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Under the condition that the values of mapping F are evaluated approximately, we propose a
proximal analytic center cutting plane algorithm for solving variational inequalities. It can be
considered as an approximation of the earlier cutting plane method, and the conditions we impose
on the corresponding mappings are more relaxed. The convergence analysis for the proposed
algorithm is also given at the end of this paper.

1. Introduction

According to [1], the history of algorithms for solving finite-dimensional variational inequal-
ities is relatively short. A recent development of such methods is the analytic center method
based on cutting plane methods. It combines the feature of the newly developed interior
point methods with the classical cutting plane scheme to achieve polynomial complexity in
theory and quick convergence in practice. More details can be found in [2, 3]. Specifically,
Goffin et al. [4] developed a convergent framework for finding a solution x∗ of the vari-
ational inequality VIP (F,X) associated with the continuous mapping F from X to Rn and
the polyhedron X = {x ∈ Rn | Ax ≤ b} under an assumption slightly stronger than
pseudomonotonicity. Again,Marcotte and Zhu [5] extended this algorithm to quasimonotone
variational inequalities that satisfy a weak additional assumption. Such methods are effective
in practice.
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Note that the facts in optimization problems, see [6–8], some functions from Rn to R
are themselves defined through other minimization problems. For example, consider the
Lagrangian relaxation, see [9–12], the primal problem is

max
{
q(ξ) | ξ ∈ P, h(ξ) = 0

}
, (1.1)

where P is a compact subset of Rm and q : Rm → R, h : Rm → Rn are two functions. La-
grangian relaxation in this problem leads to the problem min{f(x) | x ∈ Rn}, where

f(x) = max
ξ∈P

{
q(ξ) + 〈x, h(ξ)〉} (1.2)

is the dual function. Trying to solve problem (1.1) by means of solving its dual problem
min{f(x) | x ∈ Rn} becomes more difficult since in this case evaluating the function value
f(x) requires solving exactly another optimization problem (1.2). Let us see another example:
consider the problem

min
{
f(x) | x ∈ C}, (1.3)

where f is convex (not necessarily differentiable), C ⊂ Rn is a nonempty closed convex set, F
is called the Moreau-Yosida regularization of f on C, that is,

F(x) = min
z∈C

{
f(z) +

1
2α

‖z − x‖2
}
, (1.4)

where α is a positive parameter. A point x ∈ C is a solution to (1.3) if and only if it is a solution
to the problem:

min
x∈Rn

F(x). (1.5)

The problem (1.5) is easier to deal with than (1.3), see [13]. But in this case, computing the
exact function value of F at an arbitrary point x is difficult or even impossible since F itself is
defined through a minimization problem involving another function f . Intuitively, we con-
sider the approximate computation of function F.

The above-mentioned phenomenon also exists for mappings from X to Y , where X
and Y are two subspaces of any two finite-dimensional spaces, respectively. Once a mapping,
and more specifically, a continuous mapping is defined implicitly rather than explicitly, the
approximation of the mapping becomes inevitable, see [14]. In this paper we try to solve
VIP (F,X) by assuming the values of the mapping F from X to Rn can be only computed
approximately. Under the assumption, we construct an algorithm for solving the approximate
variational inequality problem AVIP (F,X) and we also prove that there exists a cluster point
of the iteration points generated by the proposed algorithm, it is a solution to the original
problem VIP (F,X).

This paper is organized as follows. Some basic concepts and results are introduced
in Section 2. In Section 3, a proximal analytic center cutting plane algorithm for solving the
variational inequality problems is given. The convergence analysis of the proposed algorithm
is addressed in Section 4. In the last section, we give some conclusions.
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2. Basic Concepts and Results

Let X = {x ∈ Rn | Ax ≤ b} be a polyhedron and F a continuous mapping from X to Rn. A
vector x∗ is a solution to the variational inequality VIP (F,X) if and only if it satisfies the
system of nonlinear inequalities:

〈F(x∗), x − x∗〉 ≥ 0, ∀x ∈ X. (2.1)

The vector x∗ is a solution to the dual variational inequality VID(F,X) of VIP (F,X) if and only
if it satisfies

〈F(x), x − x∗〉 ≥ 0, ∀x ∈ X. (2.2)

We denote by X∗
P the solution set of VIP (F,X), and X∗

D the solution set of VID(F,X), respec-
tively. Whenever F is continuous, we have X∗

D ⊆ X∗
P , see [15]. If F is pseudomonotone on

X, then X∗
D = X∗

P , see [15]. If F is quasimonotone at x∗ ∈ X∗
P and F(x∗) is not normal to

X at x∗, then X∗
D is nonempty, see Proposition 1 in [5]. For the definitions of monotone,

pseudomonotone and quasimonotone, see [5, 15].

Definition 2.1. The gap functions gP (x) and gD(x) of VIP (F,X) and VID(F,X) are, respectively,
defined by

gP (x) = max
y∈X

〈F(x), x − y〉,

gD(x) = max
y∈X

〈F(y), x − y〉.
(2.3)

Note that gP (x) ≥ 0, gD(x) ≥ 0, and gP (x∗) = 0 if and only if x∗ is a solution to VIP (F,X),
gD(x∗) = 0 if and only if x∗ is a solution to VID(F,X). Thus, X∗

P = {x ∈ X | gP (x) = 0}, X∗
D =

{x ∈ X | gD(x) = 0}.

Definition 2.2. A point x̃ ∈ X is called an ε-solution to VIP (F,X) if gP (x̃) ≤ ε for given ε > 0.

Definition 2.3. For x, y ∈ X, we say F(x) 
 F(y) if and only if Fi(x) ≤ Fi(y), for i = 1, 2, . . . , n,
where F(x) = (F1(x), F2(x), . . . , Fn(x))

T .

Assumptions 2.4. Throughout this paper, we make the following assumptions: for each x, y ∈
X, given any ε = (ε, ε, . . . , ε), δ = (δ, δ, . . . , δ), where ε, δ ∈ (0, 1), we can always find a Fx ∈ Rn

and a Fy ∈ Rn such that

(a) F(x) 
 Fx 
 F(x) + ε, F(y) 
 Fy 
 F(y) + δ,
that is, we can compute the approximate value of F with any precision;

(b) Fy −→ Fx if y −→ x, no matter the relationship between ε and δ;

(c)
∥∥∥Fy − Fx

∥∥∥ ≤ L∥∥y − x∥∥, where L > 0 is a constant.

(2.4)
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These assumptions are realistic in practice, see [16, 17]. By using the given architecture in
[16, 17], we can approximate the mapping F arbitrary well since neural networks are capable
of approximating any function from one finite-dimensional real vector space to another one
arbitrary well, see [18]. Specifically, let us consider the case of univariate function. If f is a
min-type function of the form

f(x) = inf{Nz(x) | z ∈ Z}, (2.5)

where each Nz(x) is convex and Z is an infinite set, then it may be impossible to calculate
f(x). However, we may still consider two cases. In the first case of controllable accuracy, for
each positive ε > 0 one can find an ε-minimizer of (2.5), that is, an element zx ∈ Z satisfying
Nzx(x) ≤ f(x) + ε; in the second case, this may be possible only for some fixed (any possibly
unknown) ε < ∞. In both cases, we may set fx = Nzx(x) ≤ f(x) + ε. A special case of (2.5)
arises from Lagrangian relaxation [15], where the problem max{f(x) | x ∈ S} with S = Rn

+ is
the Lagrangian dual of the primal problem

inf ψ0(x) s.t. ψj(x) ≥ 0, j = 1, 2, . . . , n, x ∈ X, (2.6)

with Nz(x) = ψ0(z) + 〈x, ψ(z)〉 for ψ = (ψ1, ψ2, . . . , ψn). Then, for each multiplier x ≥ 0, we
need only to find zx ∈ Z such that fx =Nzx(x) ≤ f(x) + ε, see [19].

Under the above assumptions (2.4), we introduce an approximate problem AVIP (F,X)
associated with VIP (F,X): finding x∗ ∈ X such that

〈
Fx∗ , x − x∗

〉
≥ 0, ∀x ∈ X, (2.7)

where Fx∗ satisfies F(x∗) 
 Fx∗ 
 F(x∗) + ε for arbitrary ε � 0. Its dual problem AVID(F,X) is
to find x∗ ∈ X such that

〈
Fx, x − x∗

〉
≥ 0, ∀x ∈ X, (2.8)

where Fx satisfies F(x) 
 Fx 
 F(x) + ε for arbitrary ε � 0.

Definition 2.5. The gap function of AVIP (F,X) is defined by gP (x) = maxy∈X〈Fx, x − y〉.

Definition 2.6. A point x̃ ∈ X is called an ε-solution to AVIP (F,X) if gP (x̃) ≤ ε for given ε > 0.
The optimal solution sets of AVIP (F,X) and AVID(F,X) are denoted byAX∗

P andAX∗
D,

respectively. The following proposition ensures that AX∗
D is nonempty.

Proposition 2.7. If there exists a point x∗ ∈ AX∗
P such that

〈
Fx∗ , y − x∗

〉
> 0 =⇒

〈
Fy, y − x∗

〉
≥ 0, ∀y ∈ X, (2.9)

and Fx∗ is not normal to X at x∗, then AX∗
D is nonempty.
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Proof. Since Fx∗ is not normal toX at x∗, there exists a point x0 ∈ X such that 〈Fx∗ , x0−x∗〉 > 0.
∀ x ∈ X, set xt = tx0+(1−t)x for t ∈ (0, 1], then we have 〈Fx∗ , x−x∗〉 ≥ 0 and 〈Fx∗ , xt−x∗〉 > 0.
Note the condition (2.9), we obtain 〈Fxt , xt − x∗〉 ≥ 0. Letting t → 0, it follows from the
condition (b) in (2.4) that 〈Fx, x − x∗〉 ≥ 0, that is, x∗ ∈ AX∗

D.

In the following part, we focus our attention on solving AVIP (F,X). Let Γ(y, x) : Rn ×
Rn → Rn denote an auxiliary mapping, continuous in x and y, strongly monotone in y, that
is,

〈
Γ
(
y, x

) − Γ(z, x), y − z〉 ≥ β∥∥y − z∥∥2
, ∀y, z ∈ X, (2.10)

for some β > 0. We consider the auxiliary variational inequality associated with Γ, whose
solution w(x) satisfies

〈
Γ(w(x), x) − Γ(x, x) + Fx, y −w(x)

〉
≥ 0, ∀y ∈ X. (2.11)

In view of the strong monotonicity of Γ(y, x) with respect to y, this auxiliary variational
inequality has a unique solution w(x).

Proposition 2.8. The mapping w : X → X is continuous on X. Furthermore, x is a solution to
AVIP (F,X) if and only if x = w(x).

Proof. The first part of the proposition follows from Theorem 5.4 in [1]. To prove the second
part, we first suppose that x = w(x). This yields 〈Fx, y − x〉 ≥ 0, ∀y ∈ X, that is, x solves
AVIP (F,X). Conversely, suppose that x solves AVIP (F,X), then

〈
Fx,w(x) − x

〉
≥ 0, (2.12)

and from (2.11), we have

〈
Γ(w(x), x) − Γ(x, x) + Fx, x −w(x)

〉
≥ 0. (2.13)

Adding the two preceding inequalities, one obtains

〈Γ(w(x), x) − Γ(x, x), x −w(x)〉 ≥ 0, (2.14)

and we conclude, from the strong monotonicity of Γwith respect to y, that x = w(x).

Let ρ < 1, α < β be two positive numbers. Let l be the smallest nonnegative integer
satisfying

〈
Fx+ρl(w(x)−x), x −w(x)

〉
≥ α‖w(x) − x‖2, (2.15)
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where Fx+ρl(w(x)−x) satisfies F(x + ρl(w(x) − x)) 
 Fx+ρl(w(x)−x) 
 F(x + ρl(w(x) − x)) + ε for
arbitrary ε � 0. The existence of a finite l will be proved in Proposition 2.9. The composite
mapping G is defined, for every x ∈ X, by

G(x) = Gx = Fx+ρl(w(x)−x). (2.16)

If x∗ is a solution to AVIP (F,X), then we have w(x∗) = x∗, l = 0 and Gx∗ = Fx∗ .

Proposition 2.9. The operator G is well defined for every x ∈ X. Moreover, we have

l ≤ ln
((
β − α)/L)

ln ρ
, (2.17)

where L is the number given in (2.4)-(c).

Proof. From the definition of w(x), we have

〈Fx, x −w(x)〉 ≥ 〈Γ(w(x), x) − Γ(x, x), w(x) − x〉 ≥ β‖x −w(x)‖2. (2.18)

Suppose (2.15) does not hold for any finite integer l, that is,

〈Fx+ρl(w(x)−x), x −w(x)〉 < α‖x −w(x)‖2. (2.19)

Note the assumption (2.4)-(b), we obtain

Fx+ρl(w(x)−x) −→ Fx as l −→ +∞, (2.20)

therefore,

〈
Fx, x −w(x)

〉
≤ α‖x −w(x)‖2. (2.21)

Since α < β, (2.21) is in contradiction with (2.18). To prove the second part, we notice that

〈
Fx+ρl(w(x)−x), x −w(x)

〉
=
〈
Fx, x −w(x)

〉
+
〈
Fx+ρl(w(x)−x) − Fx, x −w(x)

〉

≥ β‖w(x) − x‖2 − Lρl‖w(x) − x‖2

≥ α‖w(x) − x‖2
(2.22)

if α ≤ β − Lρl, which means the second conclusion of Proposition 2.9 holds.

Proposition 2.10. If x /∈ AX∗
P , then ∀y∗ ∈ AX∗

D, we have

〈
Gx, x − y∗

〉
> 0. (2.23)
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Proof. Let y(x) = x + ρl(w(x) − x), then Gx = Fy(x) and

〈
Fy(x), w(x) − x

〉
≤ −α‖w(x) − x‖2. (2.24)

Since x /∈ AX∗
P , so w(x)/=x. Therefore,

〈
Fy(x), y(x) − x

〉
= ρl

〈
Fy(x), w(x) − x

〉
< 0. (2.25)

For all y∗ ∈ AX∗
D, there holds

〈
Fy(x), y(x) − y∗

〉
≥ 0. (2.26)

By combining (2.25)with (2.26), we obtain 〈Fy(x), x − y∗〉 > 0, that is, 〈Gx, x − y∗〉 > 0.

3. A Proximal Analytic Center Cutting Plane Algorithm

Algorithm 3.1 offered in this section is a modification of the algorithm in [5]. Algorithm 3.1
is described as follows.

Algorithm 3.1. Let β be the strong monotonicity constant of Γ(x, y) with respect to y, and let
α ∈ (0, β), ε ∈ (0, 1) be two constants. Set k = 0, Ak = A ∈ Rm×n, bk = b, and εk = ε.

Step 1 (computation of the center). Find an approximate analytic center xk of Xk = {x ∈ Rn |
Akx ≤ bk}.

Step 2 (stopping criterion). If gP (xk) ≤ ε, stop.

Step 3 (solving the approximate auxiliary variational inequality problem). Find w(xk), such
that

〈
Fxk + Γ

(
w
(
xk

)
, xk

)
− Γ

(
xk, xk

)
, y −w

(
xk

)〉
≥ 0, ∀y ∈ X, (3.1)

where Fxk satisfies F(xk) 
 Fxk 
 F(xk) + εxk , εxk = (εk, εk, . . . , εk)T .

Step 4 (construction of the approximate cutting plane). Let yk = xk + ρlk(w(xk) − xk) and
Gxk = Fyk , where lk is the smallest integer that satisfies

〈
Fxk+ρlk (w(xk)−xk), x

k −w
(
xk

)〉
≥ α

∥∥∥w(xk) − xk
∥∥∥
2
, (3.2)

where Fxk+ρlk (w(xk)−xk) satisfies F(x
k + ρlk(w(xk) − xk)) 
 Fxk+ρlk (w(xk)−xk) 
 F(xk + ρlk(w(xk) −

xk)) + εxk+ρlk (w(xk)−xk), εxk+ρlk (w(xk)−xk) = (εk, εk, . . . , εk)T .
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LetHk = {x | 〈Gxk , x − xk〉 = 0},

Ak+1 =

(
Ak

Gxk

)

, bk+1 =

(
bk

G
T

xkx
k

)

. (3.3)

Increase k by one and go to Step 1.
End of Algorithm 3.1

4. Convergence Analysis

In [20], the authors proposed a column generation scheme to generate the polytope Xk, and
they proved if k satisfies the following inequality

ε2

m
≥ 1/2 + 2m ln

(
1 + (k + 1)/8m2)

2m + k + 1
e−2α((k+1)/(2m+k+1)), (4.1)

where ε < 1/2 is a constant, the scheme will stop with a feasible solution, that is, they can find
a vector ak+1 such that {y | aT

k+1y ≤ aT
k+1y

k} ⊃ Γwith ||ak+1|| = 1, Γ contains a full-dimensional
closed ball with ε < 1/2 radius. In other words, there exists the smallest k(ε) such that Xk(ε)

generated by the column generation scheme does not contain the ball with ε < 1/2 radius,
and it is known as the finite cut property. It is easy to know that the result of Theorem 6.6 in
[20] also holds without much change for our Algorithm 3.1 using the approximate centers.
That is, by using the row generation scheme, there exists the smallest k(ρ) such that Xk(ρ)

generated in Step 4 in Algorithm 3.1 does not contain the ball with ρ radius lying inside the
polytope X. This result plays an important role in proving the convergence of the described
Algorithm 3.1 in Section 3.

Theorem 4.1. Let the polyhedron X have nonempty interior, and let AX∗
D be nonempty. Assumption

(2.4) holds. Then either Algorithm 3.1 stops with a solution to AVIP(F,X) after a finite number of
iterations, or there exists a subsequence of the infinite sequence {xk} that converges to a point in AX∗

P.

Proof. Assume that xk /∈ AX∗
P for every iteration k, and let y∗ ∈ AX∗

D. From Proposition 2.10,
we know that y∗ ∈ Xk never lies on Hk for any k. Let {yi}i∈N be an arbitrary sequence of
point in the interior of X converging to y∗ and δi a sequence of positive numbers such that
limi→+∞δi = 0 and that the sequence of closed balls {B(yi, δi)}i∈N lies in the interior of X.
Note that limi→+∞B(yi, δi) = {y∗}. From finite cut property, we know that there exists the
smallest index k(i) and a point ỹi ∈ B(yi, δi) such that ỹi satisfies

〈Gxk(i) , x
k(i) − ỹi〉 < 0. (4.2)

As 〈Gxk(i) , x
k(i) − y∗〉 > 0, there exists a point ŷi on the segment [ỹi, y∗] such that 〈Gxk(i) , x

k(i) −
ŷi〉 = 0. Since X is compact, we can extract from {xk(i)}i∈N a convergent subsequence
{xk(i)}i∈S. Denote by x̂ its limit point, we have

〈Gxk(i) , ŷi − xk(i)〉 = 0, ∀i ∈ S. (4.3)
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From Proposition 2.9, we know that lk(i) is bounded. Consequently, we can extract form
{lk(i)}i∈S a constant subsequence lk∗(i) = k∗. Now from the continuity of w(x) for fixed k and
the relations (2.15) and (4.3), it follows by taking the limit in (4.3) that

〈Gx̂, y
∗ − x̂〉 = 0. (4.4)

By Proposition 2.10, we conclude that x̂ ∈ AX∗
P .

Theorem 4.2. Under the conditions of Theorem 4.1, either Algorithm 3.1 stops with a solution to
AVIP (F,X) after a finite number of iterations, or there exists a subsequence of the infinite sequence
{xk} that converges to a point in X∗

P .

Proof. Since ε ∈ (0, 1), εk ∈ (0, 1). At the end of Step 4 in Algorithm 3.1 we increase k by one,
so we have εk+1 < εk, εk → 0 as k → ∞. Moreover, εxk → 0 as k → ∞ in Algorithm 3.1,
where 0 denotes the zero vector. This means Fx̂ = F(x̂) as k → ∞. Therefore, from the second
result of Theorem 4.1, we know x̂ is the solution to the problem VIP (F,X).

5. Conclusions

In [5], the authors proposed a cutting plane method for solving the quasimonotone vari-
ational inequalities, but throughout the paper they employed the exact information of the
mapping F fromX to Rn. Just like the discussion in the first part of our paper, sometimes, it is
not so easy or even impossible to compute the exact values of the mapping F. Motivated by
this fact, we consider constructing an approximate problem AVIP (F,X) of VIP (F,X), and try
out a proximal analytic center cutting plane algorithm for solving AVIP (F,X). In contrast to
[5], our algorithm can be viewed as an approximation algorithm, and it is easier to implement
than [5] since it only requires the inexact information of the corresponding mapping. At the
same time, the conditions we impose on the corresponding mappings are more relaxed, for
example, [5] requires the mapping F satisfies the Lipschitz condition, but we only require
that the so-called approximate Lipschitz condition (2.4)-(c) holds.
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