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The generalized Riccati equation mapping is extended with the basic (G′/G)-expansion method
which is powerful and straightforward mathematical tool for solving nonlinear partial differential
equations. In this paper, we construct twenty-seven traveling wave solutions for the (2+1)-dimen-
sional modified Zakharov-Kuznetsov equation by applying this method. Further, the auxiliary
equation G′(η) = w+uG(η)+vG2(η) is executed with arbitrary constant coefficients and called the
generalized Riccati equation. The obtained solutions including solitons and periodic solutions are
illustrated through the hyperbolic functions, the trigonometric functions, and the rational func-
tions. In addition, it is worth declaring that one of our solutions is identical for special case with
already established result which verifies our other solutions. Moreover, some of obtained solutions
are depicted in the figures with the aid of Maple.

1. Introduction

The study of analytical solutions for nonlinear partial differential equations (PDEs) has
become more imperative and stimulating research fields in mathematical physics, engineer-
ing sciences, and other technical arena [1–47]. In the recent past, a wide range of methods
have been developed to construct traveling wave solutions of nonlinear PDEs such as, the
inverse scattering method [1], the Backlund transformation method [2], the Hirota bilinear
transformation method [3], the bifurcation method [4, 5], the Jacobi elliptic function expan-
sion method [6–8], the Weierstrass elliptic function method [9], the direct algebraic method
[10], the homotopy perturbation method [11, 12], the Exp-function method [13–17], and
others [18–28].

Recently, Wang et al. [29] presented a widely used method, called the (G′/G)-expan-
sion method to obtain traveling wave solutions for some nonlinear evolution equations
(NLEEs). Further, in this method, the second-order linear ordinary differential equation
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G′′(η) + λG′(η) + μG(η) = 0 is implemented, as an auxiliary equation, where λ and μ are
constant coefficients. Afterwards, many researchers investigated many nonlinear PDEs to
construct traveling wave solutions via this powerful (G′/G)-expansionmethod. For example,
Feng et al. [30] applied the same method for obtaining exact solutions of the Kolmogorov-
Petrovskii-Piskunov equation. In [31], Naher et al. concerned about this method to construct
traveling wave solutions for the higher-order Caudrey-Dodd-Gibbon equation. Zayed and
Al-Joudi [32] studied some nonlinear partial differential equations to obtain analytical
solutions by using the same method whereas Gepreel [33] executed this method and
found exact solutions of nonlinear PDEs with variable coefficients in mathematical physics.
Abazari and Abazari [34] constructed exact solutions for the Hirota-Ramani equation by
using this method. Ozis and Aslan [35] established some traveling wave solutions for
the Kawahara type equations via the same method. Naher et al. [36] investigated higher
dimensional nonlinear evolution equation for obtaining travelingwave solutions by applying
the improved (G′/G)-expansionmethod. Naher andAbdullah [37] implemented thismethod
to construct some new traveling wave solutions of the nonlinear reaction diffusion equation
whilst they [38] studied the combined KdV-MKdV equation for obtaining abundant solutions
via the same method. And [39] they executed this method to establish some new traveling
wave solutions of the (2+1)-dimensional modified Zakharov-Kuznetsov equation and so on.

Zhu [40] investigated the (2 + 1)-dimensional Boiti-Leon-Pempinelle equation by
applying the generalized Riccati equation mapping with the extended tanh-function method.
In addition, G′(η) = w + uG(η) + vG2(η) is used, as an auxiliary equation and called genera-
lized Riccati equation, where u, v, and w are arbitrary constants. Bekir and Cevikel [41] con-
cerned about the tanh-coth method combined with the Riccati equation to study nonlinear
coupled equation in mathematical physics. Guo et al. [42] implemented the extended Riccati
equation mapping method for solving the diffusion-reaction and the mKdV equation with
variable coefficient whilst Li et al. [43] studied higher-dimensional Jimbo-Miwa equation via
the generalized Riccati equation expansion method. Salas [44] obtained some exact solutions
for the Caudrey-Dodd-Gibbon equation by applying the projective Riccati equation method
whereas Naher and Abdullah [45] studied the modified Benjamin-Bona-Mahony equation
via the generalized Riccati equation mapping with the basic (G′/G)-expansion method for
constructing traveling wave solutions and so on.

Many researchers implemented various methods to investigate the (2+1)-dimensional
modified Zakharov-Kuznetsov equation. For instance, Khalfallah [46] used homogeneous
balance method to establish traveling wave solutions of this equation. In [47], Bekir applied
basic (G′/G)-expansion method for obtaining exact traveling wave solutions for the same
equation. In this basic (G′/G)-expansion method, they employed second-order linear ordi-
nary differential equation (LODE)with constant coefficients, as an auxiliary equation instead
of generalized Riccati equation.

The importance of our present work is, in order to construct many new traveling wave
solutions including solitons, periodic, and rational solutions, a (2 + 1)-dimensional Modi-
fied Zakharov-Kuznetsov equation considered by applying the extended generalized Riccati
equation mapping method.

2. The Extended Generalized Riccati Equation Mapping Method

Suppose the general nonlinear partial differential equation

H
(
v, vt, vx, vy, vxt, vyt, vxy, vtt, vxx, vyy, . . .

)
= 0, (2.1)
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where v = v(x, y, t) is an unknown function,H is a polynomial in v(x, y, t), and the subscripts
indicate the partial derivatives.

The most important steps of the generalized Riccati equation mapping together with
the (G′/G)-expansion method [29, 40] are as follows.

Step 1. Consider the traveling wave variable:

v
(
x, y, t

)
= g
(
η
)
, η = x + y − Ct, (2.2)

where C is the speed of the traveling wave. Now using (2.2), (2.1) is converted into an ordi-
nary differential equation for g(η):

F
(
g, g ′, g ′′, g ′′′, . . .

)
= 0, (2.3)

where the superscripts stand for the ordinary derivatives with respect to η.

Step 2. Equation (2.3) integrates term by term one or more times according to possibility and
yields constant(s) of integration. The integral constant(s) may be zero for simplicity.

Step 3. Suppose that the traveling wave solution of (2.3) can be expressed in the form [29, 40]

g
(
η
)
=

n∑

j = 0

ej

(
G′

G

)j

, (2.4)

where ej (j = 0, 1, 2, . . . , n) and en /= 0, with G = G(η) is the solution of the generalized Riccati
equation:

G′ = w + uG + vG2, (2.5)

where u, v, w are arbitrary constants and v /= 0.

Step 4. To decide the positive integer n, consider the homogeneous balance between the
nonlinear terms and the highest order derivatives appearing in (2.3).

Step 5. Substitute (2.4) along with (2.5) into the (2.3), then collect all the coefficients with the
same order, the left hand side of (2.3) converts into polynomials in Gk(η) and G − k(η), (k =
0, 1, 2, . . .). Then equating each coefficient of the polynomials to zero and yield a set of alge-
braic equations for ej (j = 0, 1, 2, . . . , n), u, v, w, and C.

Step 6. Solve the system of algebraic equations which are found in Step 5 with the aid of
algebraic software Maple to obtain values for ej (j = 0, 1, 2, . . . , n) and C then, substitute
obtained values in (2.4) along with (2.5) with the value of n, we obtain exact solutions of
(2.1).

In the following, we have twenty seven solutions including four different families of
(2.5).
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Family 1. When u2 − 4vw > 0 and uv /= 0 or vw/= 0, the solutions of (2.5) are:

G1 =
−1
2v

(

u +
√
u2 − 4vw tanh

(√
u2 − 4vw

2
η

))

,

G2 =
−1
2v

(

u +
√
u2 − 4vw coth

(√
u2 − 4vw

2
η

))

,

G3 =
−1
2v

(
u +
√
u2 − 4vw

(
tanh

(√
u2 − 4vw η

)
± isech

(√
u2 − 4vwη

)))
,

G4 =
−1
2v

(
u +
√
u2 − 4vw

(
coth

(√
u2 − 4vw η

)
± csch

(√
u2 − 4vwη

)) )
,

G5 =
−1
4v

(

2u +
√
u2 − 4vw

(

tanh

(√
u2 − 4vw

4
η

)

+ coth

(√
u2 − 4vw

4
η

)))

,

G6 =
1
2v

⎛

⎜
⎝−u +

±
√
(D2 + E2)(u2 − 4vw) −D

√
u2 − 4vw cosh

(√
u2 − 4vwη

)

D sinh
(√

u2 − 4vw η
)
+ E

⎞

⎟
⎠,

G7 =
1
2v

⎛

⎜
⎝−u −

±
√
(D2 + E2)(u2 − 4vw) +D

√
u2 − 4vw cosh

(√
u2 − 4vwη

)

D sinh
(√

u2 − 4vw η
)
+ E

⎞

⎟
⎠,

(2.6)

where D and E are two nonzero real constants.

G8 =
2w cosh

((√
u2 − 4vw/2

)
η
)

√
u2 − 4vw sinh

((√
u2 − 4vw/2

)
η
)
− u cosh

((√
u2 − 4vw/2

)
η
) ,

G9 =
−2w sinh

((√
u2 − 4vw/2

)
η
)

u sinh
((√

u2 − 4vw/2
)
η
)
−
√
u2 − 4vw cosh

((√
u2 − 4vw/2

)
η
) ,

G10 =
2w cosh

(√
u2 − 4vwη

)

√
u2 − 4vw sinh

(√
u2 − 4vwη

)
− u cosh

(√
u2 − 4vwη

)
± i

√
u2 − 4vw

,

G11 =
2w sinh

(√
u2 − 4vwη

)

−u sinh
(√

u2 − 4vwη
)
+
√
u2 − 4vw cosh

(√
u2 − 4vwη

)
±
√
u2 − 4vw

,

G12 =
4w sinh

((√
u2 − 4vw/4

)
η
)
cosh

((√
u2 − 4vw/4

)
η
)

−2u sinh
((√

u2 − 4vw/4
)
η
)
cosh

((√
u2 − 4vw/4

)
η
)
+ Δ1

,

(2.7)

where Δ1 = 2
√
u2 − 4vwcosh2((

√
u2 − 4vw/4)η) −

√
u2 − 4vw.
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Family 2. When u2 − 4vw < 0 and uv /= 0 or vw/= 0, the solutions of (2.5) are:

G13 =
1
2v

(

−u +
√
4vw − u2 tan

(√
4vw − u2

2
η

))

,

G14 =
−1
2v

(

u +
√
4vw − u2 cot

(√
4vw − u2

2
η

))

,

G15 =
1
2v

(
−u +

√
4vw − u2

(
tan
(√

4vw − u2 η
)
± sec

(√
4vw − u2η

)))
,

G16 =
−1
2v

(
u +
√
4vw − u2

(
cot
(√

4vw − u2η
)
± csc

(√
4vw − u2η

)))
,

G17 =
1
4v

(

−2u +
√
4vw − u2

(

tan

(√
4vw − u2

4
η

)

− cot

(√
4vw − u2

4
η

)))

,

G18 =
1
2v

⎛

⎜
⎝−u +

±
√
(D2 − E2)(4vw − u2) −D

√
4vw − u2 cos

(√
4vw − u2η

)

D sin
(√

4vw − u2η
)
+ E

⎞

⎟
⎠,

G19 =
1
2v

⎛

⎜
⎝−u −

±
√
(D2 − E2)(4vw − u2) +D

√
4vw − u2 cos

(√
4vw − u2η

)

D sin
(√

4vw − u2η
)
+ E

⎞

⎟
⎠,

(2.8)

where D and E are two nonzero real constants and satisfy D2 − E2 > 0.

G20 =
−2w cos

((√
4vw − u2/2

)
η
)

√
4vw − u2 sin

((√
4vw − u2/2

)
η
)
+ u cos

((√
4vw − u2/2

)
η
) ,

G21 =
2w sin

((√
4vw − u2/2

)
η
)

−u sin
((√

4vw − u2/2
)
η
)
+
√
4vw − u2 cos

((√
4vw − u2/2

)
η
) ,

G22 =
− 2w cos

(√
4vw − u2 η

)

√
4vw − u2 sin

(√
4vw − u2η

)
+ u cos

(√
4vw − u2η

)
±
√
4vw − u2

,

G23 =
2w sin

(√
4vw − u2 η

)

−u sin
(√

4vw − u2η
)
+
√
4vw − u2 cos

(√
4vw − u2η

)
±
√
4vw − u2

,

G24 =
4w sin

((√
4vw − u2/4

)
η
)
cos
((√

4vw − u2/4
)
η
)

−2u sin
((√

4vw − u2/4
)
η
)
cos
((√

4vw − u2/4
)
η
)
+ Δ2

,

(2.9)

where Δ2 = 2
√
4vw − u2cos2((

√
4vw − u2 /4)η) −

√
4vw − u2.
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Family 3. When w = 0 and uv /= 0, the solution (2.5) becomes:

G25 =
−uf1

v
(
f1 + cosh

(
uη
) − sinh

(
uη
)) ,

G26 =
−u(cosh(uη) + sinh

(
uη
))

v
(
f1 + cosh

(
uη
)
+ sinh

(
uη
)) ,

(2.10)

where f1 is an arbitrary constant.

Family 4. when v /= 0 and w = u = 0, the solution of (2.5) becomes:

G27 =
−1

vη + l1
, (2.11)

where l1 is an arbitrary constant.

3. Applications of the Method

In this section, we have constructed new traveling wave solutions for the (2+ 1)-dimensional
modified Zakharov-Kuznetsov equation by using the method.

3.1. The (2 + 1)-Dimensional Modified Zakharov-Kuznetsov Equation

We consider the (2 + 1)-dimensional Modified Zakharov-Kuznetsov equation followed by
Bekir [47]

ut + u2 ux + uxxx + uxyy = 0. (3.1)

Now, we use the wave transformation (2.2) into the (3.1), which yields:

−Cg ′ + u2g ′ + 2g ′′′ = 0. (3.2)

Equation (3.2) is integrable, therefore, integrating with respect η once yields:

Q − Cg +
1
3
g3 + 2g ′′ = 0, (3.3)

where Q is an integral constant which is to be determined later.
Taking the homogeneous balance between g3 and g ′′ in (3.3), we obtain n = 1.
Therefore, the solution of (3.3) is of the form:

g
(
η
)
= e1

(
G′

G

)
+ e0, e1 /= 0. (3.4)
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Using (2.5), (3.4) can be rewritten as

g
(
η
)
= e1
(
u +wG−1 + vG

)
+ e0, (3.5)

where u, v, and w are free parameters.
By substituting (3.5) into (3.3), the left hand side is converted into polynomials in Gk

and G−k (k = 0, 1, 2, . . .). Setting each coefficient of these resulted polynomials to zero, we
obtain a set of algebraic equations for e0, e1, u, v, w, Q, and C (algebraic equations are not
shown, for simplicity). Solving the system of algebraic equations with the help of algebraic
software Maple, we obtain

e0 = ∓ui
√
3, e1 = ±2i

√
3, C = −u2 − 8vw, Q = 8uvwi

√
3. (3.6)

Family 5. The soliton and soliton-like solutions of (3.1) (when u2 − 4vw > 0 and uv /= 0 or
vw/= 0) are:

g1 = ±2i
√
3

2Ψ2sech2(Ψη
)

u + 2Ψ tanh
(
Ψη
) ∓ ui

√
3, (3.7)

where Ψ = (1/2)
√
u2 − 4vw, η = x + y + (u2 + 8vw)t and u, v, w are arbitrary constants.

g2 = ∓2i
√
3

2Ψ2csch2(Ψη
)

u + 2Ψ coth
(
Ψη
) ∓ ui

√
3,

g3 = ±2i
√
3

4Ψ2sech
(
2Ψη

)(
1 ∓ i sinh

(
2Ψη

))

u cosh
(
2Ψη

)
+ 2Ψ sinh

(
2Ψη

) ± i2Ψ
∓ ui

√
3,

g4 = ∓2i
√
3

2Ψ2csch
(
Ψη
)

u sinh
(
Ψη
)
+ 2Ψ cosh

(
Ψη
) ∓ ui

√
3,

g5 = ∓2i
√
3

4Ψ2csch
(
2Ψη

)

u tanh
(
Ψη
)
+ 2Ψ

∓ ui
√
3,

g6 = ∓2i
√
3
4DΨ2

(
D − E sinh

(
2Ψη

) −
√
(D2 + E2) cosh

(
2Ψη

))

(
D sinh

(
2Ψη

)
+ E
)
Ω1

∓ ui
√
3,

g7 = ∓2i
√
3
4DΨ2

(
D − E sinh

(
2Ψη

)
+
√
(D2 + E2) cosh

(
2Ψη

))

(
D sinh

(
2Ψη

)
+ E
)
Ω2

∓ ui
√
3,

(3.8)
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whereΩ1 = uD sinh(2Ψη) +uE− 2Ψ
√
(D2 + E2) + 2DΨ cosh(2Ψη),Ω2 = uD sinh(2Ψη) +uE+

2Ψ
√
(D2 + E2) + 2DΨ cosh(2Ψη), D and E are two nonzero real constants.

g8 = ∓2i
√
3

2Ψ 2sech
(
Ψη
)

2Ψ sinh
(
Ψη
) − u cosh

(
Ψη
) ∓ ui

√
3,

g9 = ±2i
√
3

2Ψ 2csch
(
Ψη
)

2Ψ cosh
(
Ψη
) − u sinh

(
Ψη
) ∓ ui

√
3,

g10 = ±2i
√
3

4Ψ2sech
(
2Ψ η

)(
1 ∓ i sinh

(
2Ψη

))

u cosh
(
2Ψη

) − 2Ψ sinh
(
2Ψη

) ∓ i2Ψ
∓ ui

√
3,

g11 = ±2i
√
3

4Ψ2csch
(
2Ψη

)(
1 ± cosh

(
2Ψη

))

2Ψ cosh
(
2Ψη

) − u sinh
(
2Ψη

) ± 2Ψ
∓ ui

√
3,

g12 = ±2i
√
3

2Ψ2csch
(
Ψη
)

2Ψ cosh
(
Ψη
) − u sinh

(
Ψη
) ∓ ui

√
3.

(3.9)

Family 6. The periodic form solutions of (3.1) (when u2 − 4vw < 0 and uv /= 0 or vw/= 0) are:

g13 = ±2i
√
3

2Θ2sec2
(
Θη
)

−u + 2Θ tan
(
Θη
) ∓ ui

√
3, (3.10)

where Θ = (1/2)
√
4 vw − u2, η = x + y + (u2 + 8vw)t and u, v, w are arbitrary constants.

g14 = ∓2i
√
3

2Θ2csc2
(
Θη
)

u + 2Θ cot
(
Θη
) ∓ ui

√
3,

g15 = ±2i
√
3

4Θ2sec
(
2Θη

)(
1 ± sin

(
2Θη

))

−u cos
(
2Θη

)
+ 2Θ sin

(
2Θη

) ± 2Θ
∓ ui

√
3,

g16 = ∓2i
√
3

2Θ2sec
(
Θη
)

u cos
(
Θη
)
+ 2Θ sin

(
Θη
) ∓ ui

√
3,

g17 = ∓2i
√
3

2Θ2csc
(
Θη
)

u sin
(
Θη
)
+ 2Θ cos

(
Θη
) ∓ ui

√
3,

g18 = ∓2i
√
3
4DΘ2

(√
(D2 − E2) cos

(
2Θη

) − E sin
(
2Θη

) −D
)

(
D sin

(
2Θη

)
+ E
)
Ω3

∓ ui
√
3.

g19 = ∓2i
√
3
4DΘ2

(√
(D2 − E2) cos

(
2Θη

)
+ E sin

(
2Θη

)
+D
)

(
D sin

(
2Θη

)
+ E
)
Ω4

∓ ui
√
3,

(3.11)
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Figure 1: Solitons solution for u = 3, v = 0.5, w = 0.25.

where Ω3 = uD sin(2Θη) + 2DΘ cos(2Θη) + uE − 2Θ
√
(D2 − E2), Ω4 = uD sin(2Θη) + 2DΘ

cos(2Θη)+uE+2Θ
√
(D2 − E2),D and E are two nonzero real constants and satisfiesD2−E2 >

0.

g20 = ∓2i
√
3

4Θ2csc
(
2Θη

)

u cot
(
Θη
)
+ 2Θ

∓ ui
√
3,

g21 = ∓2i
√
3

4Θ2csc
(
2Θη

)

u tan
(
Θη
)
+ 2Θ

∓ ui
√
3,

g22 = ∓2i
√
3
2Θ2sec

(
2Θη

)(
1 ± sin

(
2Θη

))(
u cos

(
2Θη

)
+ 2Θ sin

(
2Θη

) ± 2Θ
)

(u2 − 2vw)cos2
(
2Θη

)
+ 2Θ

(
1 ± sin

(
2Θη

))(
2Θ ± u cos

(
2Θη

)) ∓ ui
√
3,

g23 = ±2i
√
3
2Θ2csc

(
2Θη

)(−u sin
(
2Θη

)
+ 2Θ cos

(
2Θη

) ± 2Θ
)

(2vw − u2) cos
(
2Θη

) − 2uΘ sin
(
2Θη

) ± 2vw
∓ ui

√
3,

g24 = ∓2i
√
3

2Θ2csc
(
Θη
)

u sin
(
Θη
)
+ 2Θ cos

(
Θη
) ∓ ui

√
3.

(3.12)

Family 7. The soliton and soliton-like solutions of (3.1) (when w = 0 and uv /= 0) are:

g25 = ±2i
√
3
u
(
cosh

(
uη
) − sinh

(
uη
))

f1 + cosh
(
uη
) − sinh

(
uη
) ∓ ui

√
3,

g26 = ±2i
√
3

uf1

f1 + cosh
(
uη
)
+ sinh

(
uη
) ∓ ui

√
3,

(3.13)

where f1 is an arbitrary constant, η = x + y + (u2 + 8vw)t.
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Figure 2: Periodic solution for u = 1, v = 1, w = 0.125.
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Figure 3: Solitons solution for u = 4, v = 0.5, w = 1.

Family 8. The rational function solution (when v /= 0 and w = u = 0) is:

g27 =
∓ 2iv

√
3

vη + l1
, (3.14)

where l1 is an arbitrary constant and η = x + y + (u2 + 8vw)t.
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Figure 5: Periodic solution for u = 1, v = 25.10−5, w = 25.10−3.

4. Results and Discussion

It is significant to mention that one of our solutions is coincided for some special case with
already published results which are presented in Table 1. Furthermore, some of newly con-
structed solutions are illustrated in Figures 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, and 12.
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Table 1: Comparison between Bekir [47] solutions and newly obtained solutions.

Bekir [47] solutions New solutions

(i) If C1 = 1, C2 =
1
2
and λ2 − 4μ = 0, solution

Equation (4.9) (from Section 4) becomes:

u5,6(ξ) = ± i
√
3

2
2 + x

.

(i) If v =
1
2
, l1 = 1, y = 0 and g27

(
η
)
= u5,6(ξ),

solution g27 becomes:

u5,6(ξ) = ± i
√
3

2
2 + x

.

(ii) C1 = 1, C2 =
−1
2

and λ2 − 4μ = 0, solution

Equation (4.9) (from Section 4) becomes:

u5,6(ξ) = ∓ i
√
3

2
2 − x

.

(ii) If v =
−1
2
, l1 = 1, y = 0 and g27

(
η
)
= u5,6(ξ),

solution g27 becomes:

u5,6(ξ) = ∓ i
√
3

2
2 − x

.

(iii) C1 = 0, C2 = 1 and λ2 − 4μ = 0, solution (iii) If v = 1, l1 = 0, y = 0 and g27
(
η
)
= u5,6(ξ),

Equation (4.9) (from Section 4) becomes:

u5,6(ξ) = ∓ i
√
3
(
2
x

)
.

solution g27 becomes:

u5,6(ξ) = ∓ i
√
3
(
2
x

)
.
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Figure 6: Solitons solution for u = 1, v = 0.45, w = 3.

As in Table 1, we have newly constructed traveling wave solutions g1 to g26 which are
not being stated in the earlier literature.

4.1. Graphical Depictions of Newly Obtained Traveling Wave Solutions

The graphical descriptions of some solutions are represented in Figures 1–12 with the aid of
commercial software Maple.
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Figure 8: Solitons solution for u = 1, v = 1, w = 1.

5. Conclusions

In this paper, we have investigated the (2 + 1)-dimensional modified Zakharov-Kuznetsov
equation via the extended generalized Riccati equationmappingmethod. Twenty seven exact
traveling wave solutions are constructed including solitons and periodic wave solutions by
applying this powerful method. In addition, newly obtained solutions are depicted in terms
of the hyperbolic, the trigonometric, and the rational functional form. The obtained solutions
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Figure 10: Solitons solution for u = 1, v = 0.5, w = 1.

reveal that this method is a promising mathematical tool because it can establish a variety
of new solutions of dissimilar physical structures if compared with existing methods. The
correctness of newly constructed solutions is verified to be compared with already published
results. Consequently, nonlinear evolution equations which regularly arise in many scientific
real-time application fields can be studied by applying the extended generalized Riccati
equation mapping method.
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Figure 11: Solitons solution for u = 3, v = 25.10−4, w = 25.10−3.
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Figure 12: Periodic solution for u = 0.25, v = −5, w = 0, f1 = 0.25.
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