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We consider the linear multiterm fractional differential equation (fDE). Existence and uniqueness
of the solution of such equation are discussed. We apply the finite element method (FEM) to obtain
the numerical solution of this equation using Galerkin approach. A comparison, through examples,
between our techniques and other previous numerical methods is established.

1. Introduction

Recently, many applications in numerous fields of science, engineering, viscoelastic materials,
signal processing, controlling, quantummechanics, meteorology, finance, life science, applied
mathematics, and economics have been remodeled in terms of fractional calculus where
derivatives and integrals of fractional order are introduced and so differential equation of
fractional order are involved in these models, see [1–4]. Fractional-order derivatives provide
an excellent instrument for the description of memory and hereditary properties of various
materials and processes. They have been successfully used to model many problems. As
an example which will give us a physical understanding of the fractional derivatives: in
dynamical systems with fractional-order derivatives, fractional-order derivatives have been
successfully used to model damping forces with memory effect or to describe state feedback
controllers. In particular, the BagleyTorvik equation with 1/2-order derivative or 3/2-order
derivative describes motion of real physical systems, an immersed plate in a Newtonian
fluid, and a gas in a fluid, respectively [5]. Recently, it is found in [6] that in fractional-
order vibration systems of single degree of freedom, the term of fractional-order derivative
whose order is between 0 and 2 acts always as damping force. In addition, almost all
systems containing internal damping are not suitable to be described properly by the classical
methods, but the fractional calculus represents one of the promising tools which describe
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such systems. Therefore, mainly, a considerable importance is given to the field of fractional
calculus. For analytical solution of fDEs, we refer to a domain decomposition method [7],
the homotopy-perturbation method [8], variational iteration method [9–11], the fractional
complex transform [12, 13], and the exp-function method [14]. For the numerical solution of
fDEs, many approaches has been considered, for example, FDM [15], wavelet operational
method [16], and recently series solution [17]. Also many authors used the fact that the
solution of a fDE is the same as the solution of a singular integral equation, and so they
solved this integral equation instead, see [18].

A multiterm fDE may take the form

Dαu(x) = F(x, u(x), Dα1u(x), . . . , Dα�u(x)), a ≤ x ≤ b,

n − 1 < α1 < α2 < · · · < αm < α < n, i = 1, 2, . . . , n = [α] + 1,
(1.1)

with initial conditions

Dα−ku(x)
∣
∣
∣
x=a

= bk, bk ∈ k = 1, . . . , n, (1.2)

where bk are given constants and (x)means the integer part of x.
The operator Dα denotes the α-derivative of the function f(t). There are various ways

of defining the derivative of a given function f(x) of order α. We mention only the following
definition due to Caputo’s definition.

Definition 1.1.

cDα
a+f(x) =

1
Γ(n − α)

∫x

a

f (n)(τ)

(x − τ)α−n+1
dτ, n − 1 < α < n, x > a. (1.3)

Similarly for cDα
b−f(x).

The advantages of Caputo’s approach is that the initial conditions for the fDE with
Caputo’s definition take the same form as the initial conditions of differential equation of
integer order.

Examples 1. From the previous definition, we deduce

(i) if x > a, cDα1 = 0,

(ii) if x > b > a, cDα(x − b) = (1/Γ(2 − α))(x − b)1−α.

In this paper, we write Dαf(x) instead of CD
α
a+f(x).

2. Results for the Linear Multiterm fDE

In this paper, we write a linear multiterm fDE with Caputo’s derivatives in the following
form; because of its importance in fluid mechanics:

D1+αu(x) +
M∑

m=1

Am(x)Dαmu(x) = f(x), 1 > x > 0, (2.1)
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n ≥ α, αm > n − 1 and incorporated given initial conditions data

uk(0) = bk, k = 0, 1, 2, . . . , n − 1. (2.2)

Equations of the form of (1.1) and (2.1) have been studied extensively by many authors, see
[18]. For our concerns, we state the following two theorems, see [19].

Theorem 2.1 (Diethelm 2001). Let u be the solution of (2.1) with initial conditions (2.2) and let v
be the solution of

D1+αv(x) +
M∑

m=1

Am(x)Dαmv(x) = f(x), 1 > x > 0, (2.3)

n ≥ α, αm > n − 1, and incorporated given initial conditions data

vk(0) = bk, k = 0, 1, (2.4)

where |α − α| < ε, |αm − αm| < ε. For T < ∞, we have

‖u − v‖L∞[0,T] = O(ε), ε −→ 0. (2.5)

As a consequence of this theorem, we can assume that the fractional orders α, αm, are
irrational numbers.

Theorem 2.2 (Diethelm 2001). Let the function f in (1.1) satisfy Lipschitz condition with Lipschitz
constant L in all its arguments except for the first. Assume that the orders α, αm ∈ Q. Then (1.1)
subject to (1.2) has a unique solution on the interval [0, T] of the real line.

3. Modified Galerkin Method

In this section, we present our approach by using FEM to get the numerical solution of the
general linear multiterm fDE (2.1) with initial conditions (2.2) and we restrict our self to the
case 0 < α, αm ≤ 1. To perform such approach, we segment the domain [0, 1] into N linear
elements, say ei, i = 1, 2, . . . ,N, ei = (xi, xi+1) with x1 = 0 and xN+1 = 1. These points are
called the nodal points. Let the length of each element ei be equal to � = xi+1 − xi = 1/N. At
each nodal point xi, i = 1, 2, . . . ,N + 1, we define the roof function Ri(x) as follows:

R1 =

⎧

⎨

⎩

x − x2

−� , x1 = 0 ≤ x < x2,

0, else,

RN+1 =

⎧

⎨

⎩

x − xN

�
, xN < x ≤ 1 − xN+1,

0, else,

(3.1)
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and for i /= 1,N + 1 we have

Ri =

⎧

⎪⎨

⎪⎩

x − xi+1

−� , x ∈ ei,

x − xi−1
�

, x ∈ ei−1.
(3.2)

Note that Ri(xi) = 1 and Ri(xj /= i) = 0.
We assume the approximate solution of (2.1) is a linear combination of these roof

functions Rj(x). In other words, let

u(x) ≈ ũ(x) =
N+1∑

j=1

cjRj(x), (3.3)

where cj are constants to be determined. We choose the constant cj such that

D1+αũ(x) +
M∑

m=1

Am(x)Dαmũ(x) − f(x) (3.4)

is minimized. This quantity is minimized if

∫1

0
Ri(x)

{

D1+αũ(x) +
M∑

m=1

Am(x)Dαmũ(x) − f(x)

}

dx = 0, i = 1, 2, . . . ,N + 1. (3.5)

Integration by parts the first term of the above equation, we obtain

−
∫1

0

dRi(x)
dx

Dαũ(x)dx +
M∑

m=1

∫1

0
Am(x)Ri(x)Dαmũ(x)dx

=
∫1

0
f(x)Ri(x)dx − [Ri(x)Dαũ(x)]10, i = 1, 2, . . . ,N + 1.

(3.6)

Using (3.3) in the last equation, we obtain

N+1∑

j=1

cj

{∫1

0

dRi(x)
dx

DαRj(x)dx −
M∑

m=1

∫1

0
Am(x)Ri(x)DαmRj(x)dx

}

= −
∫1

0
f(x)Ri(x)dx − cN+1

�Γ(2 − α)
δi,N+1, i = 1, 2, . . . ,N + 1,

(3.7)

where
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δi,N+1 =

{

1, i = N + 1,
0, else.

(3.8)

Note that the first and the last equations of the above equations are invalid.
Now, define

K1
ij =
∫1

0

dRi(x)
dx

DαRj(x)dx,

K2
ij =

M∑

m=1

∫1

0
Am(x)Ri(x)DαmRj(x)dx,

Fi = −
∫1

0
f(x)Ri(x)dx,

Bi =
cN+1

�Γ(2 − α)
δi,N+1.

(3.9)

Then (3.7) has the matrix form

N+1∑

j=1

Kijcj = Fi, i = 2, . . . ,N, (3.10)

where

Kij = K1
ij +K2

ij + Bi. (3.11)

Or, simply,

[K]C = F. (3.12)

The matrix K = (Kij + Bi) is called the global stiffness matrix and the vector F = (Fi)
is called the global force vector. In calculating the elements of the two matrices K and F, we
have to integrate over each element eν, ν = 1, 2, . . . ,N. Therefore, we express K as a sum of
element stiffness matrixes K[eν] and F as a sum of element force vectors F[eν]. Namely,

K =
N+1∑

ν=1

K[eν], F =
N+1∑

ν=1

F[eν], (3.13)
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where

K
[eν]
ij = K

1,[eν]
ij +K

2,[eν]
ij ,

K
1,[eν]
ij =

∫

eν

dRi(x)
dx

DαRj(x)dx,

K
2,[eν]
ij =

M∑

m=1

∫

eν

Am(x)Ri(x)DαmRj(x)dx,

F
[eν]
i = −

∫

eν

f(x)Ri(x)dx.

(3.14)

Using the properties of the roof functions, we obtain

K1
ij =

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0,
∣
∣i − j

∣
∣ ≥ 2,

∫

ei

dRi(x)
dx

DαRj(x)dx, j = i + 1,

∫

ej

dRi(x)
dx

DαRj(x)dx, i = j + 1,

(∫

ei−1
+
∫

ei

)dRi(x)
dx

DαRi(x)dx, j = i.

(3.15)

Similarly,

K2
ij =

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0,
∣
∣i − j

∣
∣ ≥ 2,

M∑

m=1

∫

ei
Am(x)Ri(x)DαmRj(x)dx, j = i + 1,

M∑

m=1

∫

ej
Am(x)Ri(x)DαmRj(x)dx, i = j + 1,

(∫

ei−1
+
∫

ei

)

Am(x)Ri(x)DαmRj(x)dx, j = i,

Fi = −
(∫

ei−1
+
∫

ei

)

f(x)Ri(x)dx.

(3.16)

Note that
∫

e0
G(x)dx = 0 =

∫

en+1
G(x)dx, for any function G(x).

Also, the initial conditions given by (1.2) gives

c1 = b0, c2 = �b1 + b0. (3.17)
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Therefore, the final linear system which gives the unknown ci, i = 2, 3, 4, . . . ,N takes the
form

N+1∑

j=3

Kijcj = F∗
i , i = 2, 3, 4, . . . ,N, (3.18)

where

Kij = K1
ij +K2

ij , F∗
i = Fi −Ki1c1 −Ki2ci2. (3.19)

4. Numerical Experiments

We consider the following Cauchy problem:

D1.5y(t) + 2D1y(t) + 3
√
tD0.5y(t) + (1 − t)y(t) = f(t), y(0) = y′(0) = 0, (4.1)

where

f(t) =
2

Γ(1.5)

√
t + 4t +

4
Γ(1.5)

t2 + (1 − t)t2. (4.2)

It is easy to check that all assumptions of Theorem 2.2 are fulfilled. The exact solution of the
fractional differential equation is y(t) = t2.

This problemwas solved numerically by themodified Galerkinmethod on the interval
[0, 1] using different values of N, the number of nodal points. In Table 1, some results for
different values of the parameters N are presented.

Denoting by eN = max{|u(x)−uN(x)|, 0 < x < 1} the errors and by αN = log(eN/e2N)
an estimate of a convergence order, the results is contained in Table 1.

5. Discussion

In general, finding the exact solutions of fractional differential equations is difficult and needs
more computational work or mostly impossible. In this study, the finite element method is
generalized and applied to fDE with multilinear terms. The method described in this paper
considers only fDE of the form of (2.1) with conditions of the form of (2.2), but the basic
ground work has been laid for extension to any fDE (linear or nonlinear) with any initial (or
boundary) conditions. The roof functions defined by (3.1), (3.2) are chosen to be linear, yet
we could choose them to be of higher order; quadratic, cubic, . . ., and so forth. Singularities
of the fDE is the key behind the difficulties of the numerical solution of such equation. In our
approach for solving fDE, such difficulties has been eliminated. The obtained linear system is
easy to solve since the coefficients matrix,K, is a tridiagonal matrix. Moreover, the coefficients
of the matrices K and F, given by (3.15), (3.16), are easily computable explicitly either by
hand or by using software such as Maple which can calculate them symbolically. In solving
differential equations of integer order using the modified Galerkin techniques described
above in conjunction with piecewise linear shape functions, the terms derivatives of order m
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Table 1

N eN (error) αN (convergence order)
4 8.5231043E−2 2.979325336
8 4.3320479E−3 3.409608789
16 1.4319207E−4 3.416117538
32 4.7023827E−6 3.850441833
64 1.00021262E−7 3.896749819
128 2.03121262E−9

(with m greater than 2) in the given differential equation would make no contribution to the
approximation leading to a poor result. In contrast to this situation, derivatives of fractional
order in the fDE will have contributions even with linear shape functions.

Also, the described method gave us a good agreement with other numerical methods
with a relatively simple procedure and little computational efforts. It is also noted that this
procedure transforms linear differential equations into an algebraic system, which depends
on the roof functions. Therefore, it can provide with some advantages in writing computer
codes of the desired system.
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