(b), k = 1, . . . , n are all independent. In this case, for specific k and
boundary, (say t = b), we must have yk(b) (the geometric boundary condition) specified, or

⎡

⎣Dα−1
b−;[z;w,1]

∂F

∂Dα
a+;[z;w,2]y

−D
β−1−k
a+;[z;w,1]

∂F

∂D
β

b−;[z;w,2]y

⎤

⎦

∣
∣
∣
∣
∣
∣
t=b

= 0, (3.25)

(the natural boundary condition). Similar conditions apply for other ks and the boundary
t = a. If α, β are greater than 1, then the geometric and the natural boundary conditions
become more complex.

3.3. Fractional Variational Formulation for Constrained Systems

We now consider fractional variational formulation for constrained systems. First, we con-
sider an isoperimetric problem defined as follows: find the curve y = y(t) for which the func-
tional

J
[
y
]
=
∫b

a

F
(
t, y,Dα

a+;[z;w,2]y, D
β

b−;[z;w,2]y
)
(t)z′(t)dt, (3.26)

0 < α, β < 1 has an extremum, where the admissible curves satisfy the boundary conditions
y(a) = ya and y(b) = yb, and are such that another functional

K
[
y
]
=
∫b

a

G
(
t, y,Dα

a+;[z;w,2]y, D
β

b−;[z;w,2]y
)
(t)z′(t)dt, (3.27)

takes a fixed value A. For this case, we define another functional

F
(
t, y,Dα

a+;[z;w,2]y, D
β

b−;[z;w,2]y
)
= F

(
t, y,Dα

a+;[z;w,2]y, D
β

b−;[z;w,2]y
)

+ λG
(
t, y, Dα

a+;[z;w,2]y, D
β

b−;[z;w,2]y
)
,

(3.28)

where λ is a constant known as Lagrange multiplier. In terms of F, the Euler-Lagrange equa-
tion for this problem is given as

∂F

∂y
+Dα

b−;[z;w,1]
∂F

∂Dα
a+;[z;w,2]y

+D
β

a+;[z;w,1]
∂F

∂D
β

b−;[z;w,2]y
= 0. (3.29)

To prove this, we define

y(t) = y�(t) + ε1η1(t) + ε2η2(t), (3.30)

substitute it in (3.26) and (3.27) to obtain J = J[ε1, ε2] and K = K[ε1, ε2] = A, and follow
a Lagrange multiplier-based optimization technique. Here, y�(t) is the desired function,
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η1(t) and η2(t) are arbitrary functions consistent with the constraints, and ε1 and ε2 are two
real numbers. In case the geometric boundary condition is not specified at t = b, then the
following natural boundary conditions must be satisfied:

⎡

⎣Dα−1
b−;[z;w,1]

∂F

∂Dα
a+;[z;w,2]y

−D
β−1
a+;[z;w,1]

∂F

∂D
β

b−;[z;w,2]y

⎤

⎦

∣
∣
∣
∣
∣
∣
t=b

= 0. (3.31)

Note that here F has been replaced with F. Other conditions such as arbitrary order of deriva-
tives, and unspecified and mixed boundary conditions are handled as discussed above.

Next, we consider a system subjected to holonomic constraints. For simplicity, we
consider the functional defined by (3.23), subjected to an m-dimensional constraint defined
as

Φ(y, t) =
[
φ1

(
y1, . . . , yn, t

)
, . . . , φm

(
y1, . . . , yn, t

)]T = [0, . . . , 0]T , (3.32)

where m < n. For this case, the Euler-Lagrange equation is given as

∂F

∂y
+Dα

b−;[z;w,1]
∂F

∂Dα
a+;[z;w,2]y

+D
β

a+;[z;w,1]
∂F

∂D
β

b−;[z;w,2]y
+ λT

(
∂Φ
∂y

)
= 0, (3.33)

where λ is an m-dimensional vector of Lagrange multipliers. A simple approach to obtain
(3.33) is to augment Φ to F using Lagrange multiplier, and use the technique for multiple
functions. Note that in this case, only n −m functions yk(t) are independent, and the rest are
determined from (3.32). Accordingly, only n − m geometric or natural boundary conditions
need to be specified at each boundary. Of course, we require each constraint to be indepen-
dent (i.e., we require the rank of the Jacobian ∂Φ/∂y to be full).

The constraints can also be given in the form of fractional differential equations which
govern the dynamics of the system. Such problems arise in optimal controls. For simplicity,
we consider one state variable x(t) and one control variable u(t), and define the functional
and the dynamic equations as

J[u] = φ(x(b), b) +
∫b

a

F(x, u, t)z′(t)dt, (3.34)

(
Dα

a+;[z;w,2]x
)
(t) = G(x, u, t), (3.35)

and the inital condition as

x(a) = xa. (3.36)

Once again, we assume that 0 < α < 1. In optimal control literature, the functional given by
(3.34) is typically known as performance index. Equation (3.34) is called the Bolza’s form. If
the boundary terms are not present in (3.34), the form is known as the Lagrange form. On the
other hand, if the integral term is not present, then the form is known as the Mayer form.
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Several forms of this problem are possible. The functional may have differential terms, the
dynamic constraint may be a nonlinear function of the fractional derivative terms, the bound-
ary conditions may be specified implicitly, and we may have inequality constraints. The form
is considered here for simplicity.

An approach to the above problem is to redefine the functional as

J
[
y
]
= φ

(
y(b), b

)
+
∫b

a

F
(
y, Dα

a+;[z;w,2]y, t
)
dt, (3.37)

where F = F+λ(G−Dα
a+;[z;w,2]x), y = [x, u], and φ(y(b), b) = φ(x(b), b). Here, λ is the Lagrange

multiplier. The boundary condition is given as y1(a) = xa. The functionals in (3.23) and (3.37)
are in the same form. Thus, the approach discussed above could be used to obtain the neces-
sary fractional differential equations and the natural boundary conditions. In particular, for
this case, the necessary differential equations are given as

Dα
b−;[z;w,1]λ =

∂F

∂x
+ λ

∂G

∂x
,

∂F

∂u
+ λ

∂G

∂u
= 0,

(3.38)

and the natural boundary condition is given as

I1−αb−;[z;w,1]λ(b) +
∂φ

∂x(b)
= 0. (3.39)

Many prefer to write these equations in terms of a Hamiltonian. Thus, if we define a Hami-
ltonian H as

H = F + λG, (3.40)

then the necessary fractional differential equations are given as

Dα
b−;[z;w,1]λ =

∂H

∂x
,

∂H

∂u
= 0,

Dα
a+;[z;w,1]x =

∂H

∂λ
.

(3.41)

3.4. Fractional Hamiltonian Principle

The fractional variational principle discussed above allows us to develop fractional Hamilton
principles. However, depending on the form and the boundary conditions considered, the
resulting fractional differential equations would be different, and accordingly the Hamilton
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equation would also be different. Here we discuss one such principle. Thus, one form of the
fractional Hamilton principle can be stated as follows: the fractional Hamilton’s principle
states that the path traced by a system of particles which are described by n generalized
coordinates y(t) = [y1(t), . . . , yn(t)] between two states y(a) = ya and y(b) = yb at two times
a and b is a stationary point of the action functional

I[y] =
∫b

a

L
(
t,y, Dα

a+;[z;w,2]y, D
β

b−;[z;w,2]y
)
(t)z′(t)dt, (3.42)

where L(t,y, Dα
a+;[z;w,2]y, D

β

b−;[z;w,2]y) is the Lagrangian function. If this is true, then following
the discussion above, the dynamics of the system is described by the fractional Euler-
Lagrange equation

∂L

∂y
+Dα

b−;[z;w,1]
∂L

∂Dα
a+;[z;w,2]y

+D
β

a+;[z;w,1]
∂L

∂D
β

b−;[z;w,2]y
= 0. (3.43)

As a matter of fact it has been implicitly assumed here that the dynamics of the system is gov-
erned by (3.43). In this case, we can define a fractional Hamiltonian function as

H = −L + pT
αD

α
a+;[z;w,2]y + pT

βD
α
b−;[z;w,2]y, (3.44)

where pα and pβ are vector of generalized momenta defined as

pα =
∂L

∂Dα
a+;[z;w,2]y

, pβ =
∂L

∂D
β

b−;[z;w,2]y
. (3.45)

These equations lead to the following generalized fractional canonical system of Euler equa-
tions

Dα
a+;[z;w,2]y =

∂H

∂pα
, D

β

b−;[z;w,2]y =
∂H

∂pβ
,

∂H

∂y
= Dα

b−;[z;w,1]pα +D
β

a+;[z;w,1]pβ,

∂H

∂t
= −∂L

∂t
.

(3.46)

Equation (3.46) is very similar to those developed in Section 4.3 of [38], and as stated in
[38], (3.46) could also be used to develop fractional mechanics, both classical and quantum.
However, the advantage of formulation presented here is that z(t) and w(t) allow one to
develop a wide spectrum of formulations to fit the needs of the problems under considera-
tion.
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4. Illustrative Example

To demonstrate an application of the formulations presented above, consider the following
problem: find a function y(t) in the domain [0, 1] that minimizes the functional

J
[
y
]
=
∫1

0

[
1
2

(
Dα

0+;[z;w,2]y
)2 − c(t)y

]
z′(t)dt, (4.1)

where 0 < α < 1, and y(0) and y(1) may or may not be specified.
For this case, function F(t, y,Dα

0+;[z;w,2]y) is given as

F
(
t, y,Dα

0+;[z;w,2]y
)
=
[
1
2

(
Dα

0+;[z;w,2]y
)2 − c(t)y

]
, (4.2)

and using (3.5), we obtain the Euler-Lagrange equation for the problem as

Dα
1−;[z;w,1]

(
Dα

0+;[z;w,2]y
)
− c(t) = 0. (4.3)

Further, (3.4) suggests the following geometric and natural boundary conditions at t = 1:
y(1) must be specified (geometric boundary condition) or the following condition must be
satisfied:

I1−α1−;[z;w]

(
Dα

0+;[z;w,2]y
)
(1) = 0 (4.4)

(natural boundary condition). A similar condition is predicted at t = 0.
We now consider 4 different cases of this example.

Case 1. As a first case, takew(t) = 1 and z(t) = t. In this case, the generalized fractional deriva-
tive operators Dα

0+;[1; 1,2] and Dα
1−;[1; 1,1] reduce to the Caputo fractional derivative operator

CDα
0+ and the Riemann-Liouville fractional derivative operator Dα

1−, I
1−α
1−;[1; 1] reduces to I1−α1− ,

and we get the Euler-Lagrange equation as

Dα
1−;[z;w,1]

(
Dα

0+;[z;w,2]y
)
− c(t) = 0. (4.5)

Further, at t = 1, y(1) must be specified, or one must have

I1−α1−
(
CDα

0+y
)
(1) = 0. (4.6)

A similar condition is given at t = 0.

Case 2. As a second case, take w(t) = 1 and z = log(t). In this case, the generalized fractional
derivative and integral operators Dα

0+;[log(t); 1,2], D
α
1−;[log(t); 1,1] and I1−α1−;[log(t); 1] reduce to the

left Hadamard-Caputo and the right Hadamard fractional derivative operators HCDα
0+ and
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HDα
1− and the right Hadamard fractional integral operator HI1−α1− , respectively, and we get

the Euler-Lagrange equation as

HDα
1−
(
HCDα

0+y
)
− c(t) = 0. (4.7)

Further, at t = 1, y(1) must be specified, or one must have

HI1−α1−
(
HCDα

0+y
)
(1) = 0. (4.8)

A similar condition is given at t = 0.

Case 3. Next, consider z(t) = tσ and w(t) = tση. In this case, the generalized fractional
derivative and integral operators Dα

0+;[tσ ;tση,2],D
α
1−;[tσ ;tση,1], and I1−α1−;[tσ ;tση] reduce to the modified

left Caputo-Erdélyi-Kober and the modified right Erdélyi-Kober type fractional derivative
operators MCEKDα

0+;[σ,η] and
MEKDα

1−;[σ,η] and the modified right Erdélyi-Kober type fractional

integral operator MEKI1−α1−;[σ,η], respectively, and we get the Euler-Lagrange equation as

MEKDα
1−;[σ,η]

(
MCEKDα

0+;[σ,η]y
)
− c(t) = 0. (4.9)

Further, at t = 1, y(1) must be specified, or one must have

MEKI1−α
1−;[σ,η]

(
MCEKDα

0+;[σ,η]y
)
(1) = 0. (4.10)

A similar condition is given at t = 0.

Case 4. We now consider z(t) = t,w(t) = (t+1), α = 1, and y(0) = y0, but y(1) is not specified.
Earlier we specified that 0 < α < 1. Condition α = 1 leads to an integer order system. Strictly
speaking, replacing α = 1 in a formulation for 0 < α < 1 is not straight forward, but it works.
Alternatively, for this case, one can derive the Euler-Lagrange equation and the terminal
conditions using variational calculus for integer order system. A more general case of α = 1
but arbitrary z(t) and w(t) would be considered in the future. The above condition is
considered here to emphasize a point related to terminal condition. In this case, we have
D1

0+;[1;t,2] = D[1;t,L], D1
1−;[1;t+1,1] = D[1;t+1,R] and I01−;[1;t+1] = 1. The Euler-Lagrange equation is

D[1;t+1,R]
(
D[1;t+1,L]y

) − c(t) = 0. (4.11)

and we get the natural boundary condition at t = 1 as

(
D[1;t+1,L]y

)
(1) = 0. (4.12)
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We further haveD[1;t+1,L]y = (1/(t+ 1))D((t+ 1)y) = y′(t) + ((y(t))/(t+ 1)). Thus, the natural
boundary condition at t = 1 is given as

y′(1) +
y(1)
2

= 0. (4.13)

Note that in this case, the boundary condition at t = 1 contains both y(1) and y′(1) even when
terms y and D[1;t+1,L]y do not appear in coupled form in the functional. This is typical of the
generalized fractional derivatives introduced here.

At this stage we would like to emphasize the following two points. First, we have con-
sidered only a few type of z(t) and w(t) functions. However, these functions can be selected
from a larger set of functions. Second, generally, finding a closed form solution of an Euler-
Lagrange equation resulting from a fractional variational formulation is difficult. Finding a
closed form solution to a fractional variational problem formulated in terms of generalized
fractional derivatives would be even more difficult, and in most cases, it will depend on the
functions z(t) and w(t).

5. Additional Remarks

The fractional variational formulations developed here can be extended in many directions.
In this regard, we emphasize that the additional remarks made in [38] are equally applicable
here also. Many of the extensions of the formulations presented here will be considered in the
papers to follow. We list some of them here.

First, we have considered one dimensional domain only. The formulation above could
be easily extended to multi dimensional domains. For example, by replacing t with xμ, μ =
1, 2, 3 and 4, we will develop formulations for field problems which will allow us to develop
fractional classical and quantum field theory.

Second, the formulations developed here could be extended to symmetric and
antisymmetric fractional derivatives. Depending on whether Type-1 or Type-2 fractional
derivatives are selected, two types of symmetric and two types of antisymmetric fractional
derivatives can be defined. We call them Type-3 and Type-4 fractional derivatives, and they
are defined as follows.

Type-3 symmetric fractional derivatives

SDα
;[z;w,3]y =

1
2

(
Dα

a+;[z;w,1] + (−1)nDα
b−;[z;w,1]

)
y, (5.1)

Type-3 antisymmetric fractional derivatives

ADα
;[z;w,3]y =

1
2

(
Dα

a+;[z;w,1] − (−1)nDα
b−;[z;w,1]

)
y, (5.2)

Type-4 symmetric fractional derivatives

SDα
;[z;w,4]y =

1
2

(
Dα

a+;[z;w,2] + (−1)nDα
b−;[z;w,2]

)
y, (5.3)
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Type-4 antisymmetric fractional derivatives

ADα
;[z;w,4]y =

1
2

(
Dα

a+;[z;w,2] − (−1)nDα
b−;[z;w,2]

)
y, (5.4)

where n − 1 < α < n. The symmetric fractional derivatives SDα
;[z;w,3]y and SDα

;[z;w,4]y are
similar to the Riesz and Riesz-Caputo fractional derivatives defined in [38]. To demonstrate
how a problem can be defined and formulated in terms of these fractional derivatives, let us
define a functional as

J
[
y
]
=
∫b

a

F
(
t, y,SDα

;[z;w,4]y
)
(t)z′(t)dt. (5.5)

Since SDα
;[z;w,4]y is a linear combination of Dα

a+;[z;w,2]y and Dα
b−;[z;w,2]y, and therefore it can

be given by (3.11), and accordingly the corresponding Euler-Lagrange equation is given by
(3.12). However, in this case, we have

∂F

∂Dα
a+;[z;w,2]y

=
1
2

∂F

∂SDα
;[z;w,4]y

,
∂F

∂Dα
b−;[z;w,2]y

=
1
2
(−1)n ∂F

∂SDα
;[z;w,4]y

. (5.6)

Using (3.12), (5.1), and (5.4), we obtain the Euler-Lagrange equation for this case as

∂F

∂y
+ (−1)nSDα

;[z;w,3]
∂F

∂SDα
;[z;w,4]y

= 0. (5.7)

The natural boundary conditions can be obtained by some similar manipulations.
The above approach could also be applied to functionals defined in terms of sequential

generalized fractional derivatives. To demonstrate this, consider the following functional:

J
[
y
]
=
∫b

a

F
(
t, y,Dα

a+;[z;w,2]y,D
α
a+;[z;w,2]D

α
a+;[z;w,2]y

)
(t)z′(t)dt, (5.8)

whereDα
a+;[z;w,2]D

α
a+;[z;w,2]y is a generalized sequential fractional derivative. To find the extre-

mum of this functional, define, y1(t) = y(t), and y2(t) = (Dα
a+;[z;w,2]y)(t). Substituting these

definitions in (5.8), we obtain the functional as

J
[
y
]
=
∫b

a

F
(
t, y1, D

α
a+;[z;w,2]y1, D

α
a+;[z;w,2]y2

)
(t)z′(t)dt. (5.9)

This equation is in the same form as that given by (3.23). Accordingly, (3.24) and (3.25)
provide the necessary Euler-Lagrange equation and the natural boundary conditions for this
problem.
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Third, we define the Hilfer type two parameter generalized fractional derivatives as
follows.

Left/Forward Hilfer type generalized two parameter fractional derivative

(
HD

α,β

a+;[z;w]y
)
(t) =

(
I
(1−β)(n−α)
a+;[z;w] Dn

[z;w,L]I
β(n−α)
a+;[z;w]

)
y(t). (5.10)

Right/Backward Hilfer type generalized two parameter fractional derivative

(
HD

α,β

b−;[z;w]y
)
(t) =

(
I
(1−β)(n−α)
b−;[z;w] Dn

[z;w,R]I
β(n−α)
b−;[z;w]

)
y(t). (5.11)

Note that for β = 0 and 1, (5.10) and (5.11) lead to, respectively, Type-1 and Type-2 generalized
fractional derivative. Therefore, (5.10) and (5.11) can be thought of as an interpolation (in an
extended sense—due to lack of a proper terminology) between Type-1 and Type-2 fractional
derivatives. By setting z(t) = w(t) = 1, it can be shown that (5.10) and (5.11) reduce to the
left/forward and right/backward two parameter fractional derivatives defined in [38], in
which it was demonstrated that by taking different values for the two parameters α and β, we
obtain Riemann-Liouville and Caputo fractional derivatives as special cases of the two-para-
meter fractional derivatives. Since z(t) and w(t) can be selected from a large set of functions,
the generalized two-parameter fractional derivatives defined by (5.10) and (5.11) provide a
larger set of two-parameter fractional derivatives.

One of the most important keys to developing a fractional variational formulation
or for that matter any variational formulation is to develop an integration by parts
formula for the associated differential operators. Once that is done, many of the standard
techniques from variational calculus can be used to develop the desired formulations.
The fractional integration by parts formula for the generalized two parameter fractional
derivatives can be developed using (2.69) to (2.72), (5.10), and (5.11). Note that the operators
(HD

α,β

a+;[z;w,1])[(
HD

α,β

b−;[z;w,1])] could be thought of as a combination of three sequential oper-

ators I(1−β)(n−α)
a+;[z;w] , Dn

[z;w,L], and I
β(n−α)
a+;[z;w][I

(1−β)(n−α)
b−;[z;w] , Dn

[z;w,R], and I
β(n−α)
b−;[z;w]]. These operators could

be combined differntly, and (2.69) to (2.72) could be applied to the resulting forms to obtain
different integration by parts formulas. Accordingly, one would also obtain a few different
sets of geometric and natural boundary conditions. This issue will be further considered in
the future. However, we present one such integration by parts formula here. For simplicity,
we take 0 < α < 1. It can be shown that the Hilfer type generalized two-parameter frac-
tional derivatives (HD

α,β

a+;[z;w,1]y) and (HD
α,β

b−;[z;w,1]y) satisfy the following integration by parts
formula:

∫b

a

z′(t)f(t)
(
HD

α,β

a+;[z;w]g
)
(t)dt =

∫b

a

z′(t)g(t)
(
HD

α,(1−β)
b−;[z;w]f

)
(t)dt

+
[(

I
(1−β)(1−α)
b−;[z;w] f

)
(t)

(
I
β(1−α)
a+;[z;w]g

)
(t)

]∣∣∣
b

a
.

(5.12)

Integration by parts formulas for arbitrary α > 0 and their other forms can be derived in a
similar fashion. Extension of this to a sequential generalized two-parameter fractional deriva-
tives is straight forward.
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Fourth, we now define a generalized three-parameter fractional derivative as follows

(
D

α,β,γ

[z;w]y
)
(t) = γ

(
HD

α,β

a+;[z;w]y
)
(t) +

(
1 − γ

)
(−1)n

(
HD

α,β

b−;[z;w]y
)
(t). (5.13)

This derivative is a weighted average of the left and the right Hilfer type generalized two-
parameter fractional derivative. By setting γ = 1/2, we obtain a generalized symmetric
two-parameter fractional derivative. An integration by parts formula for this derivative can
be developed by realizing that the derivative operator D

α,β,γ

b−;[z;w] is a linear combination of

the operators HD
α,β

a+;[z;w], and
HD

α,β

b−;[z;w] and following the technique used to derive (5.7).
Since many forms are possible, integration by parts formula for Hilfer type generalized two-
parameter fractional derivatives, we will also have several forms for integration by parts
formula for the generalized three-parameter fractional derivative. In particular, (5.12) and
(5.13) lead to

∫b

a

z′(t)f(t)
(
D

α,β,γ

[z;w]g
)
(t)dt =

∫b

a

z′(t)g(t)
(
D

α,(1−β),(1−γ)
[z;w] f

)
(t)dt

+
[
γ
(
I
(1−β)(1−α)
b−;[z;w] f

)
(t)

(
I
β(1−α)
a+;[z;w]g

)
(t)

−(1 − γ
)(

I
β(1−α)
b−;[z;w]g

)
(t)

(
I
(1−β)(1−α)
a+;[z;w] f

)
(t)

]∣∣∣
b

a
.

(5.14)

Equations (5.12) and (5.14) and their equivalent forms can be used to develop the entire
generalized fractional variational calculus in terms of generalized two- and three-parameter
fractional derivatives.

In [38], it was discussed that one can develop fractional derivatives containing many
more parameters. For example, one can define a further generalization of the Hilfer type
fractional derivatives as follows.

Left/Forward Hilfer type generalized multiparameter fractional derivative

(
HD

α,β0···βn
a+;[z;w]y

)
(t) =

(
I
β0(n−α)
a+;[z;w]D[z;w,L]I

β1(n−α)
a+;[z;w]D[z;w,L] · · · Iβn(n−α)a+;[z;w]y

)
(t). (5.15)

Right/Backward Hilfer type generalized multiparameter fractional derivative

(
HD

α,β0···βn
b−;[z;w]y

)
(t) =

(
I
β0(n−α)
b−;[z;w]D[z;w,R]I

β1(n−α)
b−;[z;w]D[z;w,R] · · · Iβn(n−α)b−;[z;w]y

)
(t), (5.16)

where one may require that

β0 + β1 + · · · + βn = 1. (5.17)

Similarly, one can derive multiparameter fractional derivatives of type given by (5.13) as
follows:

(
D

α1,α2,β1,β2,γ1,γ2
[z;w] y

)
(t) =

(
γ1

HD
α1,β1
a+;[z;w]y + γ2

HD
α2,β2
b−;[z;w]y

)
(t). (5.18)
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Here, parameters α1, α2, β1, β2, γ1, and γ2 could all be arbitrary. Further, the generalized frac-
tional derivative defined in (5.18) could have more than two Hilfer type fractional derivative
terms. Integration by parts formulas and the associated fractional variational formulations for
these multi-parameter fractional derivatives can be obtained using the procedure discussed
above. It should be emphasized here that the domains of these generalized fractional
derivatives are much larger than those derivatives which do not consider z(t) and w(t).

Fifth, the fractional integrals and the derivatives are defined here using kernels of type
K(t, τ) = (t − τ)α−1. However, this need not be the case. In [40], several formulations are
presented that use kernels other thanK(t, τ) = (t − τ)α−1. Such kernels can also be considered
here, and using these kernels one can develop a more general variational calculus. To dem-
onstrate this, let us define two operators Kα

L and Kα
R as

Kα
Lf(t) = [w(t)]−1

∫ t

a

w(τ)z′(τ)kα
[
φ(t), φ(τ)

]
f(τ)dτ,

Kα
Lf(t) = [w(t)]

∫ t

a

[w(τ)]−1z′(τ)kα
[
φ(τ), φ(t)

]
f(τ)dτ,

(5.19)

where kα[φ(t), φ(τ)] is a kernel which may depend on α. Operators Kα
L and Kα

R are like
generalized fractional integral operators. Strictly speaking, the operators resulting from
arbitrary kernels do not qualify to be fractional integral operators. For example, for an
arbitrary kernel, the semi-group property may not be satisfied. However, in special cases,
Kα

P1
and Kα

P2
do lead to fractional integral operators. As a matter of fact, for kα[z(t), z(τ)] =

[z(t) − z(τ)]α−1/Γ(α), Kα
L and Kα

R are generalized fractional integral operators.
It can also be demonstrated that operatorsKα

L andKα
R satisfy the following integration

by parts formula:

∫b

a

z′(t)g(t)Kα
Lf(t)dt =

∫b

a

z′(t)f(t)Kα
Rg(t)dt. (5.20)

For simplicity, let us consider α ∈ (0, 1). We can further define differential operators Aα
L, A

α
R,

Bα
L, and Bα

R as follows:

Aα
Lf(t) = D[z,w,L]K

1−α
L f(t),

Aα
Rf(t) = D[z,w,R]K

1−α
R f(t),

(5.21)

Bα
Lf(t) = K1−α

L D[z,w,L]f(t),

Bα
Rf(t) = K1−α

R D[z,w,R]f(t).
(5.22)

These operators are like generalized differential operators, but they are not differential oper-
ators, largely because Kα

L and Kα
R may not satisfy the semigroup property. However, when

kα[φ(t), φ(τ)] = [z(t) − z(τ)]α−1/Γ(α), operators Aα
L, A

α
R, B

α
L, and Bα

R indeed represent gener-
alized fractional differential operators.
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It can be demonstrated that operatorsAα
L,A

α
R, B

α
L, and Bα

R satisfy the following integra-
tion by parts formula:

∫b

a

z′(t)g(t)Aα
Lf(t)dt =

∫b

a

z′(t)f(t)Bα
Rg(t)dt + boundary terms,

∫b

a

z′(t)g(t)Aα
Rf(t)dt =

∫b

a

z′(t)f(t)Bα
Lg(t)dt + boundary terms.

(5.23)

Here, we have considered α ∈ (0, 1). However, one can define the above operators and derive
their properties for α > 0. Once integration by parts formula is developed, many aspects
of fractional variational calculus, fractional mechanics (including fractional Lagrangian,
Hamiltonian, action principle, and adjoint operator theory), fractional optimal control can be
developed in terms of operators Kα

L, K
α
R, A

α
L, A

α
R, B

α
L, and Bα

P . Several such formulations are
presented in [40]. However, the operators defined here contain two additional functions z(t)
and w(t), and therefore, they are more general than those defined in [40].

Sixth, several different kernel functions have been considered to develop generalized
fractional operators and generalized fractional calculus (see [12, 13, 39, 41]). All these oper-
ators can be recast and the fractional calculus can be further generalized using the weight/
scaling function proposed here. For example, most of the integral equations given in [41] can
be recast in terms of generalized operators. To demonstrate this, we consider two examples
both of which are given in [41].

As a first example, consider the integral equation

∫x

a

eλ(x−t)√
x − t

y(t)dt = f(x), (5.24)

the solution of which is given as

y(x) =
1
π
eλx

d

dx

∫x

a

e−λt√
x − t

f(t)dt. (5.25)

Equation (5.24) can be written in terms of a generalized fractional integral operator as

Γ
(
1
2

)(
I1/2
a;[t,e−λt]y

)
(x) = f(x). (5.26)

By applying the operator D1/2
a;[t,e−λt,1] from left on both sides of (5.26) and noticing that this

operator is the left inverse of the operator I1/2
a;[t,e−λt], we obtain

y(x) =
1

Γ(1/2)

(
D1/2

a;[t,e−λt,1]f
)
(x). (5.27)

It can be verified that (5.25) and (5.27) are indeed the same. Note that for λ = 0, (5.24) and
(5.26) represent two forms of Abel’s equation and (5.25) and (5.27) represent two forms of
the solution.
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As a second example, consider the integral equation

∫x

a

eλ(x−t)
√
ln(x/t)

y(t)dt = f(x), (5.28)

the solution of which is given as

y(x) =
1
π
eλx

d

dx

∫x

a

e−λt

t
√
ln(x/t)

f(t)dt. (5.29)

Equation (5.28) can be written in terms of a generalized fractional integral operator as

Γ(1/2)
(
I1/2
a;[ln(t),e−λt]y

)
(x) = f(x). (5.30)

By applying the operator D1/2
a;[ln(t),e−λt,1] from left on both sides of (5.29), dividing the result

by xΓ(1/2), and noticing that this operator is the left inverse of the operator I1/2
a;[ln(t),e−λt], we

obtain

y(x) =
1

xΓ(1/2)

(
D1/2

a;[ln(t),e−λt,1]f
)
(x). (5.31)

It can be verified that (5.29) and (5.31) are indeed the same.
The above observation will have several consequences: (a) it will allow us to write

many integral equations in terms of generalized fractional integral and differential operators,
and use the properties of these operators to find the solution of the integral equations using
the properties of the generalized fractional operators in elegant way. (b) It will initiate a new
class of generalized differential equations, and blur the distinction between differential and
integral equations. (c) It will allow us to write many of the equations, physical, and social
laws, and so forth, in the field of science, engineering, economics, and bioengineering in terms
generalized fractional operators, and thus broaden the area where fractional calculus could
be applied. (d) It will also impact the history of fractional calculus. In the history of fractional
calculus, Abel is attributed for solving a practical fractional calculus problem. Recently, many
integral equations have been recast in terms of fractional integrals and derivative operators.
The new operators and their properties proposed above will allow one to write equations
and physical and social laws in terms of generalized fractional operators. Thus, while the
researchers were proposing these equations and physical and social laws, they were indeed,
indirectly, proposing applications of generalized fractional calculus; and when they solved
the associated integral equations, they were indeed developing analytical tools for fractional
calculus.

Seventh, we have largely focused here on the discrete systems. However, it could be
easily extended to field/distributed-order-dynamic-systems (see [21]). In addition, we have
largely dealt with finite domains. However, operators such as Weyl fractional derivatives
could be generalized in the same way.

Finally, note that we developed a generalized variational calculus in [38] which
opened several new areas for further investigations. In particular, we listed the following
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areas: analytical and numerical solutions of the resulting equations, applications to fractional
optimal control, time delay systems and applications in physics (i.e., Lagrangian and Hamil-
tonian formulations, Fractional Schrödinger equation and fractional quantum mechanics,
relativistic fractional quantum mechanics, quantization of fractional systems containing frac-
tional derivatives of multiple order, fractional statistical mechanics, fractional Maxwell’s and
wave equations, and fractional Lie algebra). As a matter of fact, fractional variational calculus
has already been applied in most of these fields. Since most of the fractional derivatives used
in these fields are special cases of the generalized derivatives, it is clear that the generalized
fractional derivatives proposed here would also apply to many of the fields listed above.
These research areas will be pursued in the future.

6. Conclusions

In this paper, we first introduced some one-parameter FDs, and listed some of their properties
useful in developing FVC. We then introduced new one-parameter GFDs, developed their
properties, and used them to develop several parts of FVC. These parts include fractional
variational formulations for functionals containing one function and multi functions,
specified and unspecified terminal conditions, multiorder of FDs, holonomic, parametric,
and dynamic constraints. These parts also include formulations for fractional Lagrangian and
Hamiltonians and fractional optimal controls. Subsequently, we introduced two- and three-
parameters GFDs and developed some Euler-Lagrange type necessary conditions, and
pointed out how other multiparameter fractional derivatives could be developed. We also
discussed many areas where the formulations developed here could be applied.
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