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We consider a parametric semilinear Dirichlet problem with an unbounded and indefinite
potential. In the reaction we have the competing effects of a sublinear (concave) term and
of a superlinear (convex) term. Using variational methods coupled with suitable truncation
techniques, we prove two multiplicity theorems for small values of the parameter. Both theorems
produce five nontrivial smooth solutions, and in the second theorem we provide precise sign
information for all the solutions.

1. Introduction

Let Ω ∈ R
N be a bounded domain with a C2-boundary ∂Ω. In this paper we study the

following parametric nonlinear Dirichlet problem:

−Δu(z) + β(z)u(z) = λg(z, u(z)) + f(z, u(z)) in Ω,

u|∂Ω = 0, λ > 0.
((P)λ)

Here β ∈ Ls(Ω) with s > N/2 (N � 2) is a potential function which may change sign
(indefinite potential). Also λ > 0 is a parameter, and g, f : Ω × R → R are Carathéodory
functions (i.e., for all ζ ∈ R, functions z �→ g(z, ζ) and z �→ f(z, ζ) are measurable and for
almost all z ∈ Ω, functions ζ �→ g(z, ζ) and ζ �→ f(z, ζ) are continuous). We assume that for
almost all z ∈ Ω, the function ζ �→ g(z, ζ) is strictly sublinear near ±∞, while the function
ζ �→ f(z, ζ) is superlinear near ±∞. So, problem ((P)λ) exhibits competing nonlinearities of
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the concave-convex type. This situation was first studied with β ≡ 0 and the right hand side
nonlinearity being

λ|ζ|q−2ζ + |ζ|r−2ζ, (1.1)

with

1 < q < 2 < r < 2∗ =

⎧
⎨

⎩

2N
N − 2

if N > 2,

+∞ if N = 2,
(1.2)

by Ambrosetti et al. [1]. In [1], the authors focus on positive solutions and proved certain
bifurcation-type phenomena as λ > 0 varies. Further results in this direction can be found in
the works of I’lyasov [2], Li et al. [3], Lubyshev [4], and Rădulescu and Repovš [5]. In all
the aforementioned works β ≡ 0. We should also mention the recent work of Motreanu et al.
[6], where the authors consider equations driven by the p-Laplacian, with concave term of
the form |ζ|q−2ζ (where 1 < q < p) and a perturbation exhibiting an asymmetric behaviour
at +∞ and at −∞ ((p − 1)-superlinear near +∞ and (p − 1)-sublinear near −∞). They prove
multiplicity results producing four nontrivial solutions with sign information.

In this work, we prove twomultiplicity results for problem ((P)λ)when the parameter
λ > 0 is small. In both results we produce five nontrivial smooth solutions, and in the second
we provide precise sign information for all the solutions. For the superlinear (“convex”)
nonlinearity f(z, ·), we do not employ the usual in such cases Ambrosetti-Rabinowitz
condition. Instead, we use a more general condition, which incorporates in our framework
also superlinear perturbations with “slow” growth near ±∞, which do not satisfy the
Ambrosetti-Rabinowitz condition. We should point out that none of the works mentioned
earlier provide sign information for all the solutions (in particular, none of them produced a
nodal (sign changing) solution) and all use the Ambrosetti-Rabinowitz condition to express
the superlinearity of the “convex” contribution in the reaction.

Our approach is variational based on the critical point theory which is combined with
suitable truncation techniques. In the next section we recall the main mathematical tools we
will use in the analysis of problem ((P)λ). We also introduce the hypotheses on the terms g
and f .

2. Mathematical Background and Hypotheses

Let X be a Banach space and let X∗ be its topological dual. By 〈·, ·〉 we denote the duality
brackets for the pair (X∗, X). Let ϕ ∈ C1(X). We say that ϕ satisfies the Cerami condition, if the
following is true.

Every sequence {xn}n�1 ⊆ X, such that {ϕ(xn)}n�1 ⊆ R is bounded and

(1 + ‖xn‖)ϕ′(xn) −→ 0 in X∗, (2.1)

admits a strongly convergent subsequence.

This compactness-type condition is in general weaker than the usual Palais-Smale
condition. However, the Cerami condition suffices to prove a deformation theorem and from
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it we derive the minimax theory for certain critical values of ϕ ∈ C1(X) (see Gasiński and
Papageorgiou [7] andMotreanu and Rădulescu [8]). In particular, we can have the following
theorem, known in the literature as the mountain pass theorem.

Theorem 2.1. If X is a Banach space, ϕ ∈ C1(X) satisfies the Cerami condition, x0, x1 ∈ X, � >
0‖x1 − x0‖ > �:

max
{
ϕ(x0), ϕ(x1)

}
< inf

{
ϕ(x) : ‖x − x0‖ = �

}
= η�,

c = inf
γ∈Γ

max
t∈[0,1]

ϕ
(
γ(t)
)
, (2.2)

where

Γ =
{
γ ∈ C([0, 1];X) : γ(0) = x0, γ(1) = x1

}
. (2.3)

Then c � η� and c are a critical value of ϕ.

In the analysis of problem ((P)λ), in addition to the Sobolev spaceH1
0(Ω), we will also

use the Banach space

C1
0

(
Ω
)
=
{
u ∈ C1

(
Ω
)
: u|∂Ω = 0

}
. (2.4)

This is an ordered Banach space with positive cone:

C+ =
{
u ∈ C1

0

(
Ω
)
: u(z) � 0 ∀z ∈ Ω

}
. (2.5)

This cone has a nonempty interior given by

int C+ =
{

u ∈ C+ : u(z) > 0 ∀z ∈ Ω,
∂u

∂n
(z) < 0 ∀z ∈ ∂Ω

}

, (2.6)

where n(·) is the outward unit normal on ∂Ω.
In the proof of the second multiplicity theorem and in order to produce a nodal (sign

changing) solution, we will also use critical groups. So, let us recall their definition. Let ϕ ∈
C1(X) and let c ∈ R. We introduce the following sets:

ϕc =
{
x ∈ X : ϕ(x) � c

}
,

Kϕ =
{
x ∈ X : ϕ′(x) = 0

}
.

(2.7)

Also, if (Y1, Y2) is a topological pair with Y2 ⊆ Y1 ⊆ X and k � 0 is an integer, byHk(Y1, Y2)we
denote the kth relative singular homology group for the pair (Y2, Y1)with integer coefficients.
The critical groups of ϕ at an isolated critical point x0 ∈ X of ϕ with ϕ(x0) = c are defined by

Ck

(
ϕ, x0

)
= Hk

(
ϕc ∩U,ϕc ∩U \ {x0}

) ∀k � 0, (2.8)



4 Abstract and Applied Analysis

where U is a neighbourhood of x0, such that Kϕ ∩ ϕc ∩ U = {x0}. The excision property of
singular homology implies that this definition is independent of the particular choice of the
neighbourhood U.

Using the spectral theorem for compact self-adjoint operators, we can show that the
differential operator

H1
0(Ω) � u �−→ −Δu + βu (2.9)

has a sequence of distinct eigenvalues {λ̂k}k�1, such that

λ̂k −→ +∞ as k −→ +∞. (2.10)

The first eigenvalue is simple and admits the following variational characterization:

λ̂1 = inf

{
σ(u)

‖u‖22
: u ∈ H1

0(Ω), u /= 0

}

, (2.11)

where

σ(u) = ‖∇u‖22 +
∫

Ω
β(z)u(z)2dz ∀u ∈ H1

0(Ω). (2.12)

Moreover, the corresponding eigenfunction û ∈ C1
0(Ω) does not change sign, and in fact we

can take û(z) > 0 for all z ∈ Ω (see Gasiński and Papageorgiou [9]). Using (2.11) and this
property of the principal eigenfunction, we can have the following lemma (see Gasiński and
Papageorgiou [9, Lemma 2.1]).

Lemma 2.2. If η ∈ Ls(Ω), η(z) � λ̂1 for almost all z ∈ Ω, η /= λ̂1, then there exists ĉ > 0, such that

σ(u) −
∫

Ω
ηu2 dz � ĉ‖u‖2 ∀u ∈ H1

0(Ω). (2.13)

Also, from Gasiński and Papageorgiou [9] we know that there exist ĉ0, ĉ1 > 0, such
that

‖u‖2 � ĉ0
(
σ(u) + ĉ1‖u‖22

)
∀u ∈ H1

0(Ω), (2.14)

with ‖u‖ = ‖∇u‖2, the norm of the Sobolev spaceH1
0(Ω).

Next we state the hypotheses on the two components g and f of the reaction in
problem ((P)λ).

Let

G(z, ζ) =
∫ ζ

0
g(z, s)ds, F(z, ζ) =

∫ ζ

0
f(z, s) ds. (2.15)
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Hg : g : Ω×R → R is a Carathéodory function, such that g(z, 0) = 0 for almost all z ∈ Ω.

(i) For every � > 0, there exists a function a� ∈ L∞(Ω)+, such that

∣
∣g(z, ζ)

∣
∣ � a�(z) for almost all z ∈ Ω, all |ζ| � �. (2.16)

(ii) We have

lim
ζ→±∞

g(z, ζ)
ζ

= 0 uniformly for almost all z ∈ Ω. (2.17)

(iii) There exist constants c1, c2 > 0, 1 < q < μ < 2 and δ0 > 0, such that

c1|ζ|q � g(z, ζ)ζ for almost all z ∈ Ω, all ζ ∈ R ,

μG(z, ζ) − g(z, ζ)ζ � c2|ζ|q for almost all z ∈ Ω, all |ζ| � δ0.
(2.18)

(iv) For every � > 0, we can find γ� > 0, such that for almost all z ∈ Ω

the map
[−�, �] � ζ �−→ g(z, ζ) + γ�|ζ|q−2ζ is nondecreasing. (2.19)

Remark 2.3. HypothesisHg(ii) implies that for almost all z ∈ Ω, the function g(z, ·) is strictly
sublinear near ±∞. Hence g(z, ·) is the “concave” component in the reaction of ((P)λ) (the
terminology “concave” and “convex” nonlinearities is due to Ambrosetti [1]). Note that
hypothesisHg(iii) implies that for almost all z ∈ Ω, the function g(z, ·) has a similar growth
near 0 that is, we have a concave term near zero. HypothesisHg(iv) is weaker than assuming
the monotonicity of g(z, ·) for almost all z ∈ Ω.

Hf : f : Ω×R → R is a Carathéodory function, such that f(z, 0) = 0 for almost all z ∈ Ω.

(i) There exist a ∈ L∞(Ω)+, c > 0 and r ∈ (2, 2∗), such that

∣
∣f(z, ζ)

∣
∣ � a(z) + c|ζ|r−1 for almost all z ∈ Ω, all ζ ∈ R. (2.20)

(ii) We have

lim
ζ→±∞

F(z, ζ)
ζ2

= +∞ uniformly for almost all z ∈ Ω. (2.21)

(iii) There exist functions η0, η̂0 ∈ L∞(Ω)+, such that η0(z) � λ̂1 for almost all z ∈ Ω,
η0 /= λ̂1 and

η̂0(z) � lim inf
ζ→ 0

f(z, ζ)
ζ

� lim sup
ζ→ 0

f(z, ζ)
ζ

� η0(z) (2.22)

uniformly for almost all z ∈ Ω.
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(iv) For every � > 0, we can find γ̂� > 0, such that for almost all z ∈ Ω, we have

the map
[−�, �] � ζ �−→ f(z, ζ) + γ̂�ζ is nondecreasing. (2.23)

Remark 2.4. Hypothesis Hf(ii) implies that for almost all z ∈ Ω, the function F(z, ·) is
superquadratic near ±∞. Evidently, this is satisfied if the function f(z, ·) is superlinear near
±∞, that is, when

lim
ζ→±∞

f(z, ζ)
ζ

= +∞ uniformly for almost all z ∈ Ω. (2.24)

So, f(z, ζ) is the “convex” component of the reaction which “competes” with the “concave”
component g(z, ζ).

Note that in Hf , we did not include the Ambrosetti-Rabinowitz condition to
characterize the superlinearity of f(z, ·). We recall that the Ambrosetti-Rabinowitz condition
says that there exist τ > 2 andM > 0, such that

0 < τF(z, ζ) � f(z, ζ)ζ uniformly for almost all z ∈ Ω, all |ζ| � M, (2.25)

ess inf
Ω

F(·,M) > 0. (2.26)

Integrating (2.25) and using (2.26), we obtain the weaker condition

c3|ζ|τ � F(z, ζ) uniformly for almost all z ∈ Ω, all |ζ| � M. (2.27)

Therefore, for almost all z ∈ Ω, the function

ζ �−→ λG(z, ζ) + F(z, ζ) (2.28)

is superquadratic with at least τ-growth near ±∞. Hence the Ambrosetti-Rabinowitz
condition excludes superlinear perturbations with “slower” growth near ±∞. For this reason,
here we employ a weaker condition. So, let

ξλ(z, ζ) =
(
λg(z, ζ) + f(z, ζ)

)
ζ − 2(λG(z, ζ) + F(z, ζ)). (2.29)

We employ the following hypothesis.

H0 : For every λ > 0, there exists a function ϑ∗
λ ∈ L1(Ω)+, such that

ξλ(z, ζ) � ξλ
(
z, y
)
+ ϑ∗

λ(z) for almost all z ∈ Ω, all 0 � ζ � y,

ξλ(z, ζ) � ξλ
(
z, y
)
+ ϑ∗

λ(z) for almost all z ∈ Ω, all y � ζ � 0.
(2.30)
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Remark 2.5. HypothesisH0 is a generalized version of a condition first introduced by Li and
Yang [10], where the reader can find other possible extensions of the Ambrosetti-Rabinowitz
condition and comparisons between them. Hypothesis H0 is a quasimonotonicity condition
on ξλ(z, ·), and it is satisfied if there existsM > 0, such that for almost all z ∈ Ω, the function

ζ �−→ λg(z, ζ) + f(z, ζ)
ζ

(2.31)

is increasing on [M,+∞] and is decreasing on [−∞,−M] (see Li and Yang [10]).

Example 2.6. The following pairs of functions satisfy hypothesesHg ,Hf , andH0 (for the sake
of simplicity we drop the z-dependence):

g1(ζ) = |ζ|q−2ζ, f1(ζ) = |ζ|p−2ζ + η0ζ,
g2(ζ) = |ζ|q−2ζ, f2(ζ) = |ζ|p−2ζ ln(1 + |ζ|) + η0ζ,

g3(ζ) = |ζ|q−2ζ − |ζ|τ−2ζ, f3(ζ) =

⎧
⎨

⎩

η0
(
ζ − |ζ|r−2ζ

)
if |ζ| � 1,

|ζ|p−2ζ ln|ζ| if |ζ| > 1,

(2.32)

with 1 < q < τ < 2 < p < 2∗, 2 < r, η0 < λ̂1.
Note that f2 and f3 do not satisfy the Ambrosetti-Rabinowitz condition (see (2.25)-

(2.26)).

For every u ∈ H1
0(Ω), we set

‖u‖ = ‖∇u‖2 (2.33)

(by virtue of the Poincaré inequality). We mention that the notation ‖ · ‖ will be also used
to denote the R

N-norm. It will always be clear from the context which norm is used. For
ζ ∈ R, let ζ± = max{±ζ, 0}. Then for u ∈ W

1,p
0 (Ω), we set u±(·) = u(·)±. We have u± ∈ H1

0(Ω),
|u| = u+ + u−, and u = u+ − u−. For a given measurable function h : Ω × R → R (e.g., a
Carathéodory function), we set

Nh(u)(·) = h(·, u(·)) ∀u ∈W1,p
0 (Ω). (2.34)

Finally, let A ∈ L(H1
0(Ω),H−1(Ω)) be the operator, defined by

〈
A(u), y

〉
=
∫

Ω

(∇u,∇y)
RNdz ∀u, y ∈ H1

0(Ω). (2.35)

For the properties of the operator A we refer to Gasiński and Papageorgiou [11, Proposition
3.1, page 852].
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3. Solutions of Constant Sign

In this section, for λ > 0 small, we generate four nontrivial smooth solutions of constant sign
(two positive and two negative). To this end, we introduce the following modifications of the
nonlinearities g(z, ·) and f(z, ·):

g±(z, ζ) = g
(
z,±ζ±), f̂±(z, ζ) = f

(
z,±ζ±) + ĉ1

(±ζ±), (3.1)

with ĉ1 > 0 as in (2.14). These modifications are Carathéodory functions. We set

G±(z, ζ) =
∫ ζ

0
g±(z, s)ds, F̂±(z, ζ) =

∫ ζ

0
f̂±(z, s)ds (3.2)

and consider the C1-functionals ϕ̂±
λ : H1

0(Ω) → R, defined by

ϕ̂±
λ(u) =

1
2
σ(u) +

ĉ1
2
‖u‖22 − λ

∫

Ω
G±(z, u(z)) −

∫

Ω
F̂±(z, u(z))dz ∀u ∈ H1

0(Ω). (3.3)

Proposition 3.1. If hypotheses Hg , Hf , and H0 hold and λ > 0, then the functionals ϕ̂±
λ
satisfy the

Cerami condition.

Proof. We do the proof for ϕ̂+
λ , the proof for ϕ̂

−
λ being similar.

So, let {un}n�1 ⊆ H1
0(Ω) be a sequence, such that

∣
∣ϕ̂+

λ(un)
∣
∣ � M1 ∀n � 1, (3.4)

for someM1 > 0 and

(1 + ‖un‖)
(
ϕ̂+
λ

)′(un) −→ 0 in H−1(Ω). (3.5)

From (3.5), we have

∣
∣
∣
∣〈A(un), h〉 +

∫

Ω

(
β + ĉ1

)
unhdz − λ

∫

Ω
g+(z, un)hdz −

∫

Ω
f̂+(z, un)hdz

∣
∣
∣
∣

� εn‖h‖
1 + ‖un‖ ∀h ∈ H1

0(Ω),
(3.6)

with εn ↘ 0. In (3.6)we choose h = −u−n ∈ H1
0(Ω). Then

∣
∣
∣σ
(
u−n
)
+ ĉ1
∥
∥u−n
∥
∥2
2

∣
∣
∣ � εn ∀n � 1, (3.7)

so

1
ĉ0

∥
∥u−n
∥
∥2 � εn ∀n � 1 (3.8)
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(see (2.14)), and hence

u−n −→ 0 in H1
0(Ω). (3.9)

From (3.4) and (3.9), we have

σ(u+n) − λ
∫

Ω
2G+(z, u+n)dz −

∫

Ω
2F(z, u+n)dz � M2 ∀n � 1, (3.10)

for someM2 > 0. Also, if in (3.6) we choose h = u+n ∈ H1
0(Ω), then

−σ(u+n) + λ
∫

Ω
g(z, u+n)u

+
ndz +

∫

Ω
f(z, u+n)u

+
n dz � εn ∀n � 1. (3.11)

Adding (3.10) and (3.11), we obtain

∫

Ω
ξλ(z, u+n) dz ≤M3 ∀n � 1, (3.12)

for someM3 > 0 (see (2.29) for the definition of ξλ).

Claim 1. The sequence {u+n}n�1 ⊆ H1
0(Ω) is bounded.

Arguing by contradiction, suppose that the claim is not true. Then by passing to a
subsequence if necessary, we may assume that

‖u+n‖ −→ +∞. (3.13)

Let

yn =
u+n
‖u+n‖

∀n � 1. (3.14)

Then

∥
∥yn
∥
∥ = 1 ∀n � 1. (3.15)

And so, passing to a subsequence if necessary, we may assume that

yn −→ y weakly in H1
0(Ω), (3.16)

yn −→ y in Lr(Ω). (3.17)

If y /= 0, then

u+n(z) −→ +∞ for almost all z ∈ Ω+ =
{
y > 0

}
(3.18)
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(recall that y � 0). So, by virtue of hypotheses Hg(ii) and Hf(ii), for almost all z ∈ Ω+, we
have

lim
n→+∞

G(z, u+n(z))

‖u+n‖2
= lim

n→+∞
G(z, u+n(z))

u+n(z)
2

yn(z)2 = 0,

lim
n→+∞

F(z, u+n(z))

‖u+n‖2
= lim

n→+∞
F(z, u+n(z))

u+n(z)
2

yn(z)2 = +∞.

(3.19)

Then Fatou’s lemma implies that

lim
n→+∞

(

λ

∫

Ω

G(z, u+n)

‖u+n‖2
dz +

∫

Ω

F(z, u+n)

‖u+n‖2
dz

)

= +∞. (3.20)

But from (3.4) and (3.9), we have

λ

∫

Ω
G(z, u+n) dz +

∫

Ω
F(z, u+n) dz � M4 + |σ(u+n)| ∀n � 1, (3.21)

for someM4 > 0, so

λ

∫

Ω

G(z, u+n)

‖u+n‖2
dz +

∫

Ω

F(z, u+n)

‖u+n‖2
dz � M5 ∀n � 1, (3.22)

for some M5 > 0 (since the sequence {σ(yn)}n�1 is bounded in R). Comparing (3.20) and
(3.22), we reach a contradiction.

So, we have y = 0. We fix μ > 0 and set

vn =
(
2μ
)1/2

yn ∀n � 1. (3.23)

Evidently

vn −→ 0 in Lr(Ω) (3.24)

(see (3.17)). Hence by Krasnoselskii’s theorem (see Gasiński and Papageorgiou [12,
Proposition 1.4.14, page 87] and hypothesesHg(i) andHf(i)), we have

∫

Ω
G(z, vn(z))dz −→ 0,

∫

Ω
F(z, vn(z))dz −→ 0. (3.25)

Since ‖u+n‖ → +∞, we can find n0 � 1, such that

0 <
(
2μ
)1/2 1

‖u+n‖
< 1 ∀n � n0. (3.26)



Abstract and Applied Analysis 11

Let tn ∈ [0, 1] be such that

ϕ̂+
λ(tnu

+
n) = max

0�t�1
ϕ̂+
λ(tu

+
n). (3.27)

By virtue of (3.26), we have

ϕ̂+
λ(tnu

+
n) � ϕ̂+

λ(vn)

= 2μσ
(
yn
) − λ

∫

Ω
G(z, vn)dz −

∫

Ω
F(z, vn)dz

= 2μ + 2μ
∫

Ω
βy2

n dz − λ
∫

Ω
G(z, vn)dz −

∫

Ω
F(z, vn)dz.

(3.28)

Note that

∫

Ω
βy2

n dz −→ 0. (3.29)

This fact together with (3.25) and (3.28) implies that

ϕ̂+
λ(tnu

+
n) � μ ∀n � n1, (3.30)

for some n1 � n0. Since μ > 0 is arbitrary, we infer that

ϕ̂+
λ(tnu

+
n) −→ +∞. (3.31)

Note that

ϕ̂+
λ(0) = 0, ϕ̂+

λ(u
+
n) � M6 ∀n � 1, (3.32)

for someM6 > 0 (see (3.4) and (3.9)).
Hence (3.31) implies that there exists n2 � n1, such that

tn ∈ (0, 1) ∀n � n2. (3.33)

And so from the choice of tn, we have

d

dt
ϕ̂+
λ(tu

+
n)
∣
∣
t=tn

= 0 ∀n � n2, (3.34)

so

〈(
ϕ̂+
λ

)′(tnun), un
〉
= 0 ∀n � n2, (3.35)
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thus

〈(
ϕ̂+
λ

)′(tnun), tnun
〉
= 0 ∀n � n2, (3.36)

and hence

σ(tnu+n) = λ
∫

Ω
g(z, tnu+n)tnu

+
n dz +

∫

Ω
f(z, tnu+n)tnu

+
n dz. (3.37)

HypothesisH0 implies that

∫

Ω
ξλ(z, tnu+n)dz �

∫

Ω
ξλ(z, u+n)dz +

∥
∥ϑ∗

λ

∥
∥
1 ∀n � 1, (3.38)

so

2ϕ̂+
λ(tnu

+
n) �

∫

Ω
ξλ(z, u+n)dz +

∥
∥ϑ∗

λ

∥
∥
1 ∀n � 1 (3.39)

(see (3.37)), and thus

2ϕ̂+
λ(tnu

+
n) � M3 +

∥
∥ϑ∗

λ

∥
∥
1 ∀n � 1 (3.40)

(see (3.12)).
Comparing (3.31) and (3.40), we reach a contradiction. This proves the claim.

By virtue of the claim and (3.9), we have that the sequence {un}n�1 ⊆ H1
0(Ω) is

bounded. So, we may assume that

un −→ u weakly in H1
0(Ω), (3.41)

un −→ u in Lr(Ω). (3.42)

In (3.6) we choose h = un − u, pass to the limit as n → +∞, and use (3.42). Then

lim
n→+∞

〈A(un), un − u〉 = 0, (3.43)

so

‖un‖ = ‖∇un‖2 −→ ‖∇u‖2 = ‖u‖ (3.44)

(see Gasiński and Papageorgiou [11, Proposition 3.1, page 852]), and thus

un −→ u in H1
0(Ω) (3.45)
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(by the Kadec-Klee property of Hilbert spaces). This proves that ϕ̂+
λ satisfies the Cerami

condition.
Similarly we show that ϕ̂−

λ
also satisfies the Cerami condition.

Our aim is to apply Theorem 2.1 (the mountain pass theorem) to two functionals ϕ̂+
λ

and ϕ̂−
λ
. We have checked that both functionals satisfy the Cerami condition. So, it remains to

show that they satisfy the mountain pass geometry as it is described in Theorem 2.1.
The next proposition is a crucial step in satisfying the mountain pass geometry for the

two functionals ϕ̂+
λ
and ϕ̂−

λ
.

Proposition 3.2. If hypotheses Hg and Hf hold, then there exist λ∗± > 0, such that for every λ ∈
(0, λ∗±), we can find �±

λ
> 0, such that

inf
{
ϕ̂±
λ(u) : ‖u‖ = �±λ

}
= η̂±λ > 0. (3.46)

Proof. HypothesesHg(i) and (ii) imply that for a given ε > 0, we can find c4 = c4(ε) > 0, such
that

g(z, ζ) � εζ + c4ζq−1 for almost all z ∈ Ω, all ζ � 0, (3.47)

so

G(z, ζ) � ε

2
ζ2 +

c4
q
ζq for almost all z ∈ Ω, all ζ � 0. (3.48)

Similarly hypotheses Hf(i) and (iii) imply that for a given ε > 0, we can find c5 = c5(ε) > 0,
such that

f(z, ζ) �
(
η0(z) + ε

)
ζ + c5ζr−1 for almost all z ∈ Ω, all ζ � 0, (3.49)

so

F(z, ζ) � 1
2
(
η0(z) + ε

)
ζ2 +

c5
r
ζr for almost all z ∈ Ω, all ζ � 0. (3.50)

Then, for u ∈ H1
0(Ω), we have

ϕ̂+
λ(u) =

1
2
σ(u) +

ĉ1
2
‖u‖22 − λ

∫

Ω
G+(z, u)dz −

∫

Ω
F̂+(z, u)dz

� 1
2
σ(u+) − 1

2

∫

Ω
η0(u+)

2dz − ε

2
‖u+‖22 −

c5
r
‖u+‖rr

− λε

2
‖u+‖22 −

λc4
q

‖u+‖qq +
1
2
σ
(
u−
)
+
ĉ1
2
∥
∥u−
∥
∥2
2

� 1
2

(

ĉ − ε(λ + 1)

λ̂1

)

‖u+‖2 + 1
2ĉ0

∥
∥u−
∥
∥2 − c6

(‖u‖r + λ‖u‖q),

(3.51)

for some c6 > 0 (see (3.48), (3.50), (2.11), (2.14), and Lemma 2.2).
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Choosing ε ∈ (0, λ̂1ĉ/(λ + 1)), we have

ϕ̂+
λ(u) � c7‖u‖2 − c6

(‖u‖r + λ‖u‖q)

=
(
c7 − c6

(
‖u‖r−2 + λ‖u‖q−2

))
‖u‖2,

(3.52)

for some c7 > 0. Let

μλ(t) = tr−2 + λtq−2 ∀t > 0. (3.53)

Since q < 2 < r, we have

lim
t→ 0+

μλ(t) = lim
r→+∞

μλ(t) = +∞. (3.54)

Also μλ is continuous in (0,+∞). Therefore, we can find t0 ∈ (0,+∞), such that

μλ(t0) = inf
t>0

μλ(t), (3.55)

so

μ′
λ(t0) = 0, (3.56)

and thus

t0 = t0(λ) =

(
λ
(
2 − q)

r − 2

)1/(r−q)
. (3.57)

Evidently

μλ(t0) −→ 0 as λ −→ 0+. (3.58)

Hence we can find λ∗+ > 0, such that

μλ(t0) <
c7
c6

∀λ ∈ (0, λ∗+), (3.59)

so

inf
{
ϕ̂+
λ(u) : ‖u‖ = �+λ = t0(λ)

}
= η̂+λ > 0 (3.60)

(see (3.52)).
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Similarly, for ϕ̂−
λ , we can find λ∗− > 0, such that for all λ ∈ (0, λ∗−) there exists �−λ > 0,

such that

inf
{
ϕ̂−
λ(u) : ‖u‖ = �−λ

}
= η̂−λ > 0. (3.61)

With the next proposition we complete the mountain pass geometry for problem
((P)λ).

Proposition 3.3. If hypothesesHg andHf hold, λ > 0 and ũ ∈ int C+ with ‖ũ‖2 = 1, then

ϕ̂±
λ(tũ) −→ −∞ as t −→ ±∞. (3.62)

Proof. By virtue of hypotheses Hg(i) and (ii), for a given ε > 0, we can find c8 = c8(ε) > 0,
such that

G(z, ζ) � −ε
2
ζ2 − c8, for almost all z ∈ Ω, all ζ ∈ R. (3.63)

Similarly, hypothesesHf(i) and (ii) imply that for any given ξ > 0, we can find c9 = c9(ξ) > 0,
such that

F(z, ζ) � ξ

2
ζ2 − c9, for almost all z ∈ Ω, all ζ ∈ R. (3.64)

Then, we have

ϕ̂+
λ(tũ) =

t2

2
σ(ũ) +

(
λε − ξ

2

)

t2 + c10

� t2

2

(
‖ũ‖2 + ∥∥β∥∥s‖ũ‖2s′ + λε − ξ

)
+ c10

(3.65)

for some c10 > 0 (see (3.63), (3.64) and recall that ũ ∈ int C+, ‖ũ‖2 = 1 and 1/s + 1/s′ = 1).
Since ξ > 0 is arbitrary, choosing

ξ > λε + ‖ũ‖2 + ∥∥β∥∥s‖ũ‖2s′ , (3.66)

from (3.65), we infer that

ϕ̂+
λ(tũ) −→ −∞ as t −→ ±∞. (3.67)

Now we are ready to produce the first two nontrivial smooth solutions of constant
sign. In what follows, we set

λ∗ = min{λ∗−, λ∗+}. (3.68)
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Proposition 3.4. If hypotheses Hg , Hf , and H0 hold and λ ∈ (0, λ∗], then problem ((P)λ) has at
least two nontrivial smooth solutions of constant sign:

u0, v0 ∈ C1
0

(
Ω
)
, with v0(z) < 0 < u0(z) ∀z ∈ Ω. (3.69)

Proof. Propositions 3.1, 3.2, and 3.3 permit the application of the mountain pass theorem (see
Theorem 2.1) for the functional ϕ̂+

λ
, and so we obtain u0 ∈ H1

0(Ω), such that

ϕ̂+
λ(0) = 0 < η̂+λ � ϕ̂+

λ(u0), (3.70)
(
ϕ̂+
λ

)′(u0) = 0. (3.71)

From (3.70), we see that u0 /= 0. From (3.71), we have

A(u0) + βu0 + ĉ1u0 = λNg+(u0) +Nf̂+
(u0). (3.72)

On (3.72)we act with −u−0 ∈ H1
0(Ω) and obtain

σ
(
u−0
)
+ ĉ1
∥
∥u−0
∥
∥2
2 = 0, (3.73)

so

1
ĉ0

∥
∥u−0
∥
∥2 � 0 (3.74)

(see (2.14)); hence u0 � 0, u0 /= 0.
Therefore (3.72) becomes

A(u0) + βu0 = λNg(u0) +Nf(u0), (3.75)

so

−Δu0(z) + β(z)u0(z) = λg(z, u0(z)) + f(z, u0(z)) in Ω,

u0|∂Ω = 0.
(3.76)

From the regularity theory for Dirichlet problems (see Struwe [13, pp. 217–219]), we have
that u0 ∈ C1

0(Ω). Moreover, invoking the weak Harnack inequality of Pucci and Serrin [14,
page 154], we have that u0(z) > 0 for all z ∈ Ω.

Similarly working with ϕ̂−
λ , this time we obtain a nontrivial smooth negative solution

v0 ∈ C1
0(Ω)with v0(z) < 0 for all z ∈ Ω.

We can improve the conclusion of this proposition by strengthening the condition on
the potential β:

Hβ : β ∈ Ls(Ω)with s > N/2 and β+ ∈ L∞(Ω)+.
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Remark 3.5. So, the potential function is bounded from above but in general can be
unbounded from below.

Proposition 3.6. If hypotheses Hg , Hf , H0, and Hβ hold and λ ∈ (0, λ∗), then problem ((P)λ) has
at least two nontrivial smooth solutions of constant sign:

u0 ∈ int C+, v0 ∈ −int C+. (3.77)

Proof. From Proposition 3.4, we already have two solutions:

u0, v0 ∈ C1
0

(
Ω
)
, with v0(z) < 0 < u0(z) ∀z ∈ Ω. (3.78)

We have

−Δu0(z) + β(z)u0(z) = λg(z, u0(z)) + f(z, u0(z))
� f(z, u0(z)) for almost all z ∈ Ω

(3.79)

(see hypothesisHg(iii)). Let � = ‖u0‖∞ and let γ̂� > 0 be as postulated by hypothesisHf(iv).
Then from (3.79), we have

−Δu0(z) +
(
β(z) + γ̂�

)
u0(z) � f(z, u0(z)) + γ̂�u0(z), for almost all z ∈ Ω, (3.80)

so

Δu0(z) �
(∥
∥β+
∥
∥
∞ + γ̂�

)
u0(z) for almost all z ∈ Ω. (3.81)

and thus u0 ∈ int C+ (see Vázquez [15] and Pucci and Serrin [14, page 120]).
Similarly for the negative solution v0.

To continue and produce additional nontrivial smooth solutions of constant sign, we
need to keep hypothesesHβ.

Proposition 3.7. If hypotheses Hg , Hf , H0 and Hβ hold and λ ∈ (0, λ∗), then problem ((P)λ) has
at least four nontrivial smooth solutions of constant sign:

u0, û ∈ int C+, û − u0 ∈ int C+,

v0, v̂ ∈ −int C+, v0 − v̂ ∈ int C+.
(3.82)

Proof. From Proposition 3.6, we already have two solutions:

u0 ∈ int C+, v0 ∈ −int C+. (3.83)
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We introduce the following truncation perturbation of the reaction of the problem ((P)λ):

h+λ(z, ζ) =

⎧
⎨

⎩

λg(z, u0(z)) + f(z, u0(z)) + ĉ1u0(z) if ζ � u0(z),

λg(z, ζ) + f(z, ζ) + ĉ1ζ if u0(z) < ζ.
(3.84)

This is a Carathéodory function. We set

H+
λ (z, ζ) =

∫ ζ

0
h+λ(z, s)ds (3.85)

and consider the C1-functional ψ+
λ
: H1

0(Ω) → R, defined by

ψ+
λ (u) =

1
2
σ(u) +

ĉ1
2
‖u‖22 −

∫

Ω
H+

λ (z, u(z))dz ∀u ∈ H1
0(Ω). (3.86)

Claim 2. We have Kψ+
λ
⊆ [u0), where

[u0) =
{
u ∈ H1

0(Ω) : u0(z) � u(z) for almost all z ∈ Ω
}
. (3.87)

Let ũ ∈ Kψ+
λ
. Then

A(ũ) +
(
β + ĉ1

)
ũ =Nh+

λ
(ũ). (3.88)

On (3.88)we act with (u0 − ũ)+ ∈ H1
0(Ω). Then

〈
A(ũ), (u0 − ũ)+

〉
+
∫

Ω

(
β + ĉ1

)
ũ(u0 − ũ)+dz

=
∫

Ω
h+λ(z, ũ)(u0 − ũ)+dz

=
∫

Ω

(
λg(z, u0) + f(z, u0) + ĉ1u0

)
(u0 − ũ)+dz

= 〈A(u0), (u0 − û)+〉 +
∫

Ω

(
β + ĉ1

)
u0(u0 − ũ)+dz

(3.89)

(see (3.84)), so

〈
A(u0 − ũ), (u0 − ũ)+

〉
+
∫

Ω
β(u0 − ũ)(u0 − ũ)+dz + ĉ1

∥
∥(u0 − ũ)+

∥
∥2
2 = 0, (3.90)

thus

σ
(
(u0 − ũ)+

)
+ ĉ1
∥
∥(u0 − ũ)+

∥
∥2
2 = 0, (3.91)
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hence

1
ĉ0

∥
∥(u0 − ũ)+

∥
∥2 � 0 (3.92)

(see (2.14)), and so finally u0 � ũ. This proves Claim 2.

Claim 3. We may assume that u0 is a local minimizer of ψ+
λ .

Let μ ∈ (λ, λ∗), and consider problem (P)μ. As we did in the proof of Proposition 3.4,
via the mountain pass theorem, we obtain a nontrivial smooth positive solution uμ, and
by virtue of the strong maximum principle, we have uμ ∈ int C+ (see the proof of
Proposition 3.7). Then

−Δuμ(z) + β(z)uμ(z) = μg
(
z, uμ(z)

)
+ f
(
z, uμ(z)

)

� λg
(
z, uμ(z)

)
+ f
(
z, uμ(z)

)
for almost all z ∈ Ω

(3.93)

(seeHg(iii) and recall that λ < μ).
We consider the following truncation perturbation of the reaction of problem ((P)λ):

γ+λ (z, ζ) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if ζ < 0,
λg(z, ζ) + f(z, ζ) + ĉ1ζ if 0 � ζ � uμ(z),
λg
(
z, uμ(z)

)
+ f
(
z, uμ(z)

)
+ ĉ1uμ(z) if uμ(z) < ζ.

(3.94)

This is a Carathéodory function. We set

Γ+λ(z, ζ) =
∫ ζ

0
γ+λ (z, s)ds (3.95)

and consider the C1-functional ψ̂+
λ
: H1

0(Ω) → R, defined by

ψ̂+
λ (u) =

1
2
σ(u) +

ĉ1
2
‖u‖22 −

∫

Ω
Γ+λ(z, u(z))dz ∀u ∈ H1

0(Ω). (3.96)

From (3.94), it is clear that ψ̂+
λ
is coercive. Also, using the Sobolev embedding theorem, we

check that ψ̂+
λ
is sequentially weakly lower semicontinuous. So, by the Weierstrass theorem,

we can find uλ ∈ H1
0(Ω), such that

ψ̂+
λ (uλ) = inf

u∈H1
0 (Ω)

ψ̂+
λ (u). (3.97)

By virtue of hypothesisHf(iii), we can find c11 > 0 and δ̂0 > 0, such that

F(z, ζ) � −c11
2
ζ2 for almost all z ∈ Ω, all |ζ| � δ̂0. (3.98)
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Let ũ ∈ int C+ and let t ∈ (0, 1) be small, such that

tũ � uμ, tũ(z) � δ̂0 ∀z ∈ Ω (3.99)

(recall that uμ ∈ int C+). Then, we have

ψ̂+
λ (tũ) =

t2

2
σ(ũ) +

t2ĉ1
2
∥
∥ũ−
∥
∥2
2 − λ

∫

Ω
G(z, tũ)dz −

∫

Ω
F(z, tũ)dz

� t2

2

(
σ(ũ) + (ĉ1 + c11)‖ũ‖22

)
− λtqc1

q
‖ũ‖qq

(3.100)

(see (3.94), hypothesis Hg(iii), and (3.98)). Since q < 2, by choosing t ∈ (0, 1) even smaller if
necessary, we have

ψ̂+
λ (tũ) < 0, (3.101)

so

ψ̂+
λ (uλ) < 0 = ψ̂+

λ (0) (3.102)

(see (3.97)); hence uλ /= 0.
From (3.97), we have

(
ψ̂+
λ

)′(uλ) = 0, (3.103)

so

A(uλ) +
(
β + ĉ1

)
uλ =Nγ+

λ
(uλ). (3.104)

Acting on (3.104) with −u−λ ∈ H1
0(Ω), we obtain that uλ � 0, uλ /= 0. Also, acting on (3.104)

with (uλ − uμ)+ ∈ H1
0(Ω), we have

〈A(uλ),
(
uλ − uμ

)+〉 +
∫

Ω

(
β + ĉ1

)
uλ
(
uλ − uμ

)+
dz

=
∫

Ω
γ+λ (z, uλ)

(
uλ − uμ

)+
dz

=
∫

Ω

(
λg
(
z, uμ

)
+ f
(
z, uμ

)
+ ĉ1uμ

)(
uλ − uμ

)+
dz

�
〈
A
(
uμ
)
,
(
uλ − uμ

)+
〉
+
∫

Ω

(
β + ĉ1

)
uμ
(
uλ − uμ

)+
dz

(3.105)

(see (3.94) and (3.93)), so

〈A(uλ − uμ
)
,
(
uλ − uμ

)+〉 +
∫

Ω

(
β + ĉ1

)(
uλ − uμ

)
(uλ − uμ)+dz � 0, (3.106)
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thus

σ
((
uλ − uμ

)+
)
+ ĉ1
∥
∥
∥
(
uλ − uμ

)+
∥
∥
∥
2

2
� 0, (3.107)

hence

1
ĉ0

∥
∥
∥
(
uλ − uμ

)+
∥
∥
∥
2

� 0 (3.108)

(see (2.14)) and so finally

uλ � uμ. (3.109)

So, we have proved that

uλ ∈
[
0, uμ

]
=
{
u ∈ H1

0(Ω) : 0 � u(z) � uμ(z) for almost all z ∈ Ω
}
. (3.110)

Hence (3.104) becomes

A(uλ) + βuλ = λNg(uλ) +Nf(uλ) (3.111)

(see (3.94)), so

−Δuλ(z) + β(z)uλ(z) = λg(z, uλ(z)) + f(z, uλ(z)) in Ω,

uλ|∂Ω = 0,
(3.112)

thus uλ ∈ int C+ (as in the proof of Proposition 3.6) and it is a solution of ((P)λ).
If uλ /=u0, then this is the desired second nontrivial positive smooth solution of ((P)λ).
So, we may assume that uλ = u0 and that there is no other solution of ((P)λ) in the

order interval

[u0, uλ] =
{
u ∈ H1

0(Ω) : u0(z) � u(z) � uμ(z) for almost all z ∈ Ω
}
. (3.113)

We introduce the following truncation of γ+λ (z, ·):

γ̃+λ (z, ζ) =

⎧
⎨

⎩

γ+
λ (z, u0(z)) if ζ < u0(z),

γ+
λ (z, ζ) if u0(z) � ζ.

(3.114)

This is a Carathéodory function. We set

Γ̃+λ(z, ζ) =
∫ ζ

0
γ̃+λ (z, s)ds (3.115)
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and consider the C1-functional ψ̃+
λ : H1

0(Ω) → R, defined by

ψ̃+
λ (u) =

1
2
σ(u) +

ĉ1
2
‖u‖22 −

∫

Ω
Γ̃+λ(z, u(z))dz ∀u ∈ H1

0(Ω). (3.116)

From (3.94) and (3.114), it follows that ψ̃+
λ
is coercive. Also, it is sequentially weakly lower

semicontinuous. Hence, we can find ũλ ∈ H1
0(Ω), such that

ψ̃+
λ (ũλ) = inf

u∈H1
0 (Ω)

ψ̃+
λ (u), (3.117)

so

(
ψ̃+
λ

)′(ũλ) = 0, (3.118)

and thus

A(ũλ) +
(
β + ĉ1

)
ũλ =Nγ̃+

λ
(ũλ). (3.119)

As before, acting on (3.119) with (u0 − ũλ)+ ∈ H1
0(Ω) and with (ũλ − uμ)+ ∈ H1

0(Ω), we show
that ũλ ∈ [u0, uμ]. Then, from (3.94) and (3.114), it follows that

A(ũλ) + βũλ = λNg(ũλ) +Nf(ũλ), (3.120)

so ũλ ∈ int C+ is a solution of ((P)λ) in [u0, uμ], hence ũλ = u0.
Let � = ‖u0‖∞ and let γ� > 0 and γ̂� > 0 be as postulated by hypotheses Hg(iv) and

Hf(iv), respectively. We have

−Δu0(z) +
(
β(z) + γ̂�

)
u0(z) + λγ�u0(z)q−1

= λg(z, u0(z)) + λγ�u0(z)q−1 + f(z, u0(z)) + γ̂�u0(z)

� λg
(
z, uμ(z)

)
+ λγ�uμ(z)q−1 + f

(
z, uμ(z)

)
+ γ̂�uμ(z)

� μg
(
z, uμ(z)

)
+ μγ�uμ(z)q−1 + f

(
z, uμ(z)

)
+ γ̂�uμ(z)

= −Δuμ(z) +
(
β(z) + γ̂�

)
uμ(z) + μγ�uμ(z)q−1 for almost all z ∈ Ω

(3.121)

(see Hg(iv) and (iii), Hf(iv) and recall that u0 � uμ and λ < μ), so there exists c12 > 0, such
that

Δ
(
uμ − u0

)
(z) �

(∥
∥β+
∥
∥
∞ + γ̂�

)(
uμ − u0

)
(z) + μγ�c12

(
uμ − u0

)
(z), (3.122)

for almost all z ∈ Ω (recall that the function ζ �→ ζq−1 is locally Lipschitz); thus

uμ − u0 ∈ int C+ (3.123)
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(see Struwe [13] and Pucci and Serrin [14, page 120]). So, we have that

uλ = u0 ∈ int
C1

0(Ω)

[
0, uμ

]
. (3.124)

Note that

ψ̃+
λ |[0,uμ] = ψ+

λ |[0,uμ] (3.125)

(see (3.94) and (3.114)), so

u0 is alocal C1
0

(
Ω
)
-minimizer of ψ+

λ (3.126)

(see (3.124)), and thus

u0 is alocal H1
0(Ω)-minimizer of ψ+

λ (3.127)

(Brézis and Nirenberg [16]). This proves Claim 3.

By virtue of Claim 3, as in Gasiński and Papageorgiou [17, proof of Theorem 3.4], we
can find �λ ∈ (0, 1) small, such that

ψ+
λ (u0) < inf

{
ψ+
λ (u) : ‖u − u0‖ = �λ

}
= η+λ . (3.128)

As in Proposition 3.4, for ũ ∈ int C+ with ‖ũ‖2 = 1, we have

ψ+
λ (tũ) −→ −∞ as t −→ +∞. (3.129)

Note that ϕ̂+
λ
= ψ+

λ
− ξ+

λ
with ξ+

λ
∈ R. Hence by virtue of Proposition 3.1, ψ+

λ
satisfies the Cerami

condition. This fact together with (3.128) and (3.129) permits the use of the mountain pass
theorem (see Theorem 2.1). So, we can find û ∈ H1

0(Ω), such that

ψ+
λ (u0) < η

+
λ � ψ+

λ (û), (3.130)
(
ψ+
λ

)′(û) = 0. (3.131)

From (3.130)we have û /=u0. From (3.131) and Claim 2, we have that

u0 � û. (3.132)

Hence

A(û) + βû = λNg(û) +Nf(û) (3.133)

(see (3.84)), and so û ∈ int C+ solves problem ((P)λ).
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Moreover, as before, using the strong maximum principle (see Vázquez [15] and Pucci
and Serrin [14, page 120]), we have

û − u0 ∈ int C+. (3.134)

In a similar way, using v0 ∈ −int C+, we define

h−λ(z, ζ) =

{
λg(z, ζ) + f(z, ζ) + ĉ1ζ if ζ < v0(z),
λg(z, v0(z)) + f(z, v0(z)) + ĉ1v0(z) if v0(z) � ζ.

(3.135)

This is a Carathéodory function. We set

H−
λ (z, ζ) =

∫ ζ

0
h−λ(z, s)ds (3.136)

and consider the C1-functional ψ−
λ : H1

0(Ω) → R, defined by

ψ−
λ (u) =

1
2
σ(u) +

ĉ1
2
‖u‖22 −

∫

Ω
H−

λ (z, u(z))dz ∀u ∈ H1
0(Ω). (3.137)

Reasoning as above, using this time ψ−
λ , we obtain a second negative smooth solution v̂ ∈

−int C+ of problem ((P)λ), such that

v0 − v̂ ∈ int C+. (3.138)

4. Five Solutions

In this section, we prove two multiplicity theorems, establishing five nontrivial smooth
solutions when λ ∈ (0, λ∗). In the second multiplicity theorem, we provide sign information
for all the solutions (i.e., we show that the fifth solution is actually nodal).

Theorem 4.1. If hypotheses Hg, Hf ,H0, and Hβ hold and λ ∈ (0, λ∗), then problem ((P)λ) has at
least five nontrivial smooth solutions:

u0, û ∈ int C+, û − u0 ∈ int C+, v0, v̂ ∈ −int C+, v0 − v̂ ∈ int C+

y0 ∈ C1
0

(
Ω
)
, u0 − y0 ∈ int C+, y0 − v0 ∈ int C+.

(4.1)

Proof. From Proposition 3.7, we already have four nontrivial smooth solutions of constant
sign:

u0, û ∈ int C+, û − u0 ∈ int C+, v0, v̂ ∈ −int C+, v0 − v̂ ∈ int C+. (4.2)
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We consider the following truncation perturbation of the reaction of problem ((P)λ):

h∗λ(z, ζ) =

⎧
⎪⎪⎨

⎪⎪⎩

λg(z, v0(z)) + f(z, v0(z)) + ĉ1v0(z) if ζ < v0(z),
λg(z, ζ) + f(z, ζ) if v0(z) � ζ � u0(z),
λg(z, u0(z)) + f(z, u0(z)) + ĉ1u0(z) if u0(z) < ζ.

(4.3)

This is a Carathéodory function. We set

H∗
λ(z, ζ) =

∫ ζ

0
h∗λ(z, s)ds (4.4)

and consider the C1-functional ψ∗
λ
: H1

0(Ω) → R, defined by

ψ∗
λ(u) =

1
2
σ(u) +

ĉ1
2
‖u‖22 −

∫

Ω
H∗

λ(z, u(z))dz ∀u ∈ H1
0(Ω). (4.5)

From (4.3), it follows that ψ∗
λ is coercive. Also, it is sequentially weakly lower semicontinuous.

So, we can find y0 ∈ H1
0(Ω), such that

ψ∗
λ

(
y0
)
= inf

u∈H1
0 (Ω)

ψ∗
λ(u). (4.6)

As in the proof of Proposition 3.7, using (3.98), we show that

ψ∗
λ

(
y0
)
< 0 = ψ∗

λ(0), (4.7)

hence y0 /= 0. From (4.6), we have

(
ψ∗
λ

)′(
y0
)
= 0, (4.8)

so

A
(
y0
)
+
(
β + ĉ1

)
y0 =Nh∗

λ

(
y0
)
. (4.9)

On (4.9) we act with (y0 − u0)+ ∈ H1
0(Ω). Then

〈
A
(
y0
)
,
(
y0 − u0

)+
〉
+
∫

Ω

(
β + ĉ1

)
y0
(
y0 − u0

)+
dz

=
∫

Ω

(
λg(z, u0) + f(z, u0) + ĉ1u0

)(
y0 − u0

)+
dz

=
〈
A(u0),

(
y0 − u0

)+
〉
+
∫

Ω

(
β + ĉ

)
u0
(
y0 − u0

)+
dz

(4.10)
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(see (4.3)), so

〈
A
(
y0 − u0

)
,
(
y0 − u0

)+
〉
+
∫

Ω

(
β + ĉ1

)(
y0 − u0

)(
y0 − u0

)+
dz = 0, (4.11)

thus

σ
((
y0 − u0

)+
)
+ ĉ1
∥
∥
∥
(
y0 − u0

)+
∥
∥
∥
2

2
= 0, (4.12)

and hence

1
ĉ0

∥
∥
∥
(
y0 − u0

)+
∥
∥
∥
2

� 0 (4.13)

(see (2.14)); hence y0 � u0.
Similarly, acting on (4.9)with (v0 − y0)+ ∈ H1

0(Ω), we show that v0 � y0. Therefore,

y0 ∈ [v0, u0] =
{
u ∈ H1

0(Ω) : v0(z) � u(z) � u0(z) for almost all z ∈ Ω
}
, (4.14)

and so (4.9) becomes

A
(
y0
)
+ βy0 = λNg

(
y0
)
+Nf

(
y0
)

(4.15)

(see (4.3)); thus

y0 ∈ C1
0

(
Ω
)

(4.16)

(regularity theory; see Struwe [13]), and it solves problem ((P)λ).
Moreover, as in the proof of Proposition 3.7, using hypothesesHg(iv) andHf(iv), we

also show that

u0 − y0 ∈ int C+, y0 − v0 ∈ int C+. (4.17)

Next we will improve the conclusion of Theorem 4.1 and show that the fifth solution
y0 is nodal (sign changing). To do this we need to strengthen a little bit the hypotheses on
f(z, ·).

The new hypotheses of f are the following:

H ′
f
: f : Ω × R → R is a Carathéodory function, such that f(z, 0) = 0 for almost all

z ∈ Ω,

(i), (iii), (iv) are the same as the corresponding hypothesesHf(i), (iii), (iv),
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(ii)we have

lim
ζ→±∞

f(z, ζ)
ζ

= +∞ uniformly for almost all z ∈ Ω. (4.18)

Remark 4.2. HypothesisH ′
f
is a slight restricted version of hypothesisHf . Note that if

ξ̂(z, ζ) = f(z, ζ)ζ − 2F(z, ζ) (4.19)

and there exists a function ϑ̂∗ ∈ L1(Ω)+, such that

ξ̂(z, ζ) � ξ̂
(
z, y
)
+ ϑ̂∗(z) for almost all z ∈ Ω, all 0 � ζ � y or y � ζ � 0, (4.20)

then (4.20) andHf (ii) implyH ′
f
(ii) (see Li and Yang [10]). Also, note that hypothesesHf(i),

(ii), and (iii) imply that there exists c∗ > 0, such that

f(z, ζ)ζ + c∗ζ2 � 0 for almost all z ∈ Ω, all ζ ∈ R. (4.21)

We consider the following auxiliary Dirichlet problem:

−Δu(z) + β(z)u(z) = λc1|u(z)|q−2u(z) − c∗u(z) in Ω,

u|∂Ω = 0.
((Q)λ)

Here c1 > 0 and q ∈ (1, 2) are as in hypothesisHg(iii) and c∗ > 0 is as in (4.21).

Proposition 4.3. For every λ > 0, problem ((Q)λ) has a unique nontrivial positive solution uλ ∈
int C+, and by oddness, we have that −uλ = vλ ∈ −int C+ is the unique negative solution of ((Q)λ).

Proof. Let k+
λ
: Ω × R → R be the Carathéodory function, defined by

k+λ(z, ζ) =

{
0 if ζ � 0,
λc1ζ

q−1 − (ĉ1 − c∗)ζ if ζ > 0.
(4.22)

Clearly, we can always assume that c∗ � ĉ1 (see (4.21)). Let

K+
λ(z, ζ) =

∫ ζ

0
k+λ(z, s)ds, (4.23)

and consider the C1-functional θ+λ : H1
0(Ω) → R, defined by

θ+λ(u) =
1
2
σ(u) +

ĉ1
2
‖u‖22 −

∫

Ω
K+
λ(z, u(z))dz ∀u ∈ H1

0(Ω). (4.24)
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Using (2.14) and (4.22), we have

θ+λ(u) � 1
2ĉ0

‖u‖2 + c∗ − ĉ1
2

‖u+‖22 −
λc1
q

‖u+‖qq. (4.25)

Since q < 2, from (4.25), we infer that θ+
λ
is coercive. Also, it is sequentially weakly lower

semicontinuous (recall that c∗ � ĉ1). So, by the Weierstrass theorem, we can find uλ ∈ H1
0(Ω),

such that

θ+λ
(
uλ
)
= inf

u∈H1
0 (Ω)

θ+λ(u). (4.26)

As before (see the proof of Proposition 3.7), since q < 2, we have

θ+λ
(
uλ
)
< 0 = θ+λ(0), (4.27)

hence uλ /= 0. From (4.26), we have

(
θ+λ
)′(
uλ
)
= 0, (4.28)

so

A
(
uλ
)
+
(
β + ĉ1

)
uλ =Nk+

λ

(
uλ
)
. (4.29)

Acting on (4.29) with −u−λ ∈ H1
0(Ω), we show that uλ � 0, uλ /= 0 (see (2.14)). Then (4.29)

becomes

A
(
uλ
)
+
(
β + c∗

)
uλ = λc1u

q−1
λ
, (4.30)

so

−Δuλ(z) +
(
β(z) + c∗

)
uλ(z) � 0 for almost all z ∈ Ω, (4.31)

thus

Δuλ(z) �
(∥
∥β+
∥
∥
∞ + c∗

)
uλ(z) for almost all z ∈ Ω (4.32)

(see hypothesisHβ), and hence

uλ ∈ int C+ (4.33)

(see Vázquez [15] and Pucci and Serrin [14, page 120]).
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We claim that this solution is the unique nontrivial positive solution of ((Q)λ). To this
end, let u, v ∈ int C+ be two positive solutions of ((Q)λ). We have

∫

Ω

λc1u
q−1 − c∗u
u

(
u2 − v2

)
dz

=
∫

Ω

(
λc1u

q−1 − c∗u
)
(

u − v2

u

)

dz

=
∫

Ω
(−Δu)

(

u − v2

u

)

dz +
∫

Ω
β
(
u2 − v2

)
dz

=
∫

Ω

(

∇u,∇u − ∇
(
v2

u

))

RN

dz +
∫

Ω
β
(
u2 − v2

)
dz

= ‖∇u‖22 −
∫

Ω

(

∇u, 2v
u
∇v − v2

u2
∇u
)

RN

dz +
∫

Ω
β
(
u2 − v2

)
dz

= ‖∇u‖22 −
∫

Ω

2v
u
(∇u,∇v)

RNdz

+
∫

Ω

v2

u2
‖∇u‖2 dz +

∫

Ω
β
(
u2 − v2

)
dz.

(4.34)

Interchanging the roles of u and v in the above argument, we also have

∫

Ω

λc1v
q−1 − c∗v
v

(
v2 − u2

)
dz

= ‖∇v‖22 −
∫

Ω

2u
v
(∇v,∇u)

RNdz +
∫

Ω

u2

v2 ‖∇v‖
2dz +

∫

Ω
β
(
v2 − u2

)
dz.

(4.35)

Adding (4.34) and (4.35), we obtain

∫

Ω

(
λc1u

q−1 − c∗u
u

− λc1v
q−1 − c∗v
v

)
(
u2 − v2

)
dz =

∥
∥
∥∇u − u

v
∇v
∥
∥
∥
2

2
+
∥
∥
∥
∥∇v − v

u
∇u
∥
∥
∥
∥

2

2
� 0.

(4.36)

Since q < 2, the function ζ �→ (λc1ζq−1 − c∗ζ)/ζ is strictly decreasing on (0,+∞). Hence, from
(4.36), we infer that u = v. This proves the uniqueness of the nontrivial positive solution
uλ ∈ int C+ of problem ((Q)λ).

The oddness of problem ((Q)λ) implies that vλ = −uλ ∈ − int C+ is the unique
nontrivial negative solution of ((Q)λ).

Using Proposition 4.3, we can show that problem ((P)λ) (for λ ∈ (0, λ∗)) has extremal
constant sign solutions; that is, it has a smallest nontrivial positive solution and a biggest
nontrivial negative solution.
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Proposition 4.4. If hypotheses Hg , H ′
f , H0, and Hβ hold and λ ∈ (0, λ∗), then problem ((P)λ) has

a smallest nontrivial positive solution uλ+ ∈ int C+ and a biggest nontrivial negative solution vλ− ∈
int −C+.

Proof. Let u be a nontrivial positive solution of ((P)λ). From the proof of Proposition 3.6, we
know that u ∈ int C+. We have

−Δu(z) + β(z)u(z) = λg(z, u(z)) + f(z, u(z)) � λc1u(z)q−1 − c∗u(z), (4.37)

for almost all z ∈ Ω (see hypothesisHg(iii) and (4.21)).
We consider the following Carathéodory function:

k̂+λ(z, ζ) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if ζ � 0,
λc1ζ

q−1 + (ĉ1 − c∗)ζ if 0 � ζ � u,

λc1u(z)q−1 + (ĉ1 − c∗)u(z) if u < ζ.

(4.38)

Let

K̂+
λ(z, ζ) =

∫ ζ

0
k̂+λ(z, s)ds, (4.39)

and consider the C1-functional ξ+
λ
: H1

0(Ω) → R, defined by

ξ+λ(u) =
1
2
σ(u) +

ĉ1
2
‖u‖22 −

∫

Ω
K̂+
λ(z, u(z))dz ∀u ∈ H1

0(Ω). (4.40)

From (4.38) and (2.14), it is clear that ξ+
λ
is coercive. Also ξ+

λ
is sequentially weakly lower

semicontinuous. Thus we can find w0 ∈ H1
0(Ω), such that

ξ+λ(w0) = inf
u∈H1

0 (Ω)
ξ+λ(u). (4.41)

As before, the presence of the “concave” term λc1ζ
q−1 implies that

ξ+λ(w0) < 0 = ξ+λ(0), (4.42)

that is, w0 /= 0. From (4.41), we have

(
ξ+λ
)′(w0) = 0, (4.43)

so

A(w0) +
(
β + ĉ1

)
w0 =Nk̂+

λ
(w0). (4.44)
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On (4.44)we act with −w−
0 ∈ H1

0(Ω) and obtain

σ
(
w−

0

)
+ ĉ1
∥
∥w−

0

∥
∥2
2 = 0 (4.45)

(see (4.38)), so

1
ĉ0

∥
∥w−

0

∥
∥2 � 0 (4.46)

(see (2.14)), and hence w0 � 0, w0 /= 0.
Also, on (4.44)we act with (w0 − u)+ ∈ H1

0(Ω). Then

〈A(w0), (w0 − u)+〉 +
∫

Ω

(
β + ĉ1

)
w0(w0 − u)+dz

=
∫

Ω
k̂+λ(z,w0)(w0 − u)+dz

=
∫

Ω

(
λc1u

q−1 − c∗u
)
(w0 − u)+dz

� 〈A(u), (w0 − u)+〉 +
∫

Ω
β
(
(w0 − u)+

)
dz + ĉ1

∥
∥(w0 − u)+

∥
∥2
2

(4.47)

(see (4.38) and (4.37)), so

σ
(
(w0 − u)+

)
+ ĉ1
∥
∥(w0 − u)+

∥
∥2
2 � 0, (4.48)

thus

1
ĉ0

∥
∥(w0 − u)+

∥
∥2 � 0 (4.49)

(see (2.14)), and hence

w0 � u. (4.50)

So, we have proved that

w0 ∈ [0, u] =
{
u ∈ H1

0(Ω) : 0 � u(z) � u(z) for almost all z ∈ Ω
}
. (4.51)

This means that (4.44) becomes

A(w0) + βw0 = λc1w
q−1
0 − c∗w0, (4.52)
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so w0 ∈ int C+ (regularity theory of Struwe [13] and strong maximum principle due to
Vázquez [15] and Pucci Serrin [14, page 120]) and it solves problem ((Q)λ). Thus

w0 = uλ (4.53)

(see Proposition 4.3), and

uλ � u. (4.54)

This shows that every nontrivial positive solution u of ((P)λ) satisfies

uλ � u. (4.55)

Similarly, we show that every nontrivial negative solution v of problem ((P)λ) satisfies

v � vλ = −uλ. (4.56)

Let S+(λ) (resp., S−(λ)) be the set of nontrivial positive (resp., negative) solutions
of problem ((P)λ). Let C ⊆ S+(λ) be a chain (i.e., a totally ordered subset of S+(λ)). From
Dunford and Schwartz [18, page 336], we can find a sequence {un}n�1 ⊆ C, such that

infC = inf
n�1

un. (4.57)

Lemma 1.5 of Heikkilä and Lakshmikantham [19, page 15] implies that we can have the
sequence {un}n�1 ⊆ C to be decreasing. Then we have

A(un) + βun = λNg(un) +Nf(un), uλ � un � u1 ∀n � 1, (4.58)

so

the sequnece {un}n�1 ⊆ H1
0(Ω) is bounded. (4.59)

Hence by passing to a suitable subsequence if necessary, we may assume that

un −→ u∗ weakly in H1
0(Ω), (4.60)

un −→ u∗ in L2s′(Ω) and in Lr(Ω). (4.61)

So, passing to the limit as n → +∞ in (4.58) and using (4.61), we obtain

A(u∗) + βu∗ = λNg(u∗) +Nf(u∗), uλ � u∗, (4.62)
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so

infC = u∗ ∈ S+(λ). (4.63)

SinceCwas an arbitrary chain, invoking the Kuratowski-Zorn lemma, we infer that S+(λ) has
a minimal element uλ+ ∈ int C+. FromGasiński and Papageorgiou [17, Lemma 4.2, page 5763],
we know that S+(λ) is downward directed (i.e., if u1, u2 ∈ S+(λ); then we can find u ∈ S+(λ),
such that u � u1 and u � u2). So, it follows that uλ+ is the smallest nontrivial positive solution
of problem ((P)λ).

Similarly, we introduce the biggest nontrivial negative solution vλ− ∈ − int C+ of
problem ((P)λ). Note that S−(λ) is upward directed (i.e., if v1, v2 ∈ S−(λ), then we can find
v ∈ S−(λ), such that v1 � v and v2 � v; see Gasiński and Papageorgiou [17, Lemma 4.3, page
5764]).

Now that we have these extremal constant sign solutions, we can produce a nodal
solution of problem ((P)λ) (with λ ∈ (0, λ∗)).

Theorem 4.5. If hypotheses Hg , H ′
f , H0, and Hβ hold and λ ∈ (0, λ∗), then problem ((P)λ) has at

least five nontrivial smooth solutions:

u0, û ∈ int C+, û − u0 ∈ int C+, v0, v̂ ∈ −int C+, v0 − v̂ ∈ int C+

y0 ∈ C1
0

(
Ω
)
nodal with u0 − y0 ∈ int C+, y0 − v0 ∈ int C+.

(4.64)

Moreover, problem ((P)λ) has a smallest nontrivial positive solution and a biggest negative solution.

Proof. The existence of extremal nontrivial constant sing solutions is guaranteed by
Proposition 4.4. Let uλ+ ∈ int C+ and vλ− ∈ −int C+ be these two extremal solutions.

We introduce the following truncation perturbation of the reaction of problem ((P)λ):

γλ(z, ζ) =

⎧
⎪⎪⎨

⎪⎪⎩

λg
(
z, vλ−(z)

)
+ f
(
z, vλ−(z)

)
+ ĉ1vλ−(z) if ζ < vλ−(z),

λg(z, ζ) + f(z, ζ) + ĉ1ζ if vλ−(z) � ζ � uλ+(z),
λg
(
z, uλ+(z)

)
+ f
(
z, uλ+(z)

)
+ ĉ1uλ+(z) if uλ+(z) < ζ.

(4.65)

This is a Carathéodory function. We set

Γλ(z, ζ) =
∫ ζ

0
γλ(z, s)ds (4.66)

and consider the C1-functional χλ : H1
0(Ω) → R, defined by

χλ(u) =
1
2
σ(u) +

ĉ1
2
‖u‖22 −

∫

Ω
Γλ(z, u(z))dz ∀u ∈ H1

0(Ω). (4.67)
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Also, we introduce

γ±λ (z, ζ) = γλ
(
z,±ζ±), Γ±λ(z, ζ) =

∫ ζ

0
γ±λ (z, s)ds (4.68)

and consider the C1-functionals χ±
λ : H1

0(Ω) → R, defined by

χ±
λ(u) =

1
2
σ(u) +

ĉ1
2
‖u‖22 −

∫

Ω
Γ±λ(z, u(z))dz ∀u ∈ H1

0(Ω). (4.69)

As in the proof of Theorem 4.1, we show that

Kχλ ⊆
[
vλ−, u

λ
+

]
, Kχ+

λ
⊆
[
0, uλ+

]
, Kχ−

λ
⊆
[
vλ−, 0
]

(4.70)

(see (4.65)). The extremality of the solutions vλ− and uλ+ implies that

Kχλ ⊆
[
vλ−, u

λ
+

]
, Kχ+

λ
=
{
0, uλ+

}
, Kχ−

λ
=
{
vλ−, 0
}
. (4.71)

Claim 4. Solutions uλ+ and vλ− are both local minimizers of χλ.
Evidently χ+

λ
is coercive (see (4.65)) and sequentially weakly lower semicontinuous.

So, we can find u+ ∈ H1
0(Ω), such that

χ+
λ(u+) = inf

u∈H1
0 (Ω)

χ+
λ(u). (4.72)

As before (see the proof of Proposition 3.7), the presence of the “concave” term implies that

χ+
λ(u+) < 0 = χ+

λ(0), (4.73)

hence u+ /= 0, and so u+ = uλ+ (see (4.71)). Since

χλ
∣
∣
C+

= χ+
λ

∣
∣
C+
, (4.74)

it follows that u+ = uλ+ ∈ int C+ is local C1
0(Ω)-minimizers of χλ; hence by Brézis and

Nirenberg [16], it is also localH1
0(Ω)-minimizers of χλ.

Similarly this is for vλ− using this time the functional χ−
λ . This proves the claim.

Without any loss of generality, we may assume that

χλ
(
vλ−
)

� χλ
(
uλ+

)
. (4.75)
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The analysis is similar, if the opposite inequality holds. Because of the claim, we can find
� ∈ (0, 1) small, such that

χλ
(
vλ−
)

� χλ
(
uλ+

)
< inf

{
χλ(u) :

∥
∥
∥u − uλ+

∥
∥
∥ = �

}
= ηλ (4.76)

(see Gasiński and Papageorgiou [17, proof of Theorem 3.4]).
Since χλ is coercive (see (4.65)), it satisfies the Cerami condition. This fact and (4.76)

permit the use of the mountain pass theorem (see Theorem 2.1). So, we can find y0 ∈ Kχλ ⊆
[vλ−, uλ+] (see (4.71)), such that

ηλ � χλ
(
y0
)
, (4.77)

so

y0 /∈
{
vλ−, u

λ
+

}
(4.78)

(see (4.76)).
Since y0 is a critical point of χλ of mountain pass type, we have

C1
(
χλ, y0

)
/= 0 (4.79)

(see e.g., Chang [20]). On the other hand, hypothesisHf(iii) implies that we can find ξ̂1 > 0,
such that

f(z, ζ)ζ − μF(z, ζ) � ξ̂1ζ
2 for almost all z ∈ Ω, all |ζ| � δ1, (4.80)

for some δ1 � δ0. This combined with hypothesisHg(iii) implies that

μλG(z, ζ) + μF(z, ζ) � λg(z, ζ)ζ + f(z, ζ)ζ

> 0 for almost all z ∈ Ω, all |ζ| � δ2,
(4.81)

for some δ2 � δ1 and

ess sup
Ω

λG(·, δ2) + F(·, δ2) > 0. (4.82)

Hence invoking Proposition 2.1 of Jiu and Su [21], we infer that

Ck

(
χλ, 0

)
= 0 ∀k � 0. (4.83)

Combining (4.79) and (4.83), we have that y0 /= 0. Since y0 ∈ [vλ−, uλ+], the extremality of vλ−
and uλ+ implies that y0 must be a nodal solution of problem ((P)λ), and the regularity theory
(see Struwe [13]) implies that y0 ∈ C1

0(Ω).



36 Abstract and Applied Analysis

Acknowledgments

This research has been partially supported by the Ministry of Science and Higher Education
of Poland under Grants no. N201 542438 and N201 604640.

References

[1] A. Ambrosetti, H. Brezis, and G. Cerami, “Combined effects of concave and convex nonlinearities in
some elliptic problems,” Journal of Functional Analysis, vol. 122, no. 2, pp. 519–543, 1994.

[2] Y. I’lyasov, “On nonlocal existence results for elliptic equations with convex-concave nonlinearities,”
Nonlinear Analysis: Theory, Methods & Applications A, vol. 61, no. 1-2, pp. 211–236, 2005.

[3] S. Li, S.Wu, andH.-S. Zhou, “Solutions to semilinear elliptic problemswith combined nonlinearities,”
Journal of Differential Equations, vol. 185, no. 1, pp. 200–224, 2002.

[4] V. F. Lubyshev, “Multiple solutions of an even-order nonlinear problem with convex-concave
nonlinearity,” Nonlinear Analysis: Theory, Methods & Applications A, vol. 74, no. 4, pp. 1345–1354, 2011.
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[11] L. Gasiński and N. S. Papageorgiou, “Existence and multiplicity of solutions for Neumann p-
Laplacian-type equations,” Advanced Nonlinear Studies, vol. 8, no. 4, pp. 843–870, 2008.
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